Matrix Games in Cryptography

Sven Laur
University of Tartu
swen@math.ut.ee

Motivation

Many proofs in cryptography can be reduced to matrix games.
\triangleright Soundness analysis of sigma protocols
\triangleright Simulatability of zero-knowledge proofs
\triangleright White-box extractability of commitments
\triangleright Soundness and security of generic signatures
\triangleright Security of time-stamping schemes
\Rightarrow Some matrix games are easier than others.
\Rightarrow We explain what are the resulting limitations.

Simple Games

Sigma protocols for dummies

All sigma protocols satisfy the following conditions:
\triangleright The challenge message β is chosen uniformly from $\{0,1\}^{k}$.
\triangleright Given γ and β it is trivial to compute the corresponding α.
\triangleright Colliding valid triples $\left(\alpha, \beta_{1}, \gamma_{1}\right),\left(\alpha, \beta_{2}, \gamma_{2}\right), \beta_{1} \neq \beta_{2}$ reveal the secret x.

Knowledge extraction

A priori it is not clear that a successful prover knows the secret x.
\Rightarrow We have to extract some valid colliding triples $\left(\alpha, \beta_{1}, \gamma_{1}\right),\left(\alpha, \beta_{2}, \gamma_{2}\right)$.
Matrix Encoding
\triangleright Let ω denote the randomness of the prover
\triangleright Let ϕ denote the randomness of the verifier $(\phi=\beta)$
\triangleright Let $\mathrm{W}[\omega, \phi]=1$ if the resulting protocol transcript was valid.
\triangleright Let $\mathrm{W}[\omega, \phi]=0$ if the resulting protocol transcript was invalid.

TASK. We have to find two ones in the same row.
\triangleright For theoretical reasons, the algorithm must work for all matrices.
\triangleright Natural random sampling algorithms run in expected time $\Theta\left(\frac{1}{\varepsilon}\right)$.

Extractability and zero knowledge

If we guess the committed value β then it is easily compute $\alpha=\alpha(\beta, \gamma)$.
\Rightarrow We need an extractor for commitment schemes
\Rightarrow The latter is possible if the commitment scheme is binding.

Formal definition of binding

A commitment scheme is $\left(t, \varepsilon_{\mathrm{b}}\right)$-binding if for any t-time adversary \mathcal{A}

$$
\operatorname{Pr}\left[\begin{array}{l}
\mathrm{pk} \leftarrow \operatorname{Gen}:\left(c, d_{1}, d_{2}\right) \leftarrow \mathcal{A}(\mathrm{pk}): \\
\perp \neq \operatorname{Open}_{\mathrm{pk}}\left(c, d_{1}\right) \neq \operatorname{Open}_{\mathrm{pk}}\left(c, d_{2}\right) \neq \perp
\end{array}\right] \leq \varepsilon_{\mathrm{b}} .
$$

Problem

\triangleright Formally, the definition does not provide a way to guess the committed value, since the adversary does not have to use the $\operatorname{Com}_{\mathrm{pk}}(\cdot)$ function.
\triangleright We have to extract $\beta \leftarrow \operatorname{Open}_{\mathrm{pk}}(c, d)$ by providing different values of α.

The corresponding matrix game

Matrix Encoding
\triangleright Let ϕ denote the randomness of the prover $(\phi=\alpha)$.
\triangleright Let ω denote the randomness of the verifier and key generation.
\triangleright Let $\mathrm{W}[\omega, \phi]=\beta$ if the commitment opens to β.
\triangleright Let $\mathrm{W}[\omega, \phi]=0$ if the opening of the commitment fails.

TASk. We have to predict a non-zero element for a given row ω.

Solution.
\Rightarrow It is sufficient to find a non-zero element in the row, as finding two different non-zero elements $\mathrm{W}\left[\omega, \phi_{1}\right] \neq \mathrm{W}\left[\omega, \phi_{2}\right]$ reveals double opening.
\Rightarrow Sample ℓ elements from the row and return the first non-zero $\mathrm{W}\left[\omega, \phi_{\star}\right]$.

Analysis

\triangleright The simulation fails if extraction succeeds but does not match β. If the commitment scheme is $\left((\ell+1) t, \varepsilon_{\mathrm{b}}\right)$-binding

$$
\operatorname{Pr}\left[\operatorname{Fail}_{1}\right]=\operatorname{Pr}_{\omega, \phi}\left[\phi_{\star} \leftarrow \mathcal{K}(\omega): 0 \neq \mathrm{W}[\omega, \phi] \neq \mathrm{W}\left[\omega, \phi_{\star}\right] \neq 0\right] \leq \varepsilon_{\mathrm{b}}
$$

\triangleright The simulation fails if extraction fails but commitment is correctly opened

$$
\operatorname{Pr}\left[\text { Fail }_{2}\right]=\operatorname{Pr}_{\omega, \phi}[\mathcal{K}(\omega)=\perp \wedge \mathrm{W}[\omega, \phi] \neq 0] .
$$

\triangleright The latter can be reformulated as a pure combinatorial matrix game.
\diamond Find a matrix configuration W_{\circ} that maximises $\operatorname{Pr}\left[\mathrm{Fail}_{2}\right]$.

Combinatorial optimisation

Let ε denote the fraction of non-zero entries in the matrix and let ε_{ω} denote the fraction of non-zero entries in the row $\mathrm{W}[\omega, \star]$. Then we can express

$$
\operatorname{Pr}\left[\text { Fail }_{2}\right]=\operatorname{Pr}_{\omega, \phi}[\mathcal{K}(\omega)=\perp \wedge \neq \mathrm{W}[\omega, \phi]]=\underset{\omega}{\mathbf{E}}\left[\varepsilon_{\omega}\left(1-\varepsilon_{\omega}\right)^{\ell}\right]
$$

NON-TRIVIAL OBSERVATIONS.
\triangleright The failure probability decreases in the region $\varepsilon \in\left[\frac{1}{\ell+1}, 1\right]$.
\triangleright In the region $\varepsilon \in\left[0, \frac{1}{\ell+1}\right]$, we can establish a nice upper bound

$$
\underset{\omega}{\mathbf{E}}\left[\varepsilon_{\omega}\left(1-\varepsilon_{\omega}\right)^{\ell}\right] \leq \varepsilon(1-\varepsilon)^{\ell} \leq \frac{1}{\ell+1}
$$

Final result

Combining both bounds, we get a parametrised family of reductions

$$
\operatorname{Pr}[\text { Fail }] \leq \frac{1}{\ell+1}+\varepsilon_{\mathrm{b}}(\ell t+t)
$$

If we know the time-success profile of the commitment we can find the most optimal trade-off between failures probabilities $1 /(\ell+1)$ and $\varepsilon_{\mathrm{b}}(\ell t+t)$.

Alternative formulation

Find a predictor \mathcal{K} that works well for all (random) inputs ϕ

$$
\operatorname{Pr}[\text { Fail }]=\max _{\phi}\left\{\operatorname{Pr}_{\omega}\left[w_{\star} \leftarrow \mathcal{K}(\omega): 0 \neq \mathrm{W}[\omega, \phi] \neq w_{\star}\right]\right\}
$$

There is a set of column indices $\Phi=\left\{\phi_{1}, \ldots, \phi_{\ell}\right\}$ such that

$$
\max _{\phi}\left\{\underset{\omega}{\operatorname{Pr}}\left[\mathrm{W}[\omega, \phi] \neq 0 \wedge \mathrm{~W}\left[\omega, \phi_{1}\right]=\ldots=\mathrm{W}\left[\omega, \phi_{k}\right]=0\right]\right\} \leq \frac{1}{\ell}
$$

As we can hardwire these column indices to $\mathcal{K}_{\mathcal{A}}$, we get a trade-off

$$
\operatorname{Pr}[\text { Fail }] \leq \frac{1}{\ell}+\varepsilon_{\mathrm{b}}(\ell t+t)
$$

Illustration

To find column indices Φ, pick columns that violate the premise.
\triangleright There can be at most ℓ of such columns.
\(\left.\begin{array}{|lllll}\hline 0 \& 1 \& 0 \& 0 \& 1

1 \& 1 \& 1 \& 0 \& 0

1 \& 0 \& 1 \& 0 \& 0

0 \& 1 \& 1 \& 1 \& 0

0 \& 0 \& 1 \& 1 \& 1\end{array}\right]\)\begin{tabular}{lllll}
0 \& 1 \& 0 \& 0 \& 1

1 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 1 \& 0

0 \& 0 \& 1 \& 1 \& 1

$|$

0 \& 1 \& 0 \& 0 \& 1

1 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0

\hline
\end{tabular}

Difficult questions

\triangleright Both strategies give essentially the same trade-off formula. Is it possible to combine strategies to get better trade-off formula?
\triangleright Is it possible to use more efficient compact description for the locations of non-zero coefficients?
\triangleright For t-time algorithms only 2^{t+t} different matrix configurations are possible. Is it possible to construct more efficient extractors?

Difficult games

Equivocability and zero knowledge

We must open the commitment to $\hat{\alpha}=\alpha(\beta, \gamma)$ for bypassing checks.
\Rightarrow We need an equivocator for commitment schemes.
\Rightarrow The latter is possible only if the commitment scheme is hiding.

The corresponding matrix game

Assume that the commitment scheme is perfectly hiding and $\beta \in\{0,1\}$.
Matrix Encoding
\triangleright Let ϕ denote the randomness of the verifier.
\triangleright Let $\omega=(\alpha, r, \gamma)$ denote the randomness of the naive simulator.
\triangleright Let $\mathrm{W}[\omega, \phi]=1$ if the resulting protocol transcript was valid.
\triangleright Let $\mathrm{W}[\omega, \phi]=0$ if the resulting protocol transcript was invalid.
\triangleright Then exactly half of the matrix entries are non-zeroes.

TASK. We have to uniformly sample non-zero entries in the matrix.
\triangleright For theoretical reasons, the algorithm must work for all matrices.
\triangleright Natural random sampling algorithms run in expected time $\Theta(2)$.

Scaling problem

In general, if $\beta \in \mathbb{Z}_{k}$ then we have to sample uniformly non-zero entries from the matrix that contains exactly $\frac{1}{k}$-fraction of nonzero entries.
\triangleright No general sampling algorithms can break the bound $\Theta(k)$.
\triangleright Since we have to sample all non-zero entries, we cannot use compact advice string to target the search.
\triangleright Is it possible to use the restrictions coming from the time-bound for limiting the number of possible search paths?

Loophole. For certain commitment schemes it is possible to find efficiently computable relation (equivocator) $f_{\text {sk }}$ such that

$$
(\alpha, r)=f_{\text {sk }}(\gamma, \phi) \quad \Longleftrightarrow \quad \mathrm{W}[\omega, \phi]=1 .
$$

However, this is not a generally existing construction.

Conclusion

Equivocability is much stronger property than extractability.

