Can we Construct Unbounded Time-Stamping
Schemes from Collision-Free Hash Functions

Margus Niitsoo

(Joint work with Ahto Buldas)

October 5, 2008

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

What is timestamping

@ What patent offices do
@ Malicious patent clerk problem

@ Information age sets new requirements

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

The Scheme of Harber and Stornetta

@ Idea: publish a small hash value in the paper every day
@ Fromally 3 parties: Client, Server, Repository
@ Clients generate fixed sized signatures from their documents

@ Server constructs a tree from signatures and uses a hash
function hs : {0,1}2" — {0,1}" to calculate the root

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

The Scheme of Harber and Stornetta

@ Idea: publish a small hash value in the paper every day
@ Fromally 3 parties: Client, Server, Repository
@ Clients generate fixed sized signatures from their documents

@ Server constructs a tree from signatures and uses a hash
function hs(x1,x2) =y to calculate the root

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

The Scheme of Harber and Stornetta

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

Collision resistance

@ Intuitively, it should be hard to find two inputs x # x’ such
that h(x) = h(x’).
@ Such a pair is called a collision.

@ |t is assumed that collision-resistant functions do exist

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

The Security of the Scheme

@ Security criterion — backdating a previously unknown
document [BS04]

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

The Security of the Scheme

@ Security criterion — backdating a previously unknown
document [BS04]

@ Bounded tree size and collision-resistance give a secure
scheme [BLOG]

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

The Security of the Scheme

@ Security criterion — backdating a previously unknown
document [BS04]

@ Bounded tree size and collision-resistance give a secure
scheme [BLOG]

@ For unbounded tree, collision-resistance gives nothing.

@ We need something else!

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

Chain-resistance

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Timestamping

Problem statement

@ New criterion for Hash function security: Chain-resistance
@ Independent of collision-resistance

@ However, we may be able to construct chain-resistant hash
functions from collision resistant ones

@ We think it cannot be done and try to prove that

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Cryptographic reductions

Reductions in cryptology

To show that one primitive can be constructed from another

@ You need to show a construction that builds one from another
@ You also need to prove that the new construction is secure

@ To do that, we show the contrapositive, that is, if it is not
secure, then the original primitive used also is not.
o That is done by constructing an explicit adversary

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Cryptographic reductions

Example: Merkle-Damgard construction

How to construct a
collision-resistant

H :{0,1}*" — {0,1}"
from a collision-resistant

h:{0,1}*>" — {0,1}"

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Cryptographic reductions

Example: Merkle-Damgard construction

X1 X2
How to construct a b
collision-resistant ‘ >‘<3
h:{0,1}*" — {0,1}" i
X4

from a collision-resistant ‘ ‘

h:{0,1}*>" — {0,1}"

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Cryptographic reductions

Example: Merkle-Damgard construction

We assume we know how to break h'.
We want to know how to break h.

Breaking h’ requires producing
x = (x1,x2,x3,x3) and x" = (x{, X5, X3, X;)
so that h'(x) = W (X').

Breaking h requires producing

z=(z1,2) and w = (wy, wn)
so that h(z) = h(w)

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Cryptographic reductions

Cryptographic reductions

Let f be a collision-resistant hash function.

To reduce chain-resistance to collision resistance we would

need

(a) An algorithmic construction of a secure chain-resistant
function g based on f.

(b) An explicit security reduction showing that if g is not
chain-resistant then f cannot be collision resistant.

(]

(b) is stated in terms of adversaries

(]

This type of reduction is called fully black-box

(]

Vast majority of cryptographic reductions are of that type

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Oracles

@ An oracle is a black box that computes some specific function
for us

@ We can make calls to it, which are assumed to take unit time

@ The function it computes may be hard or even impossible to
compute in the real world

@ Used extensively in complexity theory

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Oracle separation

@ Since the constructions are algorithmic, they remain valid
even if we allow the use of some oracle O inside f and the
adversaries.

@ Therefore, if we can find an oracle such that no function is
chain-resistant but at least one function is collision-resistant,
there cannot be a reduction.

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Separation oracle

@ We need an oracle such that

o No function is chain-resistant
o At least one function is collision-resistant

@ For collision-resistance, just take a completely random
function as one part of the oracle

@ To break chain-resistance, take a function that creates a hash
tree and gives certificates based on that

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Adversary that constructs a tree

X2 X3 X5 X6 Xs X9
| | | | | |
X]. h S X, 4 h S X7 h S
| [| [| [
h h h
S S S Xl 0
I I I |
hs hs
I I
hs
I
It

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Separation oracle

@ We need an oracle such that

@ No function is chain-resistant
o At least one function is collision-resistant

@ For collision-resistance, just take a completely random
function as one part of the oracle

@ To break chain-resistance, take a function that creates the full
hash tree and gives certificates based on that

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Separation oracle

@ We need an oracle such that

@ No function is chain-resistant
o At least one function is collision-resistant

@ For collision-resistance, just take a completely random
function as one part of the oracle

@ To break chain-resistance, take a function that creates the full
hash tree and gives certificates based on that

@ That does not work! - The full tree oracle can be abused to
find collisions

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Oracle separation

Separation oracle

We need an oracle such that

@ No function is chain-resistant
o At least one function is collision-resistant

(]

For collision-resistance, just take a completely random
function as one part of the oracle

To break chain-resistance, take a function that creates the full
hash tree and gives certificates based on that

@ That does not work! - The full tree oracle can be abused to
find collisions

(]

It is enough to construct a partial tree if it is large enough

(]

We can choose which inputs we leave out

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Our approach

@ We give evidence in support of one oracle that should be
suitable for the separation

@ Namely, we try to find ways of abusing that oracle and then
rule them out one by one

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Quick recap

In short:

@ We have two security conditions — chain and collision
resistance

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Quick recap

In short:

@ We have two security conditions — chain and collision
resistance

@ We try to find an oracle that can always break one but not
the other

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Quick recap

In short:
@ We have two security conditions — chain and collision
resistance
@ We try to find an oracle that can always break one but not
the other

@ We consider potential adversaries that could abuse that oracle
to break collision-resistance

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Quick recap

In short:
@ We have two security conditions — chain and collision
resistance
@ We try to find an oracle that can always break one but not
the other

@ We consider potential adversaries that could abuse that oracle
to break collision-resistance

@ and prove that they cannot succeed given certain constraints

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Adversary restrictions

@ We fix one function h that we want to keep collision-resistant.
@ We restrict the queries the adversary can make about h
o Instead of having full access to h being broken for collision
resistance, it is only allowed queries of type h(x1) = h(x2)
@ Under these assumptions there exists a hash tree oracle that
gives only a negligible increase to the probability of finding
collisions.

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Further generalizations

@ The result can be extended to cover queries of type h(x) =y
and even h(x1) < h(x2) and the result holds for the
combination of the three as well.

@ The oracle for h(x) < y is equivalent to the full oracle for h
but we cannot extend our approach to that

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Possible changes to the oracle

@ In general, this oracle is promising because we rule out the
most simple ways of exploiting it

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Possible changes to the oracle

@ In general, this oracle is promising because we rule out the
most simple ways of exploiting it
o Ergo, the adversary either has to be really clever or really
complex

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Possible changes to the oracle

@ In general, this oracle is promising because we rule out the
most simple ways of exploiting it
o Ergo, the adversary either has to be really clever or really
complex

@ Having a tree is actually a restriction — we could drop it

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Possible changes to the oracle

@ In general, this oracle is promising because we rule out the
most simple ways of exploiting it
o Ergo, the adversary either has to be really clever or really
complex
@ Having a tree is actually a restriction — we could drop it
o However, restrictive models are simpler to work with

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Possible changes to the oracle

@ In general, this oracle is promising because we rule out the
most simple ways of exploiting it
o Ergo, the adversary either has to be really clever or really
complex
@ Having a tree is actually a restriction — we could drop it
o However, restrictive models are simpler to work with
@ We could choose the root randomly and try to construct a
tree on top of that

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Possible changes to the oracle

@ In general, this oracle is promising because we rule out the
most simple ways of exploiting it
o Ergo, the adversary either has to be really clever or really
complex
@ Having a tree is actually a restriction — we could drop it
o However, restrictive models are simpler to work with
@ We could choose the root randomly and try to construct a
tree on top of that
@ Would eliminate information leak from root but may introduce
it into the certificates we give.

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Conclusion

In the author’s view

@ We have given strong evidence that chain-resistant functions
cannot be constructed from collision resistant ones

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Conclusion

In the author’s view

@ We have given strong evidence that chain-resistant functions
cannot be constructed from collision resistant ones

@ The separation oracle proposed may give the required
separation in the future

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Conclusion

In the author’s view

@ We have given strong evidence that chain-resistant functions
cannot be constructed from collision resistant ones

@ The separation oracle proposed may give the required
separation in the future

@ proving the full separation probably needs a different approach
or stronger mathematical methods

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

Results

Thank You!

Thank you for attention! Any questions are welcome!

Margus Niitsoo Can we Construct Unbounded Time-Stamping Schemes from Col

