Symbolic uery ploration

Pavel Grigorenko
(joint work with Margus Veanes,
Peli de Halleux and Nikolai Tillmann)

Institute of Cybernetics
Tallinn University of Technology

Theory Days at Maetaguse
2 October 2009

/26

Overview

@ Motivation

o Test data generation for SQL queries
e Parameter generation for queries and store procedures

e Goal
e Investigate model generation with Z3
@ Approach

e Satisfiability modulo background theory 7>
e Mapping SQL to 7>

Sample DB

Customers
¢ CustomerID
CustomerName
OrderProducts 3
OrderlD
% ProduciD o
OrderProductQuantity
8
Orders
@ OrderlD
CustomerID
Products
ProductiD
ProductName
ProductPrice

SELECT C.CustomerID, SUM(OP.OrderProductQuantity
* P.ProductPrice)
FROM OrderProducts AS OP
JOIN Orders AS O ON OP.OrderID = 0.0OrderID
JOIN Products AS P ON OP.ProductID = P.ProductID
JOIN Customers AS C ON O.CustomerID = C.CustomerID
WHERE (@value > 1
GROUP BY C.CustomerID
HAVING SUM(OP.OrderProductQuantity
* P.ProductPrice) > 100 + Qvalue

Unit test

—Unit Test ~

s, =]
Condition ¢
User \;—z params /—¢

Evaluate
» qwith
params

Database
/ Resultr /

YES%f:ir/;atisties @? >

Test failed

Test succeeded

Qex internal workflow

INPUT
Database
schema

INPUT
Test
condition

Translate

to a formula

Quantifier- YES NO Quantifier-free io.mmla &
free formula expansion axioms

Translate solution §
to test data

OUTPUT
Tables &
parameters

ISAT(S)i

. - Initially
N L
Z3 input /‘—{ Add Negation of § }4* S—fulse

!

iy

UNSAT P
—~Find another ~__
- solution? _~
~_

YES

N
(Exit j«—NO
o J

26

Expressions in 7>

To = x| Default® | Ite(T®, T, T%) | TheElementOf(T5(?)) |
ﬂ'i(TT(O—OV"?UIZO—V“))

TTO00) i (TO0, . TO)

TZ n= k| TZ 4 TZ | k* TZ | Ei(TS(T(UO,...,OFZ,...)))

T® n= | TR TR | ks TR | 5(78(T(000i=Ro))) | AsReal(TZ)
T® n= true | false | -TP | TEATE [TEVTE| T = T7 |

TS(0) C TS(0) ‘ T € 7S(0) ’ TZ < TZ ’ TR < TR

TS(G’) e XS(O’) | {TO’ |)_(TIB} | TS(U) U TS(U) ‘ TS(U) N TS(J) |
TS(e) \ TS(e)

F = TB|3xF|3XF

®

Semantics

@ Sis a state for a term t such that FV(t) C Dom(S)
@ For a given term t, t° is the interpretation of t in S
@ For a given formula ¢, S = ¢ means that ° is true

t5, if S ;

lte(p, ty,)5 = 1 ’

(-1,) { t5, otherwise.
{to e 015 = {£797% acu” Su{x— a} = ¢}

Si(n)$ =) mia)

act?

Semantics

@ Sis a state for a term t such that FV(t) C Dom(S)
@ For a given term t, t° is the interpretation of t in S
@ For a given formula ¢, S = ¢ means that ° is true

t?, if Sk ¢
t5, otherwise.

lte(p, t,)° = {

{to e 015 = {£797% acu” Su{x— a} = ¢}
Si(n)$ =) mia)

act?

Integer multiplication:

n*md:efEO({<m,x>|O§x<n}):i7ro(<m,x>):Zm ?

Semantics

Tables are bags (multisets)!

A bag b with elements {a;}i<, each having multiplicity m; > 0 in b for
i < n, is represented as a set of pairs {(a;, m;) }i<n, thus having the
sort S(T (e, Z)) for some basic sort o (domain sort of b).

Let M(c) be the type S(T (o, Z™")) with the constraint:

VXM yxT Yy (x e XAy € XAx.0=y.0)= x.1=y.1).

Semantics

Tables are bags (multisets)!

A bag b with elements {a;}i<, each having multiplicity m; > 0 in b for
i < n, is represented as a set of pairs {(a;, m;) }i<n, thus having the
sort S(T (e, Z)) for some basic sort o (domain sort of b).

Let M(c) be the type S(T (o, Z™")) with the constraint:

VXM yxT Yy (x e XAy € XAx.0=y.0)= x.1=y.1).

AsBag(Y™?) = {(y,1)|y € Y}
AsSet(X)) {y.0|yex}
SP(XM(T(o0,00-))) L 53 (£(x 1 % x.0.7, x.0) | x € X})

26

Bags

exf]=x< 4
q[XM(TEZIN] = {(x.0.0,2P({y | y € X A x.0.0 = y.0.0 A ©[y.0.2]}))
| x € X A ¢[x.0.2]}

= {((0,2,1),2),((1,2,8),1),((1,2,4),1)}

ql] = {(x.0.0,X°({y |y € tAx.0.0=y.0.0A[y.02]}))
| x € t A p[x.0.2]}
= {(0,Z({y |y €tAn0=y.00Aply.02]})),
(1,5°({y |y € t A1 =y.00 A ply.02]}))}
= {0, X acq(0,2,1),23 (@) x m1(mo(a))),
(1
o,

Zae{ ((1,2,3),1)} m1(a) * m1(mo(a))) }

4.(1.2)} -

10/26

—

From SQL to 7>

Q:SQL — 7=

Strings

@ All strings have a maximum length k; an encoding of a k-string is
as a k-tuple of integers, each character a is encoded as an
integer c(a). For a string ay - - - @),/ < k the encoding is
(c(ap),...,c(a),0,...,0).

@ For a collection D of strings, encode as | D|-enums.

Nullable values

Given a basic sort o, let 7o be the sort T (o, B) with the constraint
7?0 def

Vx’? (x.1 = false = x.0 = Default”) and null’” = Defaulf"(":B).
Operations that are defined for ¢ are lifted to 7o

For example, for a numeric sort o,

X" +y" L jte(x.A A y.A, (x.0 + y.0, true), null’®).

11/26

From SQL to 7>

Select clauses

Q(SELECT 1 FROM t) < {((x.0.h,...,x.0.5), M(x)) | x € Q(t

where M(x) = So({(y.1,y) | y € Q(t) A A\ y.0.5 = x.0.})

i=0

Q(SELECT DISTINCT 1 FROM t)=
AsBag(AsSet(Q(SELECT 1 FROM t)))

AsSet(Q(SELECT 1 FROM t)) =

{<y./0, 600

'¥-h) | y € AsSet(Q(t))}

12/26

From SQL to 7>

Join clauses

Q(tl INNER JOIN t2 ON c) =¥

{<X1.0XX2.0,X1.1*X2.1> | X| € Q(tl)/\Xg € Q(t2)/\Q(C)[X1.0,X2.0]}

XXy def <7T0(X), ey 7Tm_1(X),7T0(Y)7 T ,7Tn_1(}/)>

AsSet(Q(t1 INNER JOIN t2 ON c)) =
{yvixye | y1 € AsSet(Q(t1))Ayz € AsSet(Q(t2))AQ(c)[y1, yol}

v

13/26

From SQL to 7>

Grouping and aggregates

t = SELECT a, SUM(b) AS d FROM tl WHERE cl

Q(t GROUP BY a HAVING c2)= AsBag({z | z € GAQ(c2)[z]}

where G = {(x.0.0,2Y({y | y € Q(t)Ay.0.0 = x.0.0})) | x € Q(t)}
S def Eb
Count = ¥,
Min(X5(?)) & TheElementOf({y | y € XA{z | z € XAz < y} = 0}

14/26

From SQL to 7>

Q(ql UNION q2) % AsBag(AsSet(Q(ql))U AsSet(Q(q2))).

15/26

From SQL to 7>

Simplifications

AsSet(AsBag(X5(9))) = X
P (AsBag(X%(?))) Zi(X)
AsSet({t | <P}M(U) = {t0]¢}
mi({to, ..y tiy...)) = &

16/26

Model Generation with SMT

Model Generation in 7g’

Given a quantifier free formula ¢[X] in 7>, and a query g, decide if
1 = »[Q(q)] is satisfiable, and if ¢ is satisfiable, generate a model

of .

Two approaches to deal with comprehensions and summations in Z3

@ Eager expansion
@ Provide finite bounds for tables and unwind

@ Lazy expansion
e Add expansion rules as axioms

17/26

Expansion of terms

@ Given a query g[X]

@ Create a symbolic table txy = {{(xy, my), ..., (xk, mk)}
(k and m; are fixed, x; are variables)

© Expand q[ix] to ¢ = Exp(q[tx])
© Generate a model for ¢ (if @ is sat.)
@ Increase k and m;, repeat 1..4.

18/26

Eager expansion

Set describer

Consider a formula 1)[X] as an instance of the model generation
problem, where every X in X is a bag variable.

S(o)

@ The constant Empty is a set describer.

o If £5(9) is a set describer then so is the term Set(¢®, u?, t).
Given a state S for Set(y, u, t), the interpretation in S'is,

Set(yp, u, t)° = Ite(p, {u},0)°UtS, EmptyS = 0.
X is fixed in X and ty is the set describer:
Set(true, (x1, my), ... Set(true, (xx, mg), Empty) . ..)

where k and all the m;’s are some positive integer constants and each
X; is a variable.

19/26

Expansion rules

Expansion rule for comprehensions

Exp({t [x x € rA@}) = ExpC(t, x, Exp(r), ¢)
ExpC(t, x, Empty,) © Empty
ExpC({[x], x, Set(7, u, rest), ¢[x]) = Set(y A Exp(e[ul), Exp(t]u])

ExpC(t, x, rest,))

20/26

Expansion rules
Expansion rule for comprehensions

Exp({t [x x € rA}) = ExpC(t, x,Exp(r),¢)
ExpC(t, x, Empty,) © Empty
ExpC({[x], x, Set(7, u, rest), ¢[x]) = Set(y A Exp(e[ul), Exp(t]u])

ExpC(t, x, rest,))

Expansion rule for X;

Exp(Zi(t) < Sum;(Exp(t), Empty)
Sum;(Empty, s) E)
Sum;(Set(v, u, rest),s) = tte(y Au ¢ s, mi(u),0) +

+ Sum(rest, Set(~, u, s)) %

20/26

Lazy expansion

In addition to a quantifier free formula), universally quantified axioms
are provided in the form:

(Vx(«), pat,), FV(a)= FV(pat,) =X

If 1) contains a subterm t and there exists a substitution 6 such that
t = pat, 0, i.e., t matches the pattern pat,,, then v is replaced during
proof search by (a reduction of) ¥ A af.

21/26

Lazy sum

ay = Vs(Sum;(Empty,s) = 0)
pat,, = Sum;(Empty,s)
ap = Vburs(Sum,(Set(b,u,r),s) =
lte(bAu ¢ s,mi(u),0) + Sum;(r, lte(b, {u},0) Us
pat,, = Sum;(Set(b,u,r),s)

~

x < Sum,(Set(true, (1,y), Set(true, (1, z), Empty)), D)
22 x <y + Sumy(Set(true, (1, z), Empty), {(1,y)})
=2 x<y+lte(z#y,z,0)+Sumy(Empty, {(1,y),(1,2)})
L x<y+lte(z#y,z,0) &

22/26

Experimen

gl: SELECT C.CustomerID, O.OrderID g2: SELECT C.CustomerID,
FROM Orders AS O Count (0.0rderID)

JOIN Customers AS C ON FROM Orders AS O
O.CustomerID = C.CustomerID JOIN Customers AS C ON

WHERE O.CustomerID > 2 AND O.CustomerID = C.CustomerID
0.0rderID < 15 GROUP BY C.CustomerID HAVING

Count (0.0rderID) > 1

g3: DECLARE @value AS INT;

SELECT C.CustomerID, SUM(OP.OrderProductQuantity * P.ProductPrice)
FROM OrderProducts AS OP

JOIN Orders AS O ON OP.OrderID = 0.0OrderID

JOIN Products AS P ON OP.ProductID = P.ProductID

JOIN Customers AS C ON O.CustomerID = C.CustomerID

WHERE @value > 1

GROUP BY C.CustomerID

HAVING SUM(OP.OrderProductQuantity % P.ProductPrice) > 100 + @value

[query] cond [k] check lexp t,3

[query T cond | k [check [fexp | tz3 | 7 Unsat 03 001
1 sat .03 .001 1 |res| =5 2 unsat .05 .01

s 40 |2 sat 05 | 005 d 3 | unsat 3 16

3 sat .3 .02 4 unsat 1.4 10

1 4 sat 1.4 13 5 sat 8.4 1.6
d i sat 03 1001 1| unsat 03 001
res = 0 2 sat .05 006 q2 res # () 2 sat 7 006

- 3 sat 3 12 3 sat 26 .03

4 sat 1.4 2 1 sat .34 .001

- s 5T 30 03

23/26

Implementation

@ Qex written in C#, uses T-SQL syntax for input queries

@ Integration with Pex

Pex Exploration Results - stopped - 1 test, 1 run

=)

1/1 exploration:

SelectGoodCustomersTest.SelectGoodCustomers() - 8

[

Customers OrderProducts Orders

&1 w1 {1 1,63}

4 I,

il 200} {1118 7

Products @wvalue Result

{{20, 1087}

3

\5' Y | Views
J =l Details:

(L2 Error List |2 Pex Exploration Results |[5] Output [Find Symbol Results

:ﬂpendmg Checkins

INSERT INTO Products &

B GoTo

ETest Results |

Send To ~

@ Project homepage http.//research.microsoft.com/qex

@ Check Qex demo at http://channel9.msdn.com/posts/Peli/Qex-

Symbolic-Query-Exploration/

£x J

24/26

Lazy expansion (done?)

Improved Database constraint support
Queries with side-effects

Improved datatype support

Query optimizations

25/26

Lazy expansion (done?)

Improved Database constraint support
Queries with side-effects

Improved datatype support

Query optimizations

Thanks! Questions?

25/26

	Overview
	Background T
	Model Generation with SMT
	Experiments
	Summary

