Relative Monads
and
Relative Adjunctions

James Chapman
Institute of Cybernetics, Tallinn

(joint work with Thorsten Altenkirch and Tarmo Uustalu)

Plan

® Ordinary adjunctions

® Ordinary monads

® Ordinary monad examples
® Relative adjunctions

® Relative monads

® Relative monad examples

Wednesday, October 7, 2009

Background/Motivation

® Monads are a very successful abstraction in
functional programming

® Mathematics is strewn with adjunctions

® Monads and (the intimately related) adjunctions are
perhaps the central topic in (basic) category theory

® But! Some persuasive examples don’t quite fit:
® Monad-like but not an endofunctor
® often an embedding is involved

® Satisfy the monad laws but not the structure!

Wednesday, October 7, 2009

All you need to know about
category theory in one slide

® A category is like a set: it has elements

called (objects) but also morphisms/arrows
between them

® A functor is a morphism between
categories

® A natural transformation is a morphism
between functors

Adjunctions

C=D
F=G=Id

Id=G.F

Equality

/N

SSOUD|BIAA

F\ /G 2> Isomorphism |~ _" .
IS .
D E Adjunction N:ld=G.F
= £:F.G = Id

Adjunctions can be given by F G with 1N and € or:

[, G, and a bijective map:
D:(FX—2Y) < (X = G Y) which is natural in X andY

Wednesday, October 7, 2009

Adjunctions

“Adjoint functors arise everywhere”
- Saunders Mac Lane

® An example from logic/functional programming:

® A is left adjoint to =

® put another way:

(AxB) = C
uncurry (:) curry
A—- (B—C

® 5o (- x B) is left adjoint to (B — -)

Wednesday, October 7, 2009

Monads from
Adjunctions
T
T=G.F
/'C\ and the monad
Fl 4 |g | operations are derived
\\ .A/J from the operations of
D the adjunction
The inverse is also true: every monad can be split into an
adjunction in several canonical ways (Kleisli and EM).

Wednesday, October 7, 2009

Monads

® Monads are given by the following data:
o [:C—-C
® N:X—-TX
o) :(X=2TY) > (TX—=2TY)
® FEvery adjunction gives rise to a monad where
o T=G.F
® N=n
¢ ()¥*=G.d!

Wednesday, October 7, 2009

Ordinary monad

example
data Maybe A : Set where
Just : A » Maybe A

Nothing : Maybe A

Maybe
A a -» Just a
* ¢ (A > Maybe A) » (Maybe A - Maybe B)
*= N k x » case x of
Nothing » Nothing
Just x - k x

AN S —
S\ ||

Wednesday, October 7, 2009

example (cont.)

-- type inferrer (might fail)
infer : Program - Maybe Type
infer p = ...

-- other function (uses monadic interface)
other : {M : Monad X} ... »> M Nat
other ... = do

type « 1infer p

later we might improve infer by producing error
messages etc. Don’t need to rewrite other.

Wednesday, October 7, 2009

Relative Adjunctions

()

l\/vc

Relative adjunctions are given by F G, | and a bijective map:

D:(FX—2Y) e ()] X = G Y) which is natural in X andY

We can have a unit (N :| = G . F) but no counit

Wednesday, October 7 , 2009

Relative Monads from
Relative Adjunctions

1 As before, T = G . F

D \ and the (relative) monad
F(\G operations are derived from the

n operations of the (relative)
Jo_ _AC+/

J

adjunction

As before, every (relative) monad can be split into an

(relative) adjunction in several canonical ways (rel.
Kleisli and rel. EM).

Relative Monads

® Relative Monads are given by the following data:

¢ T:]—>C Key idea:
A monad T
RS Badle relative to a

® N: X —TX functor }

o)*:(JX=2TY)=2>(TX—=TY)
® Every adjunction gives rise to a monad where
e T=G.F
® N=n
* ()¥=G.D

Wednesday, October 7, 2009

Relative Monad example
(Untyped lambda terms)

data Lam : Nat -» Set where
var : Fin n » Lam n
Llam : Lam (suc n) » Lam n
app : Lam n » Lam n » Lam n

T =Lam, J = Fin, n = var, and
(-)* (Fln m - Lam n) > Lam m » Lam n

Provides a monadic interface for substitution

Wednesday, October 7, 2009

Relative Monad example 2

(Vector spaces)

F : Nat » Set
F nh=Fin n > Nat -- any semiring would do

where T = F and J = Fin and:

n : viny » Fin n » F n
na=ANb-»>1f a ==Db then 1 else 0

bind : vim n} > (Finm > Fn) - Fm> F n
bind f v=Ab-s>ZmOa->va*fab)

Wednesday, October 7 , 2009

Results

® Arrows are an instance of relative monads
where | is the Yoneda embedding

® Relative monads are lax monoidal objects
in a lax monoidal category (with some
extra conditions on J)

® VWith extra extra conditions the left Kan
extension of a relative monad is an
ordinary monad

Wednesday, October 7, 2009

Self advertisement

Paper “Monads need not be endofunctors”
should/must be ready in a few days.

Short paper “Machine assisted proofs in the
theory of monads™ accepted for NWPT
2009 - ongoing formalisation of monads
and associated theory in Agda

Both available at http://cs.ioc.ee/~james

Both joint work with Tarmo and Thorsten

Wednesday, October 7, 2009

http://cs.ioc.ee/~james
http://cs.ioc.ee/~james

“All concepts are Kan extensions™
- Saunders Mac Lane

Emergency slides

eeeeeeeeeeeeeeeeeeeeeee

R. Kleisli category

® For a R.Monad (T,), N, (-)*) the Kleisli cat. Ct
® Objects : Objects of }
® Morphisms: Morphisms in C of type | X = TY
® |dentity:idT = I
® composition forany f:]Y 2 TZandg:] X 2>TY
frg=f*.g

Same as for monads just delete the]Js and replace J with C

Wednesday, October 7 , 2009

R. Kleisli Adjunction

® | eft adjoint

® on objects: Fr X =X

® on morphisms:Frf=noJf
® Right adjoint

® on objects: Gt X =T X

® on objects: Gt k = k*

Same as for monads just delete the |

R. EM Category

For a R.Monad (T, }, n, (-)*) the Kleisli cat.
CT

® Objects are algebras
® A,a:(JX—=A) > (T X—2A))

® Morphisms are algebra morphisms f :
(A,a) — (B,b)

Equivalent to ordinary presentation in the

case of ordinary monads by deleting the |

R. EM Adjunction

® | eft adjoint
® onobjects :LTY=(TY ,Af.f*)
® on morphisms:LT f=T f

® Right adjoint
® on objects:R™ (A a) = A

® on morphisms:R" h = h
Equivalent to ordinary presentation in the case
of ordinary monads

Wednesday, October 7, 2009

