Matrix Games in Cryptography

Sven Laur University of Tartu

swen@math.ut.ee

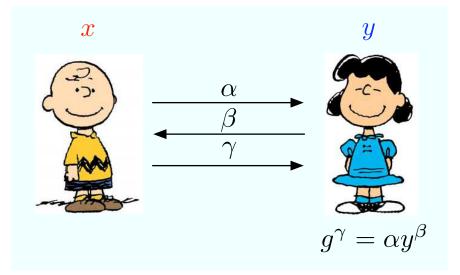
Motivation

Many proofs in cryptography can be reduced to matrix games.

- Soundness analysis of sigma protocols
- Simulatability of zero-knowledge proofs
- White-box extractability of commitments
- ▷ Soundness and security of generic signatures
- ▷ Security of time-stamping schemes
- \Rightarrow Some matrix games are easier than others.
- \Rightarrow We explain what are the resulting limitations.

Simple Games

Sigma protocols for dummies



All sigma protocols satisfy the following conditions:

- \triangleright The challenge message β is chosen uniformly from $\{0,1\}^k$.
- $\triangleright\,$ Given γ and β it is trivial to compute the corresponding $\alpha.$
- \triangleright Colliding valid triples $(\alpha, \beta_1, \gamma_1), (\alpha, \beta_2, \gamma_2), \beta_1 \neq \beta_2$ reveal the secret x.

Knowledge extraction

A priori it is not clear that a successful prover knows the secret x.

 \Rightarrow We have to extract some valid colliding triples $(\alpha, \beta_1, \gamma_1), (\alpha, \beta_2, \gamma_2).$

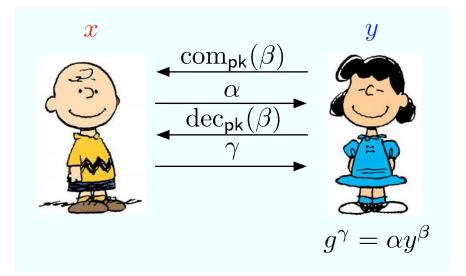
MATRIX ENCODING

- $\triangleright~$ Let $\omega~$ denote the randomness of the prover
- ▷ Let ϕ denote the randomness of the verifier ($\phi = \beta$)
- \triangleright Let $W[\omega, \phi] = 1$ if the resulting protocol transcript was valid.
- \triangleright Let W[ω, ϕ] = 0 if the resulting protocol transcript was invalid.

 $\mathrm{TASK}.$ We have to find two ones in the same row.

- ▷ For theoretical reasons, the algorithm must work for all matrices.
- ▷ Natural random sampling algorithms run in expected time $\Theta(\frac{1}{\varepsilon})$.

Extractability and zero knowledge



If we guess the committed value β then it is easily compute $\alpha = \alpha(\beta, \gamma)$.

 \Rightarrow We need an extractor for commitment schemes

 \Rightarrow The latter is possible if the commitment scheme is binding.

Formal definition of binding

A commitment scheme is (t, ε_b) -binding if for any t-time adversary A

$$\Pr \begin{bmatrix} \mathsf{pk} \leftarrow \mathsf{Gen} : (c, d_1, d_2) \leftarrow \mathcal{A}(\mathsf{pk}) : \\ \bot \neq \mathsf{Open}_{\mathsf{pk}}(c, d_1) \neq \mathsf{Open}_{\mathsf{pk}}(c, d_2) \neq \bot \end{bmatrix} \leq \varepsilon_{\mathsf{b}} .$$

Problem

- \triangleright Formally, the definition does not provide a way to guess the committed value, since the adversary does not have to use the Com_{pk}(·) function.
- \triangleright We have to extract $\beta \leftarrow \operatorname{Open}_{\mathsf{pk}}(c,d)$ by providing different values of α .

The corresponding matrix game

MATRIX ENCODING

- $\triangleright \text{ Let } \phi \text{ denote the randomness of the prover } (\phi = \alpha).$
- $\triangleright~$ Let $\omega~$ denote the randomness of the verifier and key generation.
- $\triangleright \text{ Let } W[\omega, \phi] = \beta \text{ if the commitment opens to } \beta.$
- \triangleright Let $W[\omega, \phi] = 0$ if the opening of the commitment fails.

TASK. We have to predict a non-zero element for a given row ω .

SOLUTION.

- \Rightarrow It is sufficient to find a non-zero element in the row, as finding two different non-zero elements $W[\omega, \phi_1] \neq W[\omega, \phi_2]$ reveals *double opening*.
- \Rightarrow Sample ℓ elements from the row and return the first non-zero W[ω, ϕ_{\star}].

Analysis

▷ The simulation fails if extraction succeeds but does not match β . If the commitment scheme is $((\ell + 1)t, \varepsilon_b)$ -binding

$$\Pr\left[\mathsf{Fail}_{1}\right] = \Pr_{\omega,\phi}\left[\phi_{\star} \leftarrow \mathcal{K}(\omega): 0 \neq \mathsf{W}[\omega,\phi] \neq \mathsf{W}[\omega,\phi_{\star}] \neq 0\right] \le \varepsilon_{\mathrm{b}}$$

▷ The simulation fails if extraction fails but commitment is correctly opened

$$\Pr\left[\mathsf{Fail}_{2}\right] = \Pr_{\omega,\phi}\left[\mathcal{K}(\omega) = \bot \land \mathsf{W}[\omega,\phi] \neq 0\right]$$

▷ The latter can be reformulated as a pure combinatorial matrix game.
◊ Find a matrix configuration W_o that maximises Pr [Fail₂].

Combinatorial optimisation

Let ε denote the fraction of non-zero entries in the matrix and let ε_{ω} denote the fraction of non-zero entries in the row W[ω, \star]. Then we can express

$$\Pr\left[\mathsf{Fail}_2\right] = \Pr_{\omega,\phi}\left[\mathcal{K}(\omega) = \bot \land \neq \mathsf{W}[\omega,\phi]\right] = \mathop{\mathbf{E}}_{\omega}\left[\varepsilon_{\omega}(1-\varepsilon_{\omega})^{\ell}\right] \quad .$$

NON-TRIVIAL OBSERVATIONS.

- ▷ The failure probability decreases in the region $\varepsilon \in \left[\frac{1}{\ell+1}, 1\right]$.
- \triangleright In the region $\varepsilon \in [0, \frac{1}{\ell+1}]$, we can establish a nice upper bound

$$\mathbf{E}_{\omega} \left[\varepsilon_{\omega} (1 - \varepsilon_{\omega})^{\ell} \right] \leq \varepsilon (1 - \varepsilon)^{\ell} \leq \frac{1}{\ell + 1} .$$

Final result

Combining both bounds, we get a parametrised family of reductions

$$\Pr\left[\mathsf{Fail}\right] \leq \frac{1}{\ell+1} + \varepsilon_{\mathrm{b}}(\ell t + t)$$

If we know the time-success profile of the commitment we can find the most optimal trade-off between failures probabilities $1/(\ell + 1)$ and $\varepsilon_{\rm b}(\ell t + t)$.

Alternative formulation

Find a predictor ${\mathfrak K}$ that works well for all (random) inputs ϕ

$$\Pr\left[\mathsf{Fail}\right] = \max_{\phi} \left\{ \Pr_{\omega} \left[w_{\star} \leftarrow \mathcal{K}(\omega) : 0 \neq \mathsf{W}[\omega, \phi] \neq w_{\star} \right] \right\}$$

There is a set of column indices $\Phi = \{\phi_1, \dots, \phi_\ell\}$ such that

$$\max_{\phi} \left\{ \Pr_{\omega} \left[\mathsf{W}[\omega, \phi] \neq 0 \land \mathsf{W}[\omega, \phi_1] = \ldots = \mathsf{W}[\omega, \phi_k] = 0 \right] \right\} \le \frac{1}{\ell}$$

As we can hardwire these column indices to $\mathcal{K}_{\mathcal{A}}$, we get a trade-off

$$\Pr\left[\mathsf{Fail}\right] \le \frac{1}{\ell} + \varepsilon_{\mathrm{b}}(\ell t + t)$$

Illustration

To find column indices Φ , pick columns that violate the premise.

 \triangleright There can be at most ℓ of such columns.

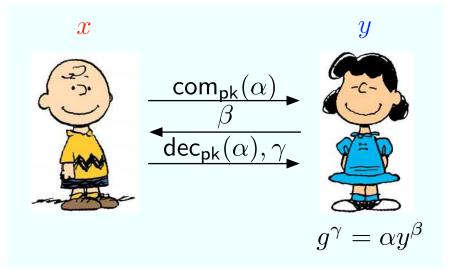
0	1	0	0	1	0	1	0	0	1	0	1	0	0	1
1	1	1	0	0	1	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	1	0	0	0	0
0	1	1	1	0	0	1	1	1	0	0	0	1	0	0
0	0	1	1	1	0	0	1	1	1	0 1 1 0 0	0	1	0	0

Difficult questions

- Both strategies give essentially the same trade-off formula. Is it possible to combine strategies to get better trade-off formula?
- Is it possible to use more efficient compact description for the locations of non-zero coefficients?
- \triangleright For *t*-time algorithms only 2^{t+t} different matrix configurations are possible. Is it possible to construct more efficient extractors?

Difficult games

Equivocability and zero knowledge



We must open the commitment to $\hat{\alpha} = \alpha(\beta, \gamma)$ for bypassing checks.

- \Rightarrow We need an equivocator for commitment schemes.
- $\Rightarrow\,$ The latter is possible only if the commitment scheme is hiding.

The corresponding matrix game

Assume that the commitment scheme is perfectly hiding and $\beta \in \{0, 1\}$.

MATRIX ENCODING

- \triangleright Let ϕ denote the randomness of the verifier.
- $\triangleright~ {\rm Let}~ \omega = (\alpha, r, \gamma)$ denote the randomness of the naive simulator.
- \triangleright Let $W[\omega, \phi] = 1$ if the resulting protocol transcript was valid.
- ▷ Let $W[\omega, \phi] = 0$ if the resulting protocol transcript was invalid.
- ▷ Then exactly half of the matrix entries are non-zeroes.

TASK. We have to uniformly sample non-zero entries in the matrix. For theoretical reasons, the algorithm must work for all matrices.

 \triangleright Natural random sampling algorithms run in expected time $\Theta(2)$.

Scaling problem

In general, if $\beta \in \mathbb{Z}_k$ then we have to sample uniformly non-zero entries from the matrix that contains exactly $\frac{1}{k}$ -fraction of nonzero entries.

- \triangleright No general sampling algorithms can break the bound $\Theta(k)$.
- Since we have to sample all non-zero entries, we cannot use compact advice string to target the search.
- Is it possible to use the restrictions coming from the time-bound for limiting the number of possible search paths?

LOOPHOLE. For certain commitment schemes it is possible to find efficiently computable relation (equivocator) f_{sk} such that

$$(\alpha, r) = f_{\rm sk}(\gamma, \phi) \qquad \Longleftrightarrow \qquad {\sf W}[\omega, \phi] = 1$$
.

However, this is not a generally existing construction.

Theory Days, Jõulumäe, 3 October, 2008

Conclusion

Equivocability is much stronger property than extractability.