
General polymorphism with type-level primitive
recursion and its implementation in Fumontrix

Martin Pettai

October 4, 2008



Introduction

• We will first see how polymorphic functions can be defined in
• dynamically typed languages with typecase
• statically typed languages (especially Haskell with GHC

extensions)
• statically typed languages with a dynamic type

• Then we will give an overview of type-level programmming in
Fumontrix

• And finally see how type-level programmming can be used to
define very general polymorphic functions in Fumontrix



Dynamically typed languages with typecase

• We can easily define polymorphic functions:

let f = \ x .
typecase x of

Int -> x + 3;
String -> x ++ "s";
_ -> "ERROR";

end
in

(f 3, f "symbol", f True)
=> (3, "symbols", "ERROR")



Dynamically typed languages with typecase

• We can use typecase inside any expression:

let f = \ x .
100 * typecase x of

Int -> x;
String -> length x;
_ -> 13;

end
in

[f 3, f "symbol", f True]
=> [300, 600, 1300]



Dynamically typed languages with typecase

• We can have recursion over types:

f = \ x .
typecase x of

Int -> x;
List _ ->

let y = map f x
in typecase y of List ’a ->

typecase ’a of
Int -> Just (sum y);
Maybe Int ->

case y of
Just z :: zs -> z;
_ -> 0;

end; end; end; end



Statically typed functional languages

• Polymorphic functions are more difficult to define

• Usually the argument type and result type must be specified
(or inferred by the compiler) and the function type is
constructed from these

• These types may contain universally quantified type variables
(this gives us parametric polymorphism), e.g. forall a.
List (a,a) -> Maybe a



Statically typed functional languages: GHC

• Ad hoc polymorphism is not always available. In Haskell it
requires type classes (and if the result type depends on the
argument type, also functional dependencies, and thus, GHC
extensions)

class C1 a b | a -> b where
f1 :: a -> b

instance C1 Bool Integer where
f1 b = bool2int b

instance C1 Integer Bool where
f1 x = int2bool x

(f1 3, f1 True) => (True, 1)



Statically typed functional languages: GHC

• Now suppose we want to define a polymorphic function whose
return type is defined by recursion over the argument type

• This was very easy in dynamically typed languages



Statically typed functional languages: GHC

• In GHC, we have to use a separate type class for each
branching

class C4a a b | a -> b where
f4a :: a -> b

instance C4a Bool Integer where
f4a b = bool2int b

instance C4a Integer Bool where
f4a x = int2bool x

class C4 a b | a -> b where
f4 :: a -> b

instance C4 Integer Bool where
f4 x = True

instance (C4 a b, C4a b c) => C4 [a] c where
f4 x = f4a (f4 (head x))



Statically typed functional languages: GHC

• In GHC, the use of default cases is limited

class C8 a where
f8 :: a -> Integer

instance C8 (Integer,b,c,d) where
f8 (x,_,_,_) = x

instance C8 (a,Integer,c,d) where
f8 (_,y,_,_) = 10*y

instance C8 (a,b,Integer,d) where
f8 (_,_,z,_) = 100*z

instance C8 (a,b,c,Integer) where
f8 (_,_,_,w) = 1000*w

instance C8 (a,b,c,d) where
f8 (_,_,_,_) = 0

• Here only types with at most one Integer component are
accepted

• To accept all 16 cases, 16 separate instance declarations must
be given



Statically typed functional languages: GHC

• If we want the result type to depend on the argument type
(i.e. use functional dependencies), default cases cannot be
used at all

• This is not accepted by GHC:

class C7 a b | a -> b where
f7 :: a -> b

instance C7 Bool Int where
f7 = bool2int

instance C7 a Bool where
f7 = const True

• In a dynamically typed language, this is easily defined:

f7 = \ x .
typecase x of

Bool -> bool2int x;
_ -> True;

end



Statically typed functional languages: GHC

• If we want the result type to depend on the argument type
(i.e. use functional dependencies), default cases cannot be
used at all

• This is not accepted by GHC:

class C7 a b | a -> b where
f7 :: a -> b

instance C7 Bool Int where
f7 = bool2int

instance C7 a Bool where
f7 = const True

• In a dynamically typed language, this is easily defined:

f7 = \ x .
typecase x of

Bool -> bool2int x;
_ -> True;

end



Statically typed functional languages: GHC

• Thus GHC has several limitations and drawbacks in defining
polymorphic functions:

• To define non-parametrically polymorphic functions, it is
necessary to use type classes

• Each branching (typecase) requires a separate type class, each
case requires a separate instance

• Type classes and instances can only occur at the top level of
module, thus the structure of function definition is lost

• Type-level programming with GHC type classes is more similar
to logic programming than functional programming

• Default cases (logical negation) are not allowed, except in
some limited situations

• Type checking can be non-terminating
• Higher-order functions cannot be used



Statically typed languages with a dynamic type

• These languages are mostly static but have a special type
dynamic, which can contain values of any type, and this type
is determined at run time

• Values of type dynamic are constructed using the keyword
dynamic, e.g. dynamic(5:Int) or
dynamic((\ x:Int . x+2) : Int -> Int)

• Types can be used for branching at run time using the
typecase operator

• Functions of type dynamic -> dynamic can be as
polymorphic as the functions in dynamically typed languages



Statically typed languages with a dynamic type

• These languages have several drawbacks:
• Result type of a dynamic function application is determined at

run time, it cannot be determined statically from the argument
type as in non-dynamic-type functions



What we need

• We need a language that
• allows a large class of type-level total functions to be defined
• maintains decidability of type checking
• allows type-level programming as easily as data-level

programming, e.g. using similar syntax
• λ-expressions
• higher-order functions
• case expressions with overlapping patterns



Strong functional programming

• All (data-level) definable functions are total
• Primitive recursion
• Higher-order functions
• Thus higher-order primitive recursive functionals of finite type

can be defined



Ackermann function

• Definition:
A(0, n) = n + 1

A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n))

• This is not a primitive recursive function, but it is a primitive
recursive functional of finite type



Fumontrix

• The language I implemented for my master thesis

• A lazy statically typed functional language

• Syntax similar to Haskell

• Interpreter also implemented in Haskell

• It was created to remove some shortcomings of Haskell (GHC)



Fumontrix: the type level

• Type level functions are defined using λ-abstractions:
• \ x . Pair x x
• can be used as anonymous functions

• They can also be bound to type level variables
• These declarations (and all other declarations) can occur in

any let-expression

let
data Pair A B = Pair A B

in
(exists B : * -> * -> * . Int -> Int -> B Int Int)(

let
type f = \ x . x -> x -> Pair x x

in
Pair $: Int $: Int : f Int);

main = m1



Fumontrix: primitive recursion

• There are also primitive recursive type-level λ-abstractions:

data Zero;
data Succ A;
type tfSum = \ a . \ b rec .

case b of
Zero -> a;
Succ b’ -> Succ (rec b’);

end;



Fumontrix: Ackermann function

• Here is the Ackermann function in Fumontrix:

type acker = \ m rec:f * -> * . \ n rec .
case m of

Zero -> Succ n;
Succ m’ ->

case n of
Zero -> rec:f m’ (Succ Zero);
Succ n’ -> rec:f m’ (rec n’);

end;
end;

• This uses a higher-order function to have two nested primitive
recursions

• acker has kind * -> * -> *



Fumontrix: functions from types to values

• We can also have functions that transform types to values

type typeNatToValue = \ a rec @ .
case a of

Zero -> value 0;
Succ b -> value 1 + (type rec b);

end;

• typeNatToValue has kind * -> @



Fumontrix: functions from values to types

• We can also have functions that transform values to types but
here the only necessary function is the operator typeof, the
other functions of kind @ -> * can be expressed as a
composition of a function of kind * -> * with typeof.



Fumontrix: polymorphic functions

• We can also have functions that transform values to values
and these can be used to implement polymorphic functions
over values

• Here is a simple ad-hoc-polymorphic function:

type f = \ x : @ .
case typeof type x of

Int ->
value (type x) != 0;

Bool ->
value if (type x) 1 0;

end;

• type f (value 2) ⇒ True
• type f (value True) ⇒ 1



Multi-stage programming

• In Fumontrix there are two evaluation stages:
• Static stage, where type level (and kind level) expressions are

evaluated
• Dynamic stage, where data level expressions are evaluated

• This is similar to multi-stage programming, which has been
implemented in the language MetaML:

• MetaML multi-stage programming can have more than 2
stages

• but all these stages are data-level

• It has operators ~ and 〈·〉 instead of type and value

• Both Fumontrix stages and MetaML allow to define some
type-safe macros



Multi-stage programming: macros

• MetaML:

fun exp (n,x) = (* : int x <int> -> <int> *)
if n = 0 then

<1>
else

<~x * ~(exp (n-1, ~x))>

• Fumontrix:

type exp =
\ n rec @ -> @ . \ x : @ .

case n of
Zero -> value 1;
Succ n’ -> value (type x) * (type rec n’ x);

end;



Multi-stage programming: macros

• MetaML:
• exp (3, <x>) ⇒ <x * x * x * 1>

• Internally
<let val d =

let val e = x %* 1
in x %* e end

in x %* d end>

• Fumontrix:
• type exp (Succ (Succ (Succ Zero))) (value x) ⇒ x
* x * x * 1

• Internally
type value (type value x) *

(type value (type value x) *
(type value (type value x) *

(type value 1)))
• These type value constructs are needed to preserve lexical

scoping, each contains a link to the environment where the
data-level expression inside the construct is to be evaluated



Fumontrix: general polymorphic functions

type f = \ x : @ . value (type
(\ t rec @ . value \ x : t . type

case t of
Int -> value x;
List a -> value let

y = map (type rec a) x
in

type case typeof y of List a ->
case a of

Int -> value Just (sum y);
Maybe Int -> value

case y of
Just z :: zs -> z;
_ -> 0;

end; end; end; end
) (typeof type x)) (type x);



Fumontrix: general polymorphic functions

type f (value 3)
==> 3

type f (value 3 :: 4 :: Nil)
==> Just 7

type f (value (3 :: 4 :: Nil) ::
(30 :: 40 :: Nil) :: Nil)

==> 7
type f (value ((3 :: 4 :: Nil) ::

(30 :: 40 :: Nil) :: Nil)
::
((300 :: 400 :: Nil) ::
(3000 :: 4000 :: Nil) :: Nil)
:: Nil)

==> Just 707



Fumontrix: general polymorphic functions

• Fumontrix allows to define all polymorphic functions for which
• the result type is a function of the argument type
• and this function on types is a primitive recursive functional of

finite type

• These functions do not have an (explicit) type in the type
system (since the equality of even two primitive recursive
functions is undecidable) but they can be considered to have
an implicit type outside the type system.

• In other statically typed functional languages functions must
have an explicit type (provided by the programmer or by the
compiler) in the type system, so that they can be used as
arguments of higher-order functions

• In Fumontrix only kinds need to be explicit, types can be
checked using typecase expressions

• Thus in Fumontrix we can have more general polymorphism
than in other statically typed functional languages



Conclusion

• We have implemented a language Fumontrix that
• has powerful type-level programming

• where all functions are total
• which can be used almost as easily as data-level programming

• allows defining very general polymorphic functions
• which can be defined almost as easily as in dynamically typed

languages with typecase



The End


