
Scientific computations within Python:
numerical and analytical tools a

Pearu Peterson
pearu.peterson@gmail.com

Laboratory of System Biology
Institute of Cybernetics at TUT, Estonia

• What is Scientific Computation about?
• A software problem, solutions, examples
• F2PY — the connection between Python and Fortran
• SciPy — Scientific Tools for Python
• Sympy/SympyCore — Symbolic manipulation libraries for Python
aAbstract: Python is a very powerful high-level programming language that is especially suitable for proto-type

software development - this is what scientific computing is often all about. Within the last 10 years many tools have
been developed for Python to carry out various scientific computing tasks. In this presentation I’ll give a short overview
of the tools like F2Py and SciPy that are often used for numerical computations and comment on the attempts to
implement Computer Algebra Systems to perform some analytical computations within Python.

Scientific Computation is about . . .
• constructing mathematical models — software

math
• developing numerical solution techniques — software

hardware
math

• analyzing and solving scientific problems — scientific
. . . using computers.

A software problem in Scientific Computation

What software tools to use for a specific problem?

Condition

The aim of a Scientist is to solve scientific problems.

Optimal solution

Minimizes model construction and computational efforts.

Extreme solutions

1. Use of high-level interactive environments
• Matlab, Python, etc.,
• Easy to learn and use⇒ rapid model development,
• Universal components⇒ slow computations.

2. Use of low-level programming tools
• C/C++, Fortran, etc.,
• More to learn and write⇒ slow model development,
• Design own components⇒ (possibly!)a fast computations.

a Using low-level tools does not automatically mean better performance. It certainly
gives more options to shoot yourself in the foot. . .

Proposed optimal solution

3. Use of low-level programming tools from high-level interactive
environment
• Call high-performance C/C++/Fortran routines from high-level

environments
• Computationally intensive parts in a low-level language ⇒ fast

computations
• Model construction and experiment setup in a high-level language
⇒ rapid model development
• 10 years ago: requires mixed language programming skills⇒ even

more to learn and write :(
• BUT(!) nowadays: use automatic code and wrapper generators⇒

an amazingly easy way to get huge performance boosts and rapid
model development

Example

Problem:
Solve 2D Laplace problem ∆u = 0 with specified boundary
condition for u(x, y)

Algorithm:
ui,j ≡ u(iδx, jδy), i = 0 . . . nx − 1, j = 0 . . . ny − 1
while iteration index < 100 do
for i = 1 to nx − 2 do
for j = 1 to ny − 2 do
ui,j = (ui−1,j+ui+1,j)δ2

y+(ui,j−1+ui,j+1)δ2
x

2δ2
x+2δ2

y

Timings:a Tools Time taken (sec)
Python 1500.0
Python+NumPy expression 29.3
Blitz 9.5
Python+Fortran 2.9
Pyrex/Cython 2.5
Matlab 29.0
Octave 60.0
Pure C++ 2.16

aSource: http://www.scipy.org/PerformancePython/

Fortran and Python connection

Fortran

• A (relatively) low-level compiled
programming language
• Dominant language for scientific

computing
• High-performance high-quality

algorithms available

Python

• Interpreted interactive
object-oriented programming
language
• Powerful high-level data types,

useful modules, easily extendable
• Very clear syntax, ideal language for

prototype development

F2PY — Fortran to Python interface generator

• To reuse available Fortran code within Python
• To extend Python with high-performance computational modules
• Also suitable for wrapping C libraries to Python
• Available since 1999, stable and complete for wrapping Fortran 77 codes

F2PY example
c file: dot.f

FUNCTION dot(n, x, y)
c dot product of two vectors

INTEGER n, i
DOUBLE PRECISION dot, x(n), y(n)
dot = 0d0
DO i = 1, n
dot = dot + x(i) * y(i)

ENDDO
END

$ f2py dot.f -m foo -c

>>> from foo import dot
>>> dot([1,2],[3,4])
11.0

F2PY features
• Scans Fortran codes for subroutine/function/data signatures
• To call Fortran 77/90, Fortran 90 module, and C functions from Python
• To access Fortran 77 COMMON blocks and Fortran 90 module data (also

allocatable arrays) from Python
• To call Python functions from Fortran and C (callbacks)
• Handles Fortran/C data storage issues
• Generates documentation strings
• Supports compilers: Absoft, Compact/Digital, HPUX F90, IBM XL, Intel,

Lahey/Fujitsu, MIPSpro, NAGWare, Portland, Sun/Forte/WorkShop,
Pacific-Sierra, Gnu, GFortran, G95
• Author: Pearu Peterson
• F2PY is part of NumPy — provides multi-dimensional array object
• http://www.f2py.org

Limitations

• Lack of support for Fortran 90 derived types and pointers — work-in-progress

SciPy — Scientific Tools for Python

• Collections of modules under scipy namespace:
fftpack : discrete Fourier transform algorithms
integrate : integration routines and differential equations solvers
interpolation : interpolation tools
linalg : linear algebra routines
ndimage : n-dimensional image tools
optimize : optimization tools
signal : signal processing tools
sparce : sparce matrices
stats : statistical functions
special : definitions of many usual math functions
. . . IO and other utilities, C/C++ integration, etc

• The modules contain F2PY or Pyrex generated wrappers to
high-performance libraries: ATLAS, BLAS, LAPACK, FFTW,
ODEPACK, CEPHES, QUADPACK, ODRPACK, etc
• Authors: Eric Jones, Travis Oliphant, Pearu Peterson, and others
• Large and active community — ∼ 44 messages per day
• http://www.scipy.org — ∼ 7000 hits per day

On providing Computer Algebra System for Pythona

SymPy

• A Python library for symbolic mathematics
>>> from sympy import *
>>> x, y = Symbol(’x’), Symbol(’y’)
>>> x+y-x
y
>>> limit(sin(x)/x, x, 0)
1
>>> diff(sin(2*x), x)
2*cos(2*x)
>>> integrate(cos(x)+x,x)
(1/2)*x**2 + sin(x)
>>> cos(x).series(x,5)
1 - 1/2*x**2 + (1/24)*x**4 + O(x**5)

pattern matching, arbitrary precision numbers, functions, symbolic matrices,
Pauli and Dirac algebra, some algebraic and differential eqn. solvers, plotting,
etc.

• Authors: community effort
• Slowish, restricted to calculus

a It is almost trivial to implement a simple and efficient Python program for manipulating
symbolic expressions but highly non-trivial to generalize it to a full-featured and
sufficiently efficient CAS

SympyCore

• A research project. The aim is to seek out new high-performance
solutions to represent and manipulate symbolic expressions in
Python language
• Uses algebraic approach, supports multiple representationsa

• Supports various mathematical concepts: arithmetics, calculus,
polynomials, matrices, sets, logic, functions, operators, etc.
• Sympycore is the fastest Python based CAS core implementation

(10-300x faster than Sympy)
• Our goal is to work in the direction of making SympyCore usable

for Sympy
• Authors: Pearu Peterson, Fredrik Johansson

aThere exist no ideal representation of mathematical concepts in a computer program,
efficiency depends on a particular application and used algorithms

Summary of useful tools for Python

NumPy : provides efficient multidimensional array object and F2PY
http://www.scipy.org/NumPy

SciPy : provides many scientific tools (Matlab numerical
functionality)
http://www.scipy.org

IPython : an interactive computing environment
http://ipython.scipy.org

matplotlib : a 2D plotting library for publication quality figures
(Matlab plotting functionality)
http://matplotlib.sourceforge.net

sympy/sympycore : symbolic mathematics libraries:
http://sympy.google.com
http://sympycore.google.com

etc.

Thanks!

