# Non-locality and quantum games

Dmitry Kravchenko University of Latvia

Theory days at Jõulumäe, 2008

# Agenda

- Distributed computation
- Quantum mechanics basics
- Quantum non-local games
- Results and ideas

Main server distributes subtasks



- If subtasks are correlated but communications between nodes is allowed nodes can compute any computable function
- However node abilities to communicate can be limited or even completely prohibited

- Long distances between nodes (space)
- Environment (ocean)
- Communication takes too much energy
- Etc.

 If communications are prohibited some distributed functions can not be computed (with certainty)



# Computational model

 More formally: nodes compute a set of functions on shared data



# Computational model

 More formally: nodes compute a set of functions on shared data



# Classical and quantum bits

- Classical bit
  - Regardless a physical representation can be 0 or 1

- Quantum bit
  - Regardless a physical representation can be 0, 1 or a superposition of both

#### Quantum bits: superposition

If a quantum bit can be in state 0 and 1

it can also be in state 
$$|\varphi\rangle = \alpha |0\rangle + \beta |1\rangle$$

where  $\alpha$  and  $\beta$  are complex numbers called <u>probability</u> <u>amplitudes</u>.

#### Quantum bits: measurement

If a quantum bit can be in state 0 and 1

it can also be in state 
$$|\varphi\rangle = \alpha |0\rangle + \beta |1\rangle$$

- Measuring the bit the probability of outcome 0 is  $|\alpha|^2$  and the probability of outcome 1 is  $|\beta|^2$ .
- α and β must be constrained by the equation

$$|\alpha|^2 + |\beta|^2 = 1$$

# Quantum bits: generalization

If a quantum system can be in states  $|\varphi_1\rangle,...,|\varphi_n\rangle$ 

it can also be in state 
$$|\varphi\rangle = \sum_{i=1}^{n} \alpha_{i} |\varphi_{i}\rangle$$

- Measuring the system the probability of outcome i is  $|\alpha_i|^2$
- $\alpha_i$  must be constrained by the equation

$$\sum_{i=1}^{n} |\alpha_i|^2 = 1$$

#### Entanglement

- Entanglement is a non-local property that allows a set of qubits to express higher correlation than is possible in classical systems.
- It gives rise to some of the most counterintuitive phenomena of quantum mechanics

#### Entanglement

- We have a system consisting of two bits.
- In classical case it is always possible to describe a state of each bit.
- In quantum case the system can be in a state there individual qubits do not have their own state.

#### Entanglement : example

- We have a system consisting of two qubits.
- The system can be in any superposition

$$|\varphi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$$

For example, in superposition

$$|\boldsymbol{\varphi}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

# Entanglement

We have a pair of entangled qubits

$$|\boldsymbol{\varphi}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

As qubits are particles they can be physically separated



If we measure one of qubits other will "get" same state

- We can not transmit information using entanglement as this violates relativity theory
- Static observer has horizontal worldline



- We can not transmit information using entanglement as this violates relativity theory
- Static observer has horizontal worldline
- Observer in motion has inclined worldline



- If one exceeds speed of light, there may exist an observer that has opposite time flow
- Cause-and-effect law is violated



- If one exceeds speed of light, there may exist an observer that has opposite time flow
- Cause-and-effect law is violated



#### Entanglement once again

We have a pair of entangled qubits

$$|\boldsymbol{\varphi}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

As qubits are particles they can be physically separated



If we measure one of qubits other will "get" same state

#### Entanglement once again

We have a pair of entangled qubits

$$|\boldsymbol{\varphi}\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

As qubits are particles they can be physically separated



If we measure one of qubits other will "get" same state

IMMEDIATELY!

John Clauser, Michael Horne, Abner Shimony and Richard Holt

1969

**CHSH** inequality







| Input |     |   | Output |     |   |  |
|-------|-----|---|--------|-----|---|--|
|       | x*y | 0 | 1      | a⊕b |   |  |
|       | 0   | 0 | 0      |     |   |  |
|       | 1   | 0 | 1      |     |   |  |
|       |     |   |        |     | ı |  |

| x*y | 0 | 1 |  |  |  |
|-----|---|---|--|--|--|
| 0   | 0 | 0 |  |  |  |
|     |   |   |  |  |  |

Input

#### Output

| a⊕b | 0 | 0 |
|-----|---|---|
| 0   | 0 | 0 |
| 0   | 0 | 0 |

| Input |     |   |   | Output |   |   |  |
|-------|-----|---|---|--------|---|---|--|
|       | x*y | 0 | 1 | a⊕b    | 0 | 0 |  |
|       | 0   | 0 | 0 | 0      | 0 | 0 |  |
|       | 1   | 0 | 1 | 0      | 0 | 0 |  |
|       |     |   |   |        | l | I |  |

Pr[Alice & Bob win] = 3/4

# Entanglement : measurement



#### Entanglement: measurement

Either 11



#### Entanglement : measurement





#### Entanglement: measurement



#### Entanglement: measurement











$$x=1, y=1: 0 + \sin^2 2\theta$$









#### Best quantum strategy

Pr[Alice & Bob win\*]

$$=\cos^2(\pi/8)$$
 0.85

\* when they share  $|\Phi|$ 

- There is a quantum strategy which is better than any classical strategy
- This is one of the cores of quantum non-locality

#### Games of four

All symmetrical games can be written in form like
 |Input| ∈ {0,1,4} ⇔ |Output| ∈ {0,2,3}

#### Games of four

- All symmetrical games can be written in form like
   |Input| ∈ {0,1,4} ⇔ |Output| ∈ {0,2,3}
- Best known "quantum achievements" for such 4 player games are:

```
\{1\} \Leftrightarrow \{2\} 0,75 vs 0,796875
\{3\} \Leftrightarrow \{2\} 0,75 vs 0,796875
\{0,3\} \Leftrightarrow \{2\} 0,6875 vs 0,734375
\{1,4\} \Leftrightarrow \{2\} 0,6875 vs 0,734375
```

## Quantum non-local games

Other examples of non-local games need research

The main task: define function pairs set that represent games which allow non-local quantum tricks

In particular, describe the [quite strict!] restriction that comes from relativity theory Thank you!