Inductive Cyclic Sharing Data Structures

Varmo Vene
University of Tartu / Inst. of Cybernetics

joint work with
Makoto Hamana & Tarmo Uustalu

Theory Days at Joulumae
5. Oct. 2008

Introduction

Motivation
o Lazy languages, eg. Haskell, allow to build cyclic structures

i
(] F——12]]

cycle =1:2: cycle
or equivalently

cycle = fir (Azs — 1:2: zs)
fir f =z wherez=fz2

@ Allows to represent complete infinite structures in finite
memory

Introduction

Motivation

o However, there is no support for manipulating cyclic
structures

o Eg. mapping over cyclic list gives an infinite list
map (+1) cycle = [2,3,2,3,2,3,2,3,...

@ In fact, there is no way to distinguish cyclic structures
from infinite ones

@ Our aim is to represent cyclic sharing structures
inductively, hence to separate them from infinite
(coinductive) structures.

o This gives the ability to explicitly manipulate cyclic
sharing structures either directly or using generic
operations like fold, etc.

Cyclic Lists as Mixed-variant Datatype

Cyclic lists by Fegaras, Sheard (POPL’96)

data CList = Nil
| Cons Int List
| Rec (CList — CLast)

Examples

clistl = Rec (Azs — Cons 1 (Cons 2 zs))
clist2 = Cons 1 (Rec (Azs — Cons 2 (Cons 3 zs)))

Cyclic Lists as Mixed-variant Datatype

Functions manipulating these representations must unfold
Rec-structures

cmap :: (Int — Int) — CList — CList

cmap g Nil = Nl
cmap g (Cons z zs) = Cons (g z) (cmap g zs)
cmap g (Rec f) = cmap g (f (Rec f))

NB!
Implicit axiom: Rec f = f (Rec f)

Cyclic Lists as Mixed-variant Datatype

Problems

@ The argument type CList — CL1st of Rec is too big; eg.
the following is not cyclic:

acyclic = Rec (Azs — Cons 1 (cmap (+1) zs))
@ We can represent the unproductive empty cycle:
empty = Rec (Azs — s)
@ The representation is not unique:

clistl = Rec (Azs — Rec (Ays —
Cons 1 (Cons 2 (Rec (Azs — 3)))))

o The semantic category has to be algebraically compact.

Cyclic Lists as Mixed-variant Datatype

Partial fix

@ Require that Rec always comes in combination with Cons
and that Cons can never come alone:

data CList = Nil
| RCons Int (CList — CList)

@ But overall, the approach is comparable the “higher-order
abstract syntax” (HOAS) representation of lambda calculus
syntax and the problems remain.

Alternative solution
o Make the Haskell-level lambda-abstractions object-level.

@ Use de Bruijn notation to avoid problems with variable
names.

Cyclic Lists as Nested Datatype

Representation by nested datatypes

data Zero
data Incrn = One|Sn
data CList n = Pir n

| Nul
| Cons Int (CList (Incr n))

Ptr n represents a backward pointer to an element in a list.

One is the pointer to the previous element of a cyclic list.

°
°
@ S Omne is for the pre-previous (ie. two up) element , and
@ S (S One) is for the pre-pre-previous element, etc.

°

The complete cyclic list has type CList Zero, where Zero
is a type without constructors.

Cyclic Lists as Nested Datatype

Examples

Cons 1 (Cons 2 (Cons 3 (Ptr (S (S One)))))

12 g1

Cons 1 (Cons 2 (Cons 3 (Ptr (S One))))

Cons 1 (Cons 2 (Cons 3 Nil))

Cyclic Binary Trees

Datatype of cyclic binary trees

data Tree n = Pt n
| Lf
| Br Int (Tree (Incr n))
(Tree (Incr n))

Example

Br1(Br 2 (Br 3 (Pt (S (S One)))
Lf)
Lf)
(Br 4 (Br5 Lf Lf)
(Br 6 Lf Lf))

Cyclic Sharing Binary Trees

Cycles vs. Sharing
@ The previous representation allows only cyclic trees
— i.e. pointers must be strictly upward.

o Is it also possible to represent sharing?

Cyclic Sharing Binary Trees

Cycles vs. Sharing
@ The previous representation allows only cyclic trees
— i.e. pointers must be strictly upward.
o Is it also possible to represent sharing?

@ We want the represenantion to be unique.

Cyclic Sharing Binary Trees

Cycles vs. Sharing
@ The previous representation allows only cyclic trees
— i.e. pointers must be strictly upward.
o Is it also possible to represent sharing?
@ We want the represenantion to be unique.

— Depth-first seach tree: spanning tree, back edges, cross
edges.

Cyclic Sharing Binary Trees

Cycles vs. Sharing
@ The previous representation allows only cyclic trees
— i.e. pointers must be strictly upward.
o Is it also possible to represent sharing?

@ We want the pointers to be type safe.

Cyclic Sharing Binary Trees

Cycles vs. Sharing

The previous representation allows only cyclic trees
— i.e. pointers must be strictly upward.

Is it also possible to represent sharing?

We want the pointers to be type safe.

— Need to track context for targets of potential back and
cross edges.

Cyclic Sharing Binary Trees

Representation of Tree Shapes and Positions

data Spt
data Sif
data Sbr :: x — ¥ — xwhere
PstopBr :: (TrSh I, TrSh r) = Sbr i r

Pleft = (TrSh 1, TrShr)=1— Sbrir
Pright = (TrShl,TrShr)=1r — Sbrir

class TrSh trsh where

instance TrSh Spt
instance TrSh Sif
instance (TrSh [, TrSh r) = TrSh (Sbr L 1)

Cyclic Sharing Binary Trees

Representation of Contexts

data CtzEmpty

data CtzFromL :: x — xwhere
UpStopL :: (Ctz u) = CtrFromL u
UpL 1 (Ctz u) = u — CtzFromL u

data CtzFromR :: ¥ — * — xwhere
UpStopR :: (TrSh I, Ctz u) = CtzFromR l u
UpR 2 (TrSh I, Ctz u) = u — CtzFromR [u
SideL ::(TrShl,Ctz u) = | — CtzFromR l u

class Ctr ctz where

instance Ctz CtzEmpty
instance (Ctz u) = Ctz (CtzFromlL u)
instance (TrSh [, Ctz u) = Ctz (CtzFromR | u)

Cyclic Sharing Binary Trees

Representation of Trees

data Tree :: ¥ — *x — xwhere
Pt : (Ctz u) = u — Tree Spt u
Lf : (Ctz u) = Tree Sif u
Br:(Ctz u, TrSh |, TrSh r) =
Int — Tree | (CtzFromL u)
— Tree r (CtzFromR | u)
— Tree (Sbrlr)u

Cyclic Sharing Binary Trees

Example

Br1(Br2(Br3(Ptpl)

Lf)
Lf)
(Br 4 (Br5 (Pt p2)
Lf)

(Br 6 Lf Lf))
where p1 = UpL (UpL UpStopL)
p2 = UpL (UpL (SideL
(Pleft PstopBr)))

Conclusions

Conclusions
@ Generic framework to model cyclic sharing structures.

— Unique representation by using spanning trees with back
and cross edges.

— DF'S based graph algorithms are naturally expressible by
structural decomposition.

@ Type system guarantees the safety of pointers.

— In Haskell, uses GADT-s and typeclasses.
— Dependently typed languages (like Agda) allow more di-
rect representation of contextual constraints.

o Admits efficient traversals through the translation into
Haskell’s internal graph structures.

@ The technique scales up to all polynomial datatypes.

	Introduction
	Cyclic Lists
	Binary Trees
	Conclusions

