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Introduction

Motivation
Lazy languages, eg. Haskell, allow to build cyclic structures

1 2

cycle = 1 : 2 : cycle

or equivalently

cycle = �x (�xs ! 1 : 2 : xs)
�x f = x where x = f x

Allows to represent complete infinite structures in finite
memory



Introduction

Motivation
However, there is no support for manipulating cyclic
structures
Eg. mapping over cyclic list gives an infinite list

map (+1) cycle =) [2; 3; 2; 3; 2; 3; 2; 3; : : :

In fact, there is no way to distinguish cyclic structures
from infinite ones
Our aim is to represent cyclic sharing structures
inductively, hence to separate them from infinite
(coinductive) structures.
This gives the ability to explicitly manipulate cyclic
sharing structures either directly or using generic
operations like fold , etc.



Cyclic Lists as Mixed-variant Datatype

Cyclic lists by Fegaras, Sheard (POPL’96)

data CList = Nil

j Cons Int List
j Rec (CList ! CList)

Examples

clist1 = Rec (�xs ! Cons 1 (Cons 2 xs))
clist2 = Cons 1 (Rec (�xs ! Cons 2 (Cons 3 xs)))



Cyclic Lists as Mixed-variant Datatype

Functions manipulating these representations must unfold
Rec-structures

cmap :: (Int ! Int)! CList ! CList

cmap g Nil = Nil

cmap g (Cons x xs) = Cons (g x ) (cmap g xs)
cmap g (Rec f ) = cmap g (f (Rec f ))

NB!
Implicit axiom: Rec f = f (Rec f )



Cyclic Lists as Mixed-variant Datatype

Problems
The argument type CList ! CList of Rec is too big; eg.
the following is not cyclic:

acyclic = Rec (�xs ! Cons 1 (cmap (+1) xs))

We can represent the unproductive empty cycle:

empty = Rec (�xs ! xs)

The representation is not unique:

clist1 = Rec (�xs ! Rec (�ys !
Cons 1 (Cons 2 (Rec (�zs ! xs)))))

The semantic category has to be algebraically compact.



Cyclic Lists as Mixed-variant Datatype

Partial fix
Require that Rec always comes in combination with Cons

and that Cons can never come alone:

data CList = Nil

j RCons Int (CList ! CList)

But overall, the approach is comparable the “higher-order
abstract syntax” (HOAS) representation of lambda calculus
syntax and the problems remain.

Alternative solution
Make the Haskell-level lambda-abstractions object-level.
Use de Bruijn notation to avoid problems with variable
names.



Cyclic Lists as Nested Datatype

Representation by nested datatypes

data Zero

data Incr n = One j S n

data CList n = Ptr n

j Nil
j Cons Int (CList (Incr n))

Ptr n represents a backward pointer to an element in a list.
One is the pointer to the previous element of a cyclic list.
S One is for the pre-previous (ie. two up) element , and
S (S One) is for the pre-pre-previous element, etc.
The complete cyclic list has type CList Zero, where Zero
is a type without constructors.



Cyclic Lists as Nested Datatype

Examples

1 2 3

Cons 1 (Cons 2 (Cons 3 (Ptr (S (S One)))))

1 2 3

Cons 1 (Cons 2 (Cons 3 (Ptr (S One))))

1 2 3

Cons 1 (Cons 2 (Cons 3 Nil))



Cyclic Binary Trees

Datatype of cyclic binary trees

data Tree n = Pt n

j Lf
j Br Int (Tree (Incr n))

(Tree (Incr n))

Example

3

2

1

4

5 6

Br 1 (Br 2 (Br 3 (Pt (S (S One)))
Lf )

Lf )
(Br 4 (Br 5 Lf Lf )

(Br 6 Lf Lf ))



Cyclic Sharing Binary Trees

Cycles vs. Sharing
The previous representation allows only cyclic trees
– i.e. pointers must be strictly upward.
Is it also possible to represent sharing?
We want the represenantion to be unique.
– Depth-first seach tree: spanning tree, back edges, cross
edges.
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Cyclic Sharing Binary Trees

Cycles vs. Sharing
The previous representation allows only cyclic trees
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Cyclic Sharing Binary Trees

Representation of Tree Shapes and Positions

data Spt

data Slf

data Sbr :: � ! � ! �where
PstopBr :: (TrSh l ;TrSh r)) Sbr l r

Pleft :: (TrSh l ;TrSh r)) l ! Sbr l r

Pright :: (TrSh l ;TrSh r)) r ! Sbr l r

class TrSh trsh where

instance TrSh Spt

instance TrSh Slf

instance (TrSh l ;TrSh r)) TrSh (Sbr l r)



Cyclic Sharing Binary Trees

Representation of Contexts

data CtxEmpty

data CtxFromL :: � ! �where
UpStopL :: (Ctx u)) CtxFromL u

UpL :: (Ctx u)) u ! CtxFromL u

data CtxFromR :: � ! � ! �where
UpStopR :: (TrSh l ;Ctx u)) CtxFromR l u

UpR :: (TrSh l ;Ctx u)) u ! CtxFromR l u

SideL :: (TrSh l ;Ctx u)) l ! CtxFromR l u

class Ctx ctx where

instance Ctx CtxEmpty

instance (Ctx u)) Ctx (CtxFromL u)
instance (TrSh l ;Ctx u)) Ctx (CtxFromR l u)



Cyclic Sharing Binary Trees

Representation of Trees

data Tree :: � ! � ! �where
Pt :: (Ctx u)) u ! Tree Spt u

Lf :: (Ctx u)) Tree Slf u

Br :: (Ctx u ;TrSh l ;TrSh r))
Int ! Tree l (CtxFromL u)

! Tree r (CtxFromR l u)
! Tree (Sbr l r) u



Cyclic Sharing Binary Trees

Example
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Br 1 (Br 2 (Br 3 (Pt p1 )
Lf )

Lf )
(Br 4 (Br 5 (Pt p2 )

Lf )
(Br 6 Lf Lf ))

where p1 = UpL (UpL UpStopL)
p2 = UpL (UpL (SideL

(Pleft PstopBr)))



Conclusions

Conclusions
Generic framework to model cyclic sharing structures.
– Unique representation by using spanning trees with back
and cross edges.

– DFS based graph algorithms are naturally expressible by
structural decomposition.

Type system guarantees the safety of pointers.
– In Haskell, uses GADT-s and typeclasses.
– Dependently typed languages (like Agda) allow more di-
rect representation of contextual constraints.

Admits efficient traversals through the translation into
Haskell’s internal graph structures.
The technique scales up to all polynomial datatypes.
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