Propositional proof complexity

Mini-tutorial

Edward A. Hirsch
http://logic.pdmi.ras.ru/"hirsch
Steklov Institute of Mathematics at St.Petersburg

Estonian Theory Days — October 3, 2009

1/17

http://logic.pdmi.ras.ru/~hirsch

Propositional proof complexity

Mini-tutorial

Edward A. Hirsch
http://logic.pdmi.ras.ru/"hirsch
Steklov Institute of Mathematics at St.Petersburg

Estonian Theory Days — October 3, 2009

» Proof systems — definitions and examples.
> A lower bound.

» Connection to optimal algorithms.

» Connection to disjoint NP pairs.

1/17

http://logic.pdmi.ras.ru/~hirsch

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
n: {0,1}* — L.

2/17

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
n: {0,1}* — L.

We consider proof systems for the language of Boolean tautologies TAUT
(propositional proof systems).

Definition (almost equivalent)

A propositional proof system is a polynomial-time verification procedure V

such that
F is a tautology <— 3Jr V(F,m) = “0K”.

2/17

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
n: {0,1}* — L.

We consider proof systems for the language of Boolean tautologies TAUT
(propositional proof systems).

Definition (almost equivalent)

A propositional proof system is a polynomial-time verification procedure V
such that
F is a tautology <— 3Jr V(F,m) = “0K”.

Every algorithm for TAUT yields a proof system, but not vice versa.

2/17

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
n: {0,1}* — L.

We consider proof systems for the language of Boolean tautologies TAUT
(propositional proof systems).

Definition (almost equivalent)

A propositional proof system is a polynomial-time verification procedure V
such that
F is a tautology <— 3Jr V(F,m) = “0K”.

Every algorithm for TAUT yields a proof system, but not vice versa.

Fact

NP = co-NP iff there is a proof system that has a polynomial-size proof
for every tautology. 21

Example: Resolution

» Consider the negation of input formula F; it has no satisfying
assignments iff F is a tautology.

» W.lo.g. itisin CNF, e.g.,
(avbVv-=c)A(aVec)A(aV—b)A(—a).
» Resolution is the inference of logical consequences:

(xVa) (=x Vv pB)
aVp.

» We finish when we infer the empty disjunction (i.e., contradiction).

v

Any such inference is a valid resolution proof (can be very long!).

3/17

Example: Nullstellensatz

vV v.v. v Y

Boolean variable — 0/1 variable.

—x — (1 — x).

clause aV bV cV ...+ polynomial (1 —a)(1—b)(1—c)....
Add polynomials x? — x for every variable x.

Boolean formula is unsatisfiable iff
all these polynomials p; have no common roots.

Hilbert's Nullstellensatz: hence, there are polynomials g; such that
> i pigi =1 (constant polynomial).
This set {g;}; is a proof!

4/17

Example: Cutting Plane

vV vVv.v. v Y

Boolean variable — 0/1 variable.

—x — (1 —x).

clause aVbVcV...— inequality a+ b+c > 1.
Add trivial inequalities x > 0 and 1 > x.

Boolean formula is unsatisfiable iff
the system of inequalities has integer solutions.

Infer logical consequences:

A>0 B>0 kA > ¢
kKA+(B>0 ' A>[(/k]

for positive integers k, £.

We finish when we infer —1 > 0 (i.e., contradiction).

5/17

Pigeon-hole principle

» Variable xj; — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).
> \/xU

J

— i-th pigeon is sitting somewhere,
> XGj V Xl

— two pigeons cannot sit together.

6/17

Pigeon-hole principle

» Variable xj; — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).
> \/xU
z i-th pigeon is sitting somewhere,
> X VX
— two pigeons cannot sit together.
» No polynomial-size Resolution proofs [Haken, 80s].

6/17

Pigeon-hole principle

Variable xjj — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).
VX

j

— i-th pigeon is sitting somewhere,

> XGj V Xl

— two pigeons cannot sit together.

No polynomial-size Resolution proofs [Haken, 80s].
Polynomial-size Cutting Plane proof:

vy

vy

6/17

Pigeon-hole principle

» Variable xj; — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).

> ZX,'J‘Z]. (*)

— i-th pigeon is sitting somewhere,
> Xij + Xjrj <1

— two pigeons cannot sit together.
» No polynomial-size Resolution proofs [Haken, 80s].
» Polynomial-size Cutting Plane proof:

6/17

Pigeon-hole principle

» Variable xj; — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).

> ZX,'J‘Z]. (*)

— i-th pigeon is sitting somewhere,
> Xij + Xjrj <1

— two pigeons cannot sit together.
» No polynomial-size Resolution proofs [Haken, 80s].
p Polynomial-size Cutting Plane proof:

Xj+xij <1 xpj+xpi <1 xpj+x; <1
2(X,'j + Xjrj + X,wj) <3
Xij + Xjrj + Xjrj < 1

S <1
i

6/17

Pigeon-hole principle

» Variable xj; — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).

> ZX,'J‘Z]. (*)

— i-th pigeon is sitting somewhere,
> Xij + Xjrj <1

— two pigeons cannot sit together.
» No polynomial-size Resolution proofs [Haken, 80s].
p Polynomial-size Cutting Plane proof:

Xj+xij <1 xpj+xpi <1 xpj+x; <1
2(X,'j + Xjrj + X,wj) <3
Xij + Xjrj + Xjrj < 1

S <1
i

» In total > x; < m.
ij

6/17

Pigeon-hole principle

» Variable xj; — i-th pigeon is in j-th hole (1 </ <n+1,1<j<n).
> x> 1 (%)
J

— i-th pigeon is sitting somewhere,
Xij + Xirj <1
— two pigeons cannot sit together.
No polynomial-size Resolution proofs [Haken, 80s].
Polynomial-size Cutting Plane proof:
Xj+xij <1 xpj+xpi <1 xpj+x; <1
2(X,'j + Xjrj + X,wj) <3
Xij + Xjrj + Xjrj < 1

S <1
i

v

wYy

v

In total > x;j < m.
ij
But () gives > x; > m+1.
ji

v

6/17

Simulation and Optimal system

A proof system S simulates a proof system W (written S<W) iff S-proofs
are at most as long as W-proofs (up to a polynomial p):

VF € TAUT |shortest S-proof of F| < p(|shortest W-proof of FJ).

7/17

Simulation and Optimal system

A proof system S simulates a proof system W (written S<W) iff S-proofs
are at most as long as W-proofs (up to a polynomial p):

VF € TAUT |shortest S-proof of F| < p(|shortest W-proof of FJ).

S strictly simulates W (written S < W) if in addition W £ §S.
For example, Cutting Plane strictly simulates Resolution.

7/17

Simulation and Optimal system

A proof system S simulates a proof system W (written S<W) iff S-proofs
are at most as long as W-proofs (up to a polynomial p):

VF € TAUT |shortest S-proof of F| < p(|shortest W-proof of FJ).

S strictly simulates W (written S < W) if in addition W £ §S.
For example, Cutting Plane strictly simulates Resolution.

Definition

p-simulation <, is a constructive version:

For any s-size W-proof one can compute a p(s)-size S-proof in polynomial
time.

7/17

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written S<W) iff S-proofs
are at most as long as W-proofs (up to a polynomial p):

VF € TAUT |shortest S-proof of F| < p(|shortest W-proof of FJ).

S strictly simulates W (written S < W) if in addition W £ §S.
For example, Cutting Plane strictly simulates Resolution.

Definition
p-simulation <, is a constructive version:

For any s-size W-proof one can compute a p(s)-size S-proof in polynomial
time.

Definition
(p-)optimal proof system is the smallest element in this lattice.

7/17

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written S<W) iff S-proofs
are at most as long as W-proofs (up to a polynomial p):

VF € TAUT |shortest S-proof of F| < p(|shortest W-proof of FJ).

S strictly simulates W (written S < W) if in addition W £ §S.
For example, Cutting Plane strictly simulates Resolution.

Definition
p-simulation <, is a constructive version:

For any s-size W-proof one can compute a p(s)-size S-proof in polynomial
time.

Definition
(p-)optimal proof system is the smallest element in this lattice.
Does it exist?.. 2/17

A lower bound for Resolution

Clique is a monotone function: if a graph does not have a clique, its
subgraphs don’t. Thus it is computable by monotone circuits (no
negations).

Theorem (Razborov, 80s; Pudlak, 90s)

Polynomial-size monotone Boolean (and even real) circuits cannot compute
Clique. They cannot even distinguish m-cliques from complete

(m — 1)-partite graphs, where m = |(n/log n)?/3/8], n is the number of
vertices.

Our strategy: short proof — small monotone Boolean circuit.

8/17

Clique-coloring formula

Claims that there is an m-clique in an (m—1)-colorable graph with n vertices.
Variables:
> gy maps number k to vertex i,
> e stays for the edge {i,},
> cjy colors vertex i by color /.
Clauses:
> Visy qui
— there is a mapping of {1,..., m} to the graph,
> Gk V Gk
— it is injective,
> Gk V G Ve
— its image is indeed a clique,
- Vz 1 Cie
— each vertex is colored,
> —eji V g V .
— the coloring is correct.

9/17

Monotone interpolation [Pudldk, 90s]

» For every fixed graph {ej}i;.
we have only g -clauses (clique) and c_-clauses (coloring).

» Either there is no clique or there is no coloring.
Deciding between the two alternatives distinguishes m-cliques from
(m — 1)-colorable graphs.

» The main thing to prove: A short proof of the initial formula gives a
small monotone circuit for this problem, which does not exist by
Razborov's theorem.

10/17

Optimal algorithms

A is an optimal algorithm for language L if for any other algorithm A’ there
is a polynomial p such that Vx € L

timea(x) < p(timea (x) + |x]).
Levin's optimal algorithm for SAT:

run “in parallel” all possible algorithms outputting satisfying assignments;
check the results and output as soon as a correct one found.

Remark
Levin's algorithm is not for TAUT.

11/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)
3 p-optimal proof system iff 3 an optimal algorithm for TAUT.

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)

3 p-optimal proof system iff 3 an optimal algorithm for TAUT.
—

» Optimal algorithm is polynomial-time on every polynomial-time
recognizable set of tautologies.

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)

3 p-optimal proof system iff 3 an optimal algorithm for TAUT.
—

» Optimal algorithm is polynomial-time on every polynomial-time
recognizable set of tautologies.

» For every proof system I1, one can write in polynomial time the
tautology Conp , meaning the system is correct for formulas of size n.

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)

3 p-optimal proof system iff 3 an optimal algorithm for TAUT.

<
» Optimal algorithm is polynomial-time on every polynomial-time
recognizable set of tautologies.
» For every proof system I1, one can write in polynomial time the
tautology Conp , meaning the system is correct for formulas of size n.
» Thus optimal algorithm is polynomial-time on Conp .

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)
3 p-optimal proof system iff 3 an optimal algorithm for TAUT.

<

» Optimal algorithm is polynomial-time on every polynomial-time
recognizable set of tautologies.

» For every proof system I1, one can write in polynomial time the
tautology Conp , meaning the system is correct for formulas of size n.

» Thus optimal algorithm is polynomial-time on Conp .

» Now an optimal proof of F of size n includes

» Description of proof system [1;

» Description of the execution of the optimal algorithm on Conp ,;
» A l-proof of F.

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)

3 p-optimal proof system iff 3 an optimal algorithm for TAUT.
—:

» Let 1 be a p-optimal proof system.

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)

3 p-optimal proof system iff 3 an optimal algorithm for TAUT.

—:
» Let 1 be a p-optimal proof system.
» Optimal algorithm runs in parallel
all algorithms A; trying to produce a l-proof of F.
» The “proof” is checked by 1. Say “yes” if it's valid.

12/17

Optimal algorithms vs Optimal proof systems

Theorem (Krajicek, Pudlak, 89)
3 p-optimal proof system iff 3 an optimal algorithm for TAUT.

"

» Let 1 be a p-optimal proof system.

» Optimal algorithm runs in parallel
all algorithms A; trying to produce a l-proof of F.

» The “proof” is checked by 1. Say “yes” if it's valid.

» Since I is p-optimal, for every algorithm A there is a polynomial-time
transformation f of its execution into a [1-proof. Thus A together with
f are listed in {A;};.

12/17

Heuristic optimal algorithm for TAUT

» Allow randomized algorithms (with bounded error).
» Allow small number! of false theorems (unbounded error there).

» Then an optimal algorithm does exist:

> Run all possible algorithms “in parallel”.

» First check each algorithm by generating random non-theorems and
making sure the algorithm does not lie quickly.

» Say “yes’ as soon as the first good algorithm says so.

» Unfortunately, the equivalence with optimal proof systems is unknown
to work.

! According to a samplable distribution on non-theorems.
13/17

Disjoint NP pairs

» Just a pair (A, B) of two disjoint sets A, B € NP.

» The problem is to separate A from B: given x, decide between the two
alternatives x € A vs x € B (if it is outside both, say anything).

» Reduction (A, B) — (C, D):
polynomial-time f such that f(A) C C, f(B) C D.

» Are there complete ones? Unknown.

14 /17

Where they come from

Example

Consider a bitwise cryptosystem.

A = {possible codes of 0},

B = {possible codes of 1}.

One hopes it's impossible to separate in polynomial time!

Example

Consider a proof system 1 for TAUT.

TAUT, = {(F,1%) | F € TAUT},

REFn = {(F,1") | F € TAUT, there is a MN-proof of F of size < t}.
Separation gives automatization!

15/17

Simulation vs Reduction

Simulation S < W yields reduction of the NP pair
(TAUT,,REFy) — (TAUT,, REF;).

16 /17

Simulation vs Reduction

Theorem

Simulation S < W yields reduction of the NP pair
(TAUT,,REFy) — (TAUT,, REF;).

Optimal proof system yields complete NP pair.

16 /17

Simulation vs Reduction

Theorem

Simulation S < W yields reduction of the NP pair
(TAUT,,REFy) — (TAUT,, REF;).

Optimal proof system yields complete NP pair.

» Consider (F,1%) € REF.
» One needs to transform (F,1") claiming t-size MN;-proof into (F,1%)
claiming s-size lM3-proof.

16 /17

Simulation vs Reduction

Theorem

Simulation S < W yields reduction of the NP pair
(TAUT,,REFy) — (TAUT,, REF;).

Optimal proof system yields complete NP pair.

» Consider (F,1%) € REF.

» One needs to transform (F,1") claiming t-size MN;-proof into (F,1%)
claiming s-size lM3-proof.

» We know that s polynomially depends on t.
Just plug in this polynomial p: (F,1t) — (F,1P(t)).

16 /17

Simulation vs Reduction

Theorem

Simulation S < W yields reduction of the NP pair
(TAUT,,REFy) — (TAUT,, REF;).

Optimal proof system yields complete NP pair.

» Consider (F,1%) € REF.

» One needs to transform (F,1") claiming t-size MN;-proof into (F,1%)
claiming s-size lM3-proof.

» We know that s polynomially depends on t.
Just plug in this polynomial p: (F,1t) — (F,1P(t)).

» For (F,1%) € TAUT,, the change in 1" does not mater.

16 /17

Open questions

1. Lower bounds for proof systems.
» Frege-style systems (work with formulas), Gentzen system.
» Semialgebraic systems (quadratic inequalities; disjunctions of linear
inequalities).
2. Upper bounds for proof systems.
» We can solve 3 — SAT in time O(1.3");
what's about proof size — it could be better?
3. Optimal proof system.

» Show a collapse if there is one.
» Construct a heuristic optimal proof system.

> Vice versa, show that equivalence to heuristic optimal algorithms will
not work.

17 /17

