
Explicit binds:
effortless efficiency with and without trees

or
Love your enemy

Tarmo Uustalu, Institute of Cybernetics
Joint work with Ralph Matthes, Université Paul Sabatier

Theory Days at Jõulumäe, 3–5 October 2008

This talk

How to make data-manipulating functions efficient? How to do so
without obfuscating their definitions, keeping the natural
definitions?

As a motivating example, we consider lists and the reverse function.

Two efficient representations: Lists with explicit appends and
Church lists.

A generalization to free monads and explicit binds alt Church
representation.

Further generalizations.

Standard lists

Recall lists in their natural form, as an inductive type with two
constructors. Recall also fold.

data [e] = [] | e : [e]

foldL :: c -> (e -> c -> c) -> [e] -> c

foldL n c [] = n

foldL n c (e : es) = e ‘c‘ foldL n c es

(++) :: [e] -> [e] -> [e]

[] ++ es’ = es’

(e : es) ++ es’ = e : (es ++ es’)

-- EQUIVALENT DEFINITION VIA foldL

-- es ++ es’ = foldL es’ (:) es

Naive list reversal

sgltL :: e -> [e]

sgltL e = e : []

reverseL :: [e] -> [e]

reverseL [] = []

reverseL (e : es) = reverseL es ++ sgltL e

-- EQUIVALENT DEFINITION VIA foldL

-- reverseL = foldL [] (\ e esR -> esR ++ sgltL e)

This is the natural definition we would like to write. However, it is
quadratic. . .

To append a value to a list, the whole list has to be traversed.

We need to append every element of the given list.

Reverse can be redefined using an accumulator, but this requires
ad hoc work and means giving up the natural definition.

What happens?

> reverseL [0,1,2]

reverseL [1,2] ++ [0]

(reverseL [2] ++ [1]) ++ [0]

((reverseL [] ++ [2]) ++ [1]) ++ [0]

(([] ++ [2]) ++ [1]) ++ [0] -- TRAVERSE []

([2] ++ [1]) ++ [0] -- TRAVERSE [2]

(2 : ([] ++ [1])) ++ [0]

[2,1] ++ [0] -- TRAVERSE [2,1]

2 : ([1] ++ [0])

2 : 1 : ([] ++ [0])

[2,1,0]

Other types of lists

We could conceive other types that have the same interface as the
“naive” list type and implement the same functionality.

class List e es where

nil :: es

cons :: e -> es -> es

fold :: c -> (e -> c -> c) -> es -> c

app :: es -> es -> es

sglt :: List e es => e -> es

sglt e = e ‘cons‘ nil

reverse :: List e es => es -> es

reverse = fold nil (\ e esR -> esR ‘app‘ sglt e)

instance List e [e] where

nil = []

cons = (:)

fold = foldL

app = (++)

. . . used instead of standard lists

Such other representations can be used as reimplementations of
the standard lists.

fromL :: List e es => [e] -> es

fromL es = foldL nil cons es

toL :: List e es => es -> [e]

toL es = fold [] (:) es

Lists with explicit (“frozen”) appends

Idea: treat folds of appends specifically by making append an
additional constructor in the inductive type of lists and equipping
fold with a fine-tuned additional clause for append.

data ListX e = Nil | e :< ListX e | ListX e :++ ListX e

instance List e (ListX e) where

nil = Nil

cons = (:<)

fold n c Nil = n

fold n c (e :< es) = e ‘c‘ fold n c es

fold n c (es :++ es’) = fold (fold n c es’) c es -- SMART

--fold n c (es :++ es’) = fold n c (fold es’ cons es) -- NAIVE

-- = fold n c (es ‘app‘ es’)

app = (:++) -- SMART

--es ‘app‘ es’ = fold es’ cons es n -- NAIVE

Naive becomes smart!

The append function is may seem to be smart, but that’s just the
looks. She is entirely passive. The actual clever guy is the fold
functional, who sponsors her.

Appends by themselves do nothing, things only happen when they
are folded (eg at conversion from ListX e to [e]).

In particular, the naive reverse function has automagically become
smart without effort: the naive definition

reverse :: List e es => es -> es

reverse = fold nil (\ e esR -> esR ‘app‘ sglt e)

is now linear!

> reverse (fromL [0,1,2,3])

((((Nil :++ (3 :< Nil)) :++ (2 :< Nil)) :++ (1 :< Nil)) :++ (0 :< Nil))

> toL (reverse (fromL [0,1,2,3]))

[3,2,1,0]

What happens?

> toL (((nil :++ sglt 2) :++ sglt 1) :++ sglt 0)

fold [] (:)

(((nil :++ sglt 2) :++ sglt 1) :++ sglt 0)

fold (fold [] (:) (sglt 0)) (:)

((nil :++ sglt 2) :++ sglt 1)

fold (fold (fold [] (:) (sglt 0)) (:) (sglt 1)) (:)

(nil :++ sglt 2)

fold (fold (fold (fold [] (:) (sglt 0)) (:) (sglt 1)) (:) (sglt 2)) (:)

nil

fold (fold (fold [] (:) (sglt 0)) (:) (sglt 1)) (:) (sglt 2)

2 : fold (fold [] (:) (sglt 0)) (:) (sglt 1)

2 : 1 : fold [] (:) (sglt 0)

2 : 1 : 0 : []

Church lists

Idea (of Church representations): Identify lists by their fold
functionals, so the general fold functional becomes just application.
Define constructors as functions delivering adequate specialized
fold functionals.

Idea: Treat append on par with constructors, ie specifically
compared to other list functions, and choose its definition carefully.

data ListCh e = Build (forall x. x -> (e -> x -> x) -> x)

instance List e (ListCh e) where

nil = Build (\ n c -> n)

e ‘cons‘ Build f = Build (\ n c -> e ‘c‘ f n c)

--e ‘cons‘ es = Build (\ n c -> e ‘c‘ fold n c es)

fold n c (Build f) = f n c

Build f ‘app‘ Build f’ = Build (\ n c -> f (f’ n c) c) -- SMART

--es ‘app‘ es’ = Build (\ n c -> fold (fold n c es’) c es)

--Build f ‘app‘ es’ = f es’ cons -- NAIVE

--es ‘app‘ es’ = fold es’ cons es

Naive becomes smart again

Now the fold functional is just a dumb enabler for the constructors
that really know what fold must do on any list.

The smartness is in the append function which knows how appends
should be folded.

Again the naive reverse function becomes smart (linear rather than
quadratic) just thanks to the smart append.

Let’s compare and take stock

Lists with explicit appends: Smart clause in the definition of fold
for a purely formal constructor of “frozen” append.

Church lists: Smart definition of append for a very plain fold.

The idea in both cases is exactly the same: to enforce a special
treatment of folds of appends.

Both representations make it possible to implement this idea, but
in different ways.

Append is a very crucial function in programming with lists. Mere
handling of folds of appends efficiently can drastically optimize
many list functions.

From list types to free monads

Lists and append are a special case of (wellfounded) leaf-labelled
trees (with a fixed branching factor) and grafting.

The official name for these types is free monads. Grafting is the
bind operation of such monads.

List types with explicit appends and Church lists generalize to free
monads extended with with explicit bind (“frozen graft”)
operations and Church representations of free monads.

We get effortless efficiency for functions manipulating leaf-labelled
trees.

Other generalizations

Functors and their fmap operations — any kind of labelled
structures and relabelling

General “inductive monads” and their bind operations — like
wellfounded leaf-labelled trees with grafting, but more liberal

Free completely iterative monads — non-wellfounded leaf-labelled
trees with grafting and iteration

Cofree recursive comonads — wellfounded node-labelled trees with
upwards accumulation and recursion

Nonempty list types — a special case; we get efficient causal
dataflow computation (joint with Varmo Vene)

Lists with explicit maps: a glimpse

We use the inductive type

data ListX e = Nil | e :< ListX e | forall d . MapX (d -> e) (ListX d)

with an explicit map constructor.

We get an efficient version of prefixes naturally defined (for
standard lists) as

prefixes :: [e] -> [[e]]

prefixes [] = []

prefixes (e : es) = [e] : map (e :) (prefixes es)

History of this all

Hughes — lists as functions for efficient reverse

Wadler — concatenate vanishes

Wadler, Gill — deforestation

Gill, Launchbury, Jones — shortcut deforestation (fold/build
fusion)

Ghani, Uustalu, Vene — semantics of fold/build, augment for free
monads and general “inductive monads”

Voigtländer — many sorts of clever tricks

Defunctionalization/refunctionalization

Kmett — ideas similar to this talk

Conclusion

Representations matter.

For specific kinds of types (eg functors, monads), consider taking
special care of the specific operations (eg fmap, bind).

With luck, this alone can give big gains.

Forests as such are not a source of inefficiencies. Efficiency can be
achieved both with inductive types and functions based
representations.

One and the same idea of “positive discrimination” of potentially
costly operations does the trick in both cases.

