$\begin{array}{c} \text{Introduction}\\ \mathsf{Two} \text{ pseudo-distances on } S^{\mathbb{Z}}\\ \text{Higher dimension}\\ \text{Conclusion} \end{array}$

On two translation-invariant pseudo-distances between infinite words and their applications to cellular automata

Silvio Capobianco

Institute of Cybernetics at TUT silvio@cs.ioc.ee

Mäetaguse, October 2, 2009

Revised: October 5, 2009

Silvio Capobianco

- In a sense, the product topology on bi-infinite words cannot be induced by a "good" distance.
- The Besicovitch and Weyl pseudo-distances define new quotient spaces where the shift "behaves well".
- Cellular automata (CA) also behave "well" with respect to them.

2

The space of bi-infinite words

Let S be an alphabet—finite, $|S| \ge 2$. The product topology on $C = S^{\mathbb{Z}}$ is induced by the distance

$$d(c_1, c_2) = 2^{-r}$$
 if $r = \min\{|x| \mid c_1(x) \neq c_2(x)\}$

The shift map $\sigma \in S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ is defined by

$$\sigma(c)(x) = c(x+1)$$

The temporally periodic points for σ are precisely the spatially periodic words.

 $\begin{array}{c} \text{Introduction}\\ \text{Two pseudo-distances on } S^{\mathbb{Z}}\\ \text{Higher dimension}\\ \text{Conclusion} \end{array}$

"Its's not a bug, it's a feature"

 σ is transitive, *i.e.*, ∀U, V ⊆ S^Z open ∃n | σ⁻ⁿ(U) ∩ V ≠ Ø.
True for the cylinders C_r(c) = {c' ∈ S^Z | d(c, c') < r}
σ has a dense set of periodic points

• If $c_r = (c[-r:r])^{\mathbb{Z}}$ then $d(c,c_r) \leq 2^{-r}$.

3. σ is sensitive to initial conditions, *i.e.*, $\exists \delta > 0 \mid \forall c \in S^{\mathbb{Z}}, r > 0 \exists c' \in S^{\mathbb{Z}}, n \in \mathbb{N} \mid$ $d(c_1, c_2) < r, d(\sigma^n(c), \sigma^n(c')) > \delta$ \blacktriangleright Put $\delta = 1/2$. Choose $n > -\log_2 r, d(c, c') = 2^{-n}$.

This is Devaney's definition of chaos! so that:

- the shift is a chaotic map—WHAT!??
- no translation-invariant distance induces the product topology

(本部) (문) (문) (문

How to Solve It¹

Blanchard, Formenti, and Kůrka. (1999)

- 1. Construct a pseudo-distance d on $S^{\mathbb{Z}}$.
- 2. Consider the relation $c_1 \sim_d c_2$ iff $d(c_1, c_2) = 0$.
- 3. Work in the quotient space $S^{\mathbb{Z}}/\sim_d$.

¹Apologies to G. Polya.

- ∢ ≣ ▶

The Besicovitch pseudo-distance The Weyl pseudo-distance Properties Cellular automata in the new settings

- 4 回 2 - 4 回 2 - 4 回 2 - 4

The Besicovitch pseudo-distance

Consider the sets of the form $B_n = \{-n, ..., n\}$. Put

$$d_{\mathcal{B}}(c_1, c_2) = \limsup_{n \to \infty} \frac{|\{x \in B_n \mid c_1(x) \neq c_2(x)\}|}{2n+1}$$

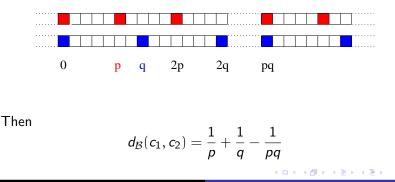
 $d_{\mathcal{B}}$ is translation-invariant.

- ► Call $H_n(c_1, c_2) = |\{x \in B_n \mid c_1(x) \neq c_2(x)\}|.$
- ► Then $|H_n(c_1, c_2) H_n(\sigma(c_1), \sigma(c_2))| \le 2.$

 $d_{\mathcal{B}}(c_1, c_2) = 0$ iff $\{x \mid c_1(x) \neq c_2(x)\}$ is sparse.

Example

Let p, q be primes. Let $c_1(x)$ be 1 if $x \in p\mathbb{Z}$, 0 otherwise. Let $c_2(x)$ be 1 if $x \in q\mathbb{Z}$, 0 otherwise.



3

Silvio Capobianco

Introduction Two pseudo-distances on S² Higher dimension Conclusion The Besicovitch pseudo-distance The Weyl pseudo-distance Properties Cellular automata in the new settings

The Weyl pseudo-distance

Consider the sets of the form $W_n = \{0..., n-1\}$. Put

$$d_{\mathcal{W}}(c_1, c_2) = \limsup_{n \to \infty} \sup_{z \in \mathbb{Z}} \frac{|\{x \in W_n \mid c_1(z+x) \neq c_2(z+x)\}|}{n}$$

イロト イヨト イヨト イヨト

2

 $d_{\mathcal{W}}(c_1, c_2) = 0$ iff $\{x \mid c_1(x) \neq c_2(x)\}$ is uniformly sparse.

• $d_{\mathcal{W}}$ is actually a limit because of Fekete's lemma.

▶ d_B is usually not a limit.

Introduction Two pseudo-distances on S^Z Higher dimension Conclusion Higher dimension Higher dimension Conclusion

Fekete's lemma

Let $f: \{1, 2, \ldots\} \rightarrow [0, \infty)$ satisfy

$$f(m+n) \leq f(m) + f(n) \ \forall m, n \geq 1.$$

Then

$$\lim_{n\to\infty}\frac{f(n)}{n}$$

exists, and equals

$$\inf_{n\geq 1}\frac{f(n)}{n}$$

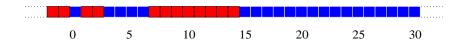
イロン 不同と 不同と 不同と

3

Example

Let
$$a_n = \sum_{i=1}^n 2^i$$
. Let $c_0(x) = 0$ for all x and

$$c(x) = \begin{cases} 1 & \text{if } x \in \{a_{2k-1} + 1, \dots, a_{2k}\}, \\ 0 & \text{if } x \in \{a_{2k} + 1, \dots, a_{2k+1}\}, \\ c(-x) & \text{if } x < 0. \end{cases}$$



Completeness

- $\ensuremath{\mathcal{C}}$ is complete.
 - Being Cauchy means being ultimately equal on any finite set.
- $\ensuremath{\mathcal{B}}$ is complete.
 - ► A Cauchy sequence has a subsequence that "stays tight".
 - $\{B_n\}$ has a subsequence that "grows fast".
 - ► Join to find a (unique) limit point.

 ${\mathcal W}$ is not complete.

Non-trivial.

Completeness is the reason why $d_{\mathcal{B}}$ has been preferred to $d_{\mathcal{W}}$.

⊡ ▶

< 国 → < 国 →

- \mathcal{C} is compact.
 - By Tychonoff's theorem.
- $\mathcal B$ is not compact.
 - ► Non-trivial; proof based on Sturmian sequences.
- $\ensuremath{\mathcal{W}}$ is not compact.
 - Compact metric spaces are complete.

A ■

∢ ≣⇒

Introduction Two pseudo-distances on S^Z Higher dimension Conclusion Conclusion The Besicovitch pseudo-distance Properties Cellular automata in the new settings

Connectedness

- $\ensuremath{\mathcal{C}}$ is totally disconnected.
 - C is product of t.d. spaces.
- ${\mathcal B}$ is arcwise connected.
 - Construction based on Toeplitz sequences.
- $\ensuremath{\mathcal{W}}$ is arcwise connected.
 - Same as above.

A ■

-≣->

Dense subsets

Let ${\mathcal P}$ be the set of periodic configurations. ${\mathcal P}$ is dense in ${\mathcal C}.$

• Let
$$c_n = c_{[-n...n]}$$
.

• Then $\lim_{n\to\infty} c_n = c$ in the product topology.

 \mathcal{P} is not dense in \mathcal{B} .

• Let
$$c(x) = 1$$
 iff $x \ge 0$.

▶ Then
$$d_{\mathcal{B}}(c, c') \ge \frac{1}{2}$$
 for any periodic c' .

 ${\mathcal P}$ is not dense in ${\mathcal W}.$

• Follows from previous and $d_{\mathcal{W}} \ge d_{\mathcal{B}}$.

Note that: distinct elements of \mathcal{P} have $d_{\mathcal{W}} \geq d_{\mathcal{B}} > 0$.

- 4 同 2 4 日 2 4 日 2

Introduction Two pseudo-distances on $S^{\mathbb{Z}}$	The Besicovitch pseudo-distance The Weyl pseudo-distance
Higher dimension	Properties
Conclusion	Cellular automata in the new settings

	\mathcal{C}	\mathcal{B}	\mathcal{W}
complete	yes	yes	no
compact	yes	no	no
connected	no	yes	yes
${\mathcal P}$ dense	yes	no	no

3

글 🕨 🔸 글 🕨

 $\mathcal{P}:$ set of periodic configurations.

Introduction Two pseudo-distances on $S^{\mathbb{Z}}$	The Besicovitch pseudo-distance The Weyl pseudo-distance
Higher dimension	Properties
Conclusion	Cellular automata in the new settings

Cellular automata

A cellular automaton (CA) is a triple $\mathcal{A} = \langle S, \mathcal{N}, f \rangle$ where

- ► *S* is an alphabet
- $\mathcal{N} = \{n_1, \ldots, n_k\}$ is a finite subset of \mathbb{Z} —neighborhood
- $f: S^k \to S$ is a function—local map

The local map induces a global map $F_\mathcal{C}:S^\mathbb{Z} o S^\mathbb{Z}$ by

$$F_{\mathcal{C}}(c)(x) = f(c(x+n_1),\ldots,c(x+n_k))$$

Introduction Two pseudo-distances on S^Z Higher dimension Conclusion

CA are well-defined on Besicovitch and Weyl classes

- Let $\mathcal{A} = \langle S, \mathcal{N}, f \rangle$ be a CA.
- ► Then the value of c at a point affects the values of F_C(c) at no more than |N| points.
- Consequently,

$$d_{\mathcal{B}}(F_{\mathcal{C}}(c_1), F_{\mathcal{C}}(c_2)) \leq |\mathcal{N}| \cdot d_{\mathcal{B}}(c_1, c_2)$$

and

$$d_{\mathcal{W}}(F_{\mathcal{C}}(c_1), F_{\mathcal{C}}(c_2)) \leq |\mathcal{N}| \cdot d_{\mathcal{W}}(c_1, c_2)$$

so that the following are well defined:

$$F_{\mathcal{B}}([c]_{\mathcal{B}}) = [F(c)]_{\mathcal{B}} ; F_{\mathcal{W}}([c]_{\mathcal{W}}) = [F(c)]_{\mathcal{W}}$$

|| (同) || (三) (=)

Introduction	The Besicovitch pseudo-distance
Two pseudo-distances on $S^{\mathbb{Z}}$	The Weyl pseudo-distance
Higher dimension	Properties
Conclusion	Cellular automata in the new settings

Surjectivity

Theorem (well-known) Let $\mathcal{A} = \langle S, \{-r, \dots, r\}, f \rangle$ be a CA. The following are equivalent. 1. $F_{\mathcal{C}} : S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ is surjective. 2. For every $p : \{0, \dots, n-1\} \to S$ there exists $\pi : \{-r, \dots, n+r-1\} \to S$ s.t. $f(\pi(i-r), \dots, \pi(i+r)) = p(i) \ \forall i \in \{0, \dots, n-1\}$

・ 回 と ・ ヨ と ・ ヨ と

Reason why: the product space is compact.

Introduction Two pseudo-distances on $S^{\mathbb{Z}}$	The Besicovitch pseudo-distance The Weyl pseudo-distance
Higher dimension	Properties
Conclusion	Cellular automata in the new settings

Example

The AND CA on two neighbors

- ► *S* = {0, 1}
- ▶ $\mathcal{N} = \{0, 1\}$
- ► f(a, b) = a AND b

is not surjective because the pattern 101 is "orphan":

$$c_{t+1}$$
 \cdots 1 0 1 \cdot \cdots
 c_t \cdots 1 1 1 1 \cdots
 \cdots \cdot \uparrow \cdot \cdot \cdots

3

個 と く ヨ と く ヨ と …

Introduction Two pseudo-distances on S² Higher dimension Conclusion Conclusion

Surjectivity of 1D $_{\rm CA}$ in Besicovitch and Weyl spaces

Theorem (Blanchard, Cervelle, Formenti 2005) Let \mathcal{A} be a CA. The following are equivalent.

- F_C is surjective.
- $F_{\mathcal{B}}$ is surjective.
- ► *F*_W is surjective.

Reason why:

► $F_{\mathcal{B}}$ is surjective iff $\forall c \exists c' \mid d_{\mathcal{B}}(c, F_{\mathcal{C}}(c')) = 0$. Similar for $F_{\mathcal{W}}$.

イロト イポト イヨト イヨト

• If $F_{\mathcal{B}}$ or $F_{\mathcal{W}}$ is surjective, then $F_{\mathcal{C}}$ is surjective on \mathcal{P} .

Introduction Two pseudo-distances on 5² Higher dimension Conclusion

Other links with CA properties

Theorem (Blanchard, Formenti, Kůrka 1999)

- ► If F_C is equicontinuous, then F_B and F_W are equicontinuous.
- If F_C has equicontinuity points, then F_B and F_W have equicontinuity points.
- If F_B or F_W is transitive, then F_C is transitive.
- If F_B or F_W is sensitive, then F_C is sensitive.

|田・ (日) (日)

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

・ 母 と ・ ヨ と ・ ヨ と

A starting point for generalization

Consider $B_n = \{-n, \ldots, n\}$ and $W_n = \{0, \ldots, n = 1\}$ as windows.

- ▶ Both d_B and d_W are upper limits of relative densities under some window.
- For $d_{\mathcal{B}}$ the window is kept in place and progressively enlarged.
- ▶ For d_W the window is moved all around between enlargement.

In fact,

$$d_{\mathcal{W}}(c_1, c_2) = \limsup_{n \to \infty} \sup_{z \in \mathbb{Z}} \frac{|\{x \in B_n \mid c_1(x+z) \neq c_2(x+z)\}|}{|2n+1|}$$

i.e., d_W can be found via the B_n 's. The key is thus to find a good sequence of windows.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

イロト イヨト イヨト イヨト

2

Exhaustive sequences

The sequence $B_n = \{-n, \ldots, n\}$ satisfies the following properties:

1. $|B_n| < \infty$ for every *n*.

2.
$$B_n \subseteq B_{n+1}$$
 for every n .

3.
$$\bigcup_{n\in\mathbb{N}} B_n = \mathbb{Z}$$
.

A sequence $\mathcal{X} = \{X_n\}$ such that:

1.
$$|X_n| < \infty$$
 for every n ,

2.
$$X_n \subseteq X_{n+1}$$
 for all $n \in \mathbb{N}$,

3.
$$\bigcup_{n\in\mathbb{N}}X_n=\mathbb{Z}^d$$

shall be said to be exhaustive.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

▲圖▶ ▲屋▶ ▲屋▶

Generalized Besicovitch and Weyl distances

Let $\mathcal{X} = \{X_n\}_{n \in \mathbb{N}}$ be an exhaustive sequence for \mathbb{Z}^d . Then

$$d_{\mathcal{B},\mathcal{X}}(c_1,c_2) = \limsup_{n \to \infty} \frac{|\{x \in X_n \mid c_1(x) \neq c_2(x)\}|}{|X_n|}$$

and

$$d_{\mathcal{W},\mathcal{X}}(c_1,c_2) = \limsup_{n \to \infty} \sup_{z \in \mathbb{Z}^d} \frac{|\{x \in X_n \mid c_1(x+z) \neq c_2(x+z)\}|}{|X_n|}$$

generalize $d_{\mathcal{B}}$ and $d_{\mathcal{W}}$ from the one-dimensional case. Call $\mathcal{B}_{\mathcal{X}}$ and $\mathcal{W}_{\mathcal{X}}$ the corresponding quotient spaces.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

▲ 御 ▶ → ほ ▶

- ∢ ≣ >

Families of disks

It is of interest when ${\mathcal X}$ is the family of disks w.r.t.

► the von Neumann neighborhood

$$\mathrm{vN} = \{x \mid \sum_{i=1}^d |x_i| \le 1\}$$

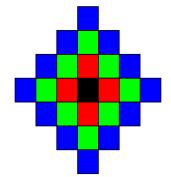
the Moore neighborhood

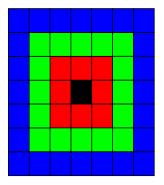
$$\mathbf{M} = \{ x \mid \max_{i=1}^d |x_i| \le 1 \}$$

▶ in general, any set of generators T for \mathbb{Z}^d over \mathbb{Z} .

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

von Neumann and Moore disks for radius 1, 2, 3





イロン イヨン イヨン イヨン

3

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

▲圖▶ ▲屋▶ ▲屋▶

Equivalence does not depend on generators

Theorem (Capobianco, 2009) Let T be a set of generators for \mathbb{Z}^d . Let \mathcal{X} be the family of disks w.r.t. T.

- 1. As T varies, the associate Besicovitch pseudo-distances $d_{\mathcal{B},\mathcal{X}}$ are pairwise metrically equivalent.
- 2. In particular, if $d_{B,T}(c_1, c_2) = 0$ for any T, then $d_{B,T}(c_1, c_2) = 0$ for every T.

3. The above also hold for the Weyl pseudo-distances $d_{W,X}$. Reason why: the "rate of polynomial growth" is defined in a precise sense.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

|| (同) || (三) (=)

Topological properties in higher dimension

Theorem (Capobianco, to appear)

Consider $S^{\mathbb{Z}^d}$ with \mathcal{X} the Moore disks sequence.

- ▶ B_X is complete.
- ▶ *B*_X and *W*_X are arcwise connected.
- ▶ If $c_1, c_2 \in \mathcal{P}$, $c_1 \neq c_2$ then $d_{\mathcal{W},\mathcal{X}}(c_1, c_2) \geq d_{\mathcal{B},\mathcal{X}}(c_1, c_2) > 0$.
- \mathcal{P} is not dense in either $\mathcal{B}_{\mathcal{X}}$ or $\mathcal{W}_{\mathcal{X}}$.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

イロト イポト イヨト イヨト

æ

Overview for higher dimension

	\mathcal{C}	B	\mathcal{W}
complete	yes	yes	??
compact	yes	??	??
connected	no	yes	yes
${\mathcal P}$ dense	yes	no	no

 $\mathcal{P}:$ set of periodic configurations.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

個 と く ヨ と く ヨ と

Surjectivity in higher dimension

Theorem (Capobianco, 2009)

Let $\langle S, \mathcal{N}, f \rangle$ a *d*-dimensional CA. The following are equivalent.

- 1. $F_{\mathcal{C}}$ is surjective.
- 2. $F_{\mathcal{B}}$ is surjective.
- 3. $F_{\mathcal{W}}$ is surjective.

Reason why: an "orphan" pattern can be use to construct a *c* such that $d_{\mathcal{B},\mathcal{X}}(c, F_{\mathcal{C}}(c')) \ge \delta > 0$ for all *c*'.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

個 と く ヨ と く ヨ と

Surjectivity in local terms for $F_{\mathcal{B}}$ and $F_{\mathcal{W}}$?

- \blacktriangleright Surjective $_{\rm CA}$ on ${\cal C}$ are characterized in local terms.
- ▶ Is there anything like that for *F*^B and *F*^W?
- Problem: In \mathcal{B} and \mathcal{W} single occurrences don't count.
- Idea: But the set of all occurrences might!

Introduction Two pseudo-distances on S^Z Higher dimension Conclusion

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

イロン イヨン イヨン イヨン

3

Measuring sets

Given \mathcal{X} , for $U \subseteq \mathbb{Z}^d$ put

dens
$$\sup_{\mathcal{B},\mathcal{X}} U = \limsup_{n \to \infty} \frac{|U \cap X_n|}{|X_n|}$$

and

dens sup_{*W*,*X*}
$$U = \limsup_{n \to \infty} \sup_{z \in \mathbb{Z}^d} \frac{|(z + U) \cap X_n|}{|X_n|}$$

densinf_{\mathcal{B},\mathcal{X}}(U) and densinf_{\mathcal{W},\mathcal{X}}(U) are defined similarly.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

イロン イヨン イヨン イヨン

3

Measuring pattern occurrences

Theorem (Capobianco, to appear) Suppose $d_{\mathcal{B},\mathcal{X}}(c_1,c_2) = 0$. Then for any pattern p

dens
$$\sup_{\mathcal{B},\mathcal{X}} \operatorname{occ}(p, c_1) = \operatorname{dens} \sup_{\mathcal{B},\mathcal{X}} \operatorname{occ}(p, c_2)$$

and

densinf_{$$\mathcal{B},\mathcal{X}$$}occ(p, c_1) = densinf _{\mathcal{B},\mathcal{X}} occ(p, c_2)

A similar result holds for $d_{\mathcal{W},\mathcal{X}}$, dens $\sup_{\mathcal{W},\mathcal{X}}(U)$ and dens $\inf_{\mathcal{W},\mathcal{X}}(U)$. Reason why: a counting argument.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Surjectivity in local terms for $F_{\mathcal{B}}$ and $F_{\mathcal{W}}$!

Theorem (Capobianco, to appear) Suppose \mathcal{X} is a family of disks. Let F be the global function of a CA. The following are equivalent.

- 1. For every c there exists c' s.t. $d_{\mathcal{B},\mathcal{X}}(c, F(c')) = 0$.
- 2. For every *p* there exists c' s.t. dens $\sup_{\mathcal{B},\mathcal{X}} \operatorname{occ}(p, F(c')) > 0$.

A similar result holds for $d_{\mathcal{W},\mathcal{X}}$ and dens $\sup_{\mathcal{W},\mathcal{X}}$. Reason why: invariance of upper density.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

Configurations and CA on finitely generated groups

Suppose every element of a group G "is" a finite word on a finite $T \subseteq G$.

- We can again define configurations.
- We can define translation by $g \in G$ as

$$c^{g}(h) = c(gh) \ \forall h \in G$$

▶ We can define CA on G via

$$F(c)(g) = f(c^g|_{\mathcal{N}})$$

- We can define Besicovitch and Weyl spaces on S^G via \mathcal{X} .
- And we run risks!

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

イロト イポト イヨト イヨト

æ

$d_{\mathcal{B}}$ might not be translation-invariant!

- ▶ Let *G* be the free group on two generators *a*, *b*.
- Let X_n be the set of reduced words on {a, b, a⁻¹, b⁻¹} of length ≤ n.

• Let
$$c_1 = 0 \forall g \in G$$
.

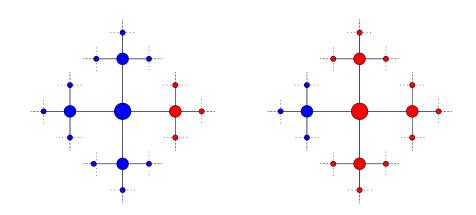
• Let
$$c_2(g) = 1$$
 if $g \in aG$, 0 otherwise.

Then
$$d_{\mathcal{B},\mathcal{X}}(c_1,c_2) = \frac{1}{4}$$
 but $d_{\mathcal{B},\mathcal{X}}(c_1^a,c_2^a) = \frac{3}{4}$.

Higher-dimensional Besicovitch and Weyl spaces Higher-dimensional ca Further generalizations

æ

c_2 and c_2^a from previous example



Silvio Capobianco

The case of subexponential growth

Theorem (Capobianco, 2009 and to appear)

Let G be a group of subexponential growth.

Let \mathcal{X} be the sequence of disks w.r.t. a set of generators \mathcal{T} .

- CAare well-defined on $\mathcal{B}_{\mathcal{X}}$ and $\mathcal{W}_{\mathcal{X}}$.
- ► For arbitrary CA, the following are equivalent.
 - F_C is surjective.
 - $F_{\mathcal{B}}$ is surjective.
 - ► *F*_W is surjective.
 - ▶ For every *p* there exists c' s.t. dens $\sup_{\mathcal{B},\mathcal{X}} \operatorname{occ}(p, F(c')) > 0$.
 - ▶ For every *p* there exists c' s.t. dens $\sup_{W,X} \operatorname{occ}(p, F(c')) > 0$.

Moreover, if G is of polynomial growth then:

- $d_{\mathcal{B},\mathcal{X}}$ is invariant by translations.
- The $d_{\mathcal{B},\mathcal{X}}$'s are pairwise metrically equivalent as T varies.
- Same for the $d_{\mathcal{W},\mathcal{X}}$.
- In particular, \mathcal{B} and \mathcal{W} do not depend on the choice of \mathcal{T} .

Conclusions and further research

Conclusions

- The Besicovitch and Weyl pseudo-distance determine a structure of the space much different than the product topology.
- ► Nonetheless, they are interesting items *per se*.
- And they may provide insights on CA behavior.

Further research

- ► Determine the topological properties of *B* and *W* in more general setting.
- Find "good" dense sets.
- Find links between properties of F_C , F_B and F_W .
- Refine existing results.

Suggested readings

- F. Blanchard, E. Formenti, P. Kůrka. (1999) Cellular automata in the Cantor, Besicovitch and Weyl topological spaces. *Complex Systems* 11(2), 107–123.
- F. Blanchard, J. Cervelle, E. Formenti. (2005) Some results about the chaotic behavior of cellular automata. *Theor. Comp. Sci.* 349, 318–336.
- S. Capobianco. (2009) Surjunctivity for cellular automata in Besicovitch spaces. *Journal of Cellular Automata* 4(2), 89–98.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you for attention!

Any questions?

イロン イヨン イヨン ・

3

Silvio Capobianco