
Propositional proof complexity
Mini-tutorial

Edward A. Hirsch

http://logic.pdmi.ras.ru/~hirsch

Steklov Institute of Mathematics at St.Petersburg

Estonian Theory Days � October 3, 2009

1 / 17

http://logic.pdmi.ras.ru/~hirsch

Propositional proof complexity
Mini-tutorial

Edward A. Hirsch

http://logic.pdmi.ras.ru/~hirsch

Steklov Institute of Mathematics at St.Petersburg

Estonian Theory Days � October 3, 2009

I Proof systems � de�nitions and examples.

I A lower bound.

I Connection to optimal algorithms.

I Connection to disjoint NP pairs.

1 / 17

http://logic.pdmi.ras.ru/~hirsch

Proof systems

De�nition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
Π: {0, 1}∗ → L.

2 / 17

Proof systems

De�nition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
Π: {0, 1}∗ → L.

We consider proof systems for the language of Boolean tautologies TAUT
(propositional proof systems).

De�nition (almost equivalent)

A propositional proof system is a polynomial-time veri�cation procedure V

such that
F is a tautology ⇐⇒ ∃π V (F , π) = �OK�.

2 / 17

Proof systems

De�nition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
Π: {0, 1}∗ → L.

We consider proof systems for the language of Boolean tautologies TAUT
(propositional proof systems).

De�nition (almost equivalent)

A propositional proof system is a polynomial-time veri�cation procedure V

such that
F is a tautology ⇐⇒ ∃π V (F , π) = �OK�.

Every algorithm for TAUT yields a proof system, but not vice versa.

2 / 17

Proof systems

De�nition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping
Π: {0, 1}∗ → L.

We consider proof systems for the language of Boolean tautologies TAUT
(propositional proof systems).

De�nition (almost equivalent)

A propositional proof system is a polynomial-time veri�cation procedure V

such that
F is a tautology ⇐⇒ ∃π V (F , π) = �OK�.

Every algorithm for TAUT yields a proof system, but not vice versa.

Fact

NP = co -NP i� there is a proof system that has a polynomial-size proof

for every tautology.
2 / 17

Example: Resolution

I Consider the negation of input formula F ; it has no satisfying
assignments i� F is a tautology.

I W.l.o.g. it is in CNF, e.g.,

(a ∨ b ∨ ¬c) ∧ (a ∨ c) ∧ (a ∨ ¬b) ∧ (¬a).

I Resolution is the inference of logical consequences:

(x ∨ α) (¬x ∨ β)

α ∨ β.

I We �nish when we infer the empty disjunction (i.e., contradiction).

I Any such inference is a valid resolution proof (can be very long!).

3 / 17

Example: Nullstellensatz

I Boolean variable 7→ 0/1 variable.

I ¬x 7→ (1− x).

I clause a ∨ b ∨ c ∨ . . . 7→ polynomial (1− a)(1− b)(1− c)

I Add polynomials x2 − x for every variable x .

I Boolean formula is unsatis�able i�
all these polynomials pi have no common roots.

I Hilbert's Nullstellensatz: hence, there are polynomials gi such that∑
i pigi = 1 (constant polynomial).

I This set {gi}i is a proof!

4 / 17

Example: Cutting Plane

I Boolean variable 7→ 0/1 variable.

I ¬x 7→ (1− x).

I clause a ∨ b ∨ c ∨ . . . 7→ inequality a + b + c ≥ 1.

I Add trivial inequalities x ≥ 0 and 1 ≥ x .

I Boolean formula is unsatis�able i�
the system of inequalities has integer solutions.

I Infer logical consequences:

A ≥ 0 B ≥ 0

kA + `B ≥ 0
;

kA ≥ `
A ≥ d`/ke

for positive integers k , `.

I We �nish when we infer −1 ≥ 0 (i.e., contradiction).

5 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∨
j

xij

� i-th pigeon is sitting somewhere,
I ¬xij ∨ ¬xi ′j

� two pigeons cannot sit together.

I No polynomial-size Resolution proofs [Haken, 80s].
I Polynomial-size Cutting Plane proof:I

xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1
2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∨
j

xij

� i-th pigeon is sitting somewhere,
I ¬xij ∨ ¬xi ′j

� two pigeons cannot sit together.
I No polynomial-size Resolution proofs [Haken, 80s].

I Polynomial-size Cutting Plane proof:I
xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1

2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∨
j

xij

� i-th pigeon is sitting somewhere,
I ¬xij ∨ ¬xi ′j

� two pigeons cannot sit together.
I No polynomial-size Resolution proofs [Haken, 80s].
I Polynomial-size Cutting Plane proof:

I
xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1

2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∑
j

xij ≥ 1 (∗)

� i-th pigeon is sitting somewhere,
I xij + xi ′j ≤ 1

� two pigeons cannot sit together.
I No polynomial-size Resolution proofs [Haken, 80s].
I Polynomial-size Cutting Plane proof:

I
xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1

2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∑
j

xij ≥ 1 (∗)

� i-th pigeon is sitting somewhere,
I xij + xi ′j ≤ 1

� two pigeons cannot sit together.
I No polynomial-size Resolution proofs [Haken, 80s].
I Polynomial-size Cutting Plane proof:I

xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1
2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∑
j

xij ≥ 1 (∗)

� i-th pigeon is sitting somewhere,
I xij + xi ′j ≤ 1

� two pigeons cannot sit together.
I No polynomial-size Resolution proofs [Haken, 80s].
I Polynomial-size Cutting Plane proof:I

xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1
2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Pigeon-hole principle

I Variable xij � i-th pigeon is in j-th hole (1 ≤ i ≤ n + 1, 1 ≤ j ≤ n).
I

∑
j

xij ≥ 1 (∗)

� i-th pigeon is sitting somewhere,
I xij + xi ′j ≤ 1

� two pigeons cannot sit together.
I No polynomial-size Resolution proofs [Haken, 80s].
I Polynomial-size Cutting Plane proof:I

xij + xi ′j ≤ 1 xi ′j + xi ′′j ≤ 1 xi ′′j + xij ≤ 1
2(xij + xi ′j + xi ′′j) ≤ 3
xij + xi ′j + xi ′′j ≤ 1

. . .∑
i

xij ≤ 1

I In total
∑
ij

xij ≤ m.

I But (∗) gives
∑
ji

xij ≥ m + 1.

6 / 17

Simulation and Optimal system

De�nition

A proof system S simulates a proof system W (written S≤W) i� S-proofs
are at most as long as W -proofs (up to a polynomial p):

∀F ∈ TAUT |shortest S-proof of F | ≤ p(|shortest W -proof of F |).

7 / 17

Simulation and Optimal system

De�nition

A proof system S simulates a proof system W (written S≤W) i� S-proofs
are at most as long as W -proofs (up to a polynomial p):

∀F ∈ TAUT |shortest S-proof of F | ≤ p(|shortest W -proof of F |).

S strictly simulates W (written S <W) if in addition W 6≤ S .
For example, Cutting Plane strictly simulates Resolution.

7 / 17

Simulation and Optimal system

De�nition

A proof system S simulates a proof system W (written S≤W) i� S-proofs
are at most as long as W -proofs (up to a polynomial p):

∀F ∈ TAUT |shortest S-proof of F | ≤ p(|shortest W -proof of F |).

S strictly simulates W (written S <W) if in addition W 6≤ S .
For example, Cutting Plane strictly simulates Resolution.

De�nition

p-simulation ≤p is a constructive version:
For any s-size W -proof one can compute a p(s)-size S-proof in polynomial
time.

7 / 17

Simulation and Optimal system

De�nition

A proof system S simulates a proof system W (written S≤W) i� S-proofs
are at most as long as W -proofs (up to a polynomial p):

∀F ∈ TAUT |shortest S-proof of F | ≤ p(|shortest W -proof of F |).

S strictly simulates W (written S <W) if in addition W 6≤ S .
For example, Cutting Plane strictly simulates Resolution.

De�nition

p-simulation ≤p is a constructive version:
For any s-size W -proof one can compute a p(s)-size S-proof in polynomial
time.

De�nition

(p-)optimal proof system is the smallest element in this lattice.

7 / 17

Simulation and Optimal system

De�nition

A proof system S simulates a proof system W (written S≤W) i� S-proofs
are at most as long as W -proofs (up to a polynomial p):

∀F ∈ TAUT |shortest S-proof of F | ≤ p(|shortest W -proof of F |).

S strictly simulates W (written S <W) if in addition W 6≤ S .
For example, Cutting Plane strictly simulates Resolution.

De�nition

p-simulation ≤p is a constructive version:
For any s-size W -proof one can compute a p(s)-size S-proof in polynomial
time.

De�nition

(p-)optimal proof system is the smallest element in this lattice.

Does it exist?.. 7 / 17

A lower bound for Resolution

Clique is a monotone function: if a graph does not have a clique, its
subgraphs don't. Thus it is computable by monotone circuits (no
negations).

Theorem (Razborov, 80s; Pudlak, 90s)

Polynomial-size monotone Boolean (and even real) circuits cannot compute

Clique. They cannot even distinguish m-cliques from complete

(m − 1)-partite graphs, where m = b(n/ log n)2/3/8c, n is the number of

vertices.

Our strategy: short proof 7→ small monotone Boolean circuit.

8 / 17

Clique-coloring formula

Claims that there is an m-clique in an (m−1)-colorable graph with n vertices.
Variables:

I qki maps number k to vertex i ,
I eij stays for the edge {i , j},
I ci` colors vertex i by color `.

Clauses:
I

∨n
i=1 qki

� there is a mapping of {1, . . . ,m} to the graph,
I ¬qki ∨ ¬qk ′i

� it is injective,
I ¬qki ∨ ¬qk ′,j ∨ eij

� its image is indeed a clique,
I

∨m−1
`=1 ci`

� each vertex is colored,
I ¬eij ∨ ¬ci` ∨ ¬cj`.

� the coloring is correct.
9 / 17

Monotone interpolation [Pudl�ak, 90s]

I For every �xed graph {eij}i ,j ,
we have only q...-clauses (clique) and c...-clauses (coloring).

I Either there is no clique or there is no coloring.
Deciding between the two alternatives distinguishes m-cliques from
(m − 1)-colorable graphs.

I The main thing to prove: A short proof of the initial formula gives a
small monotone circuit for this problem, which does not exist by
Razborov's theorem.

10 / 17

Optimal algorithms

De�nition

A is an optimal algorithm for language L if for any other algorithm A′ there
is a polynomial p such that ∀x ∈ L

timeA(x) ≤ p(timeA′(x) + |x |).

Levin's optimal algorithm for SAT:
run �in parallel� all possible algorithms outputting satisfying assignments;
check the results and output as soon as a correct one found.

Remark

Levin's algorithm is not for TAUT.

11 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

⇐=:
I Optimal algorithm is polynomial-time on every polynomial-time

recognizable set of tautologies.

I For every proof system Π, one can write in polynomial time the
tautology ConΠ,n meaning the system is correct for formulas of size n.

I Thus optimal algorithm is polynomial-time on ConΠ,n.
I Now an optimal proof of F of size n includes

I Description of proof system Π;
I Description of the execution of the optimal algorithm on ConΠ,n;
I A Π-proof of F .

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

⇐=:
I Optimal algorithm is polynomial-time on every polynomial-time

recognizable set of tautologies.
I For every proof system Π, one can write in polynomial time the

tautology ConΠ,n meaning the system is correct for formulas of size n.

I Thus optimal algorithm is polynomial-time on ConΠ,n.
I Now an optimal proof of F of size n includes

I Description of proof system Π;
I Description of the execution of the optimal algorithm on ConΠ,n;
I A Π-proof of F .

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

⇐=:
I Optimal algorithm is polynomial-time on every polynomial-time

recognizable set of tautologies.
I For every proof system Π, one can write in polynomial time the

tautology ConΠ,n meaning the system is correct for formulas of size n.
I Thus optimal algorithm is polynomial-time on ConΠ,n.

I Now an optimal proof of F of size n includes
I Description of proof system Π;
I Description of the execution of the optimal algorithm on ConΠ,n;
I A Π-proof of F .

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

⇐=:
I Optimal algorithm is polynomial-time on every polynomial-time

recognizable set of tautologies.
I For every proof system Π, one can write in polynomial time the

tautology ConΠ,n meaning the system is correct for formulas of size n.
I Thus optimal algorithm is polynomial-time on ConΠ,n.
I Now an optimal proof of F of size n includes

I Description of proof system Π;
I Description of the execution of the optimal algorithm on ConΠ,n;
I A Π-proof of F .

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

=⇒:
I Let Π be a p-optimal proof system.

I Optimal algorithm runs in parallel
all algorithms Ai trying to produce a Π-proof of F .

I The �proof� is checked by Π. Say �yes� if it's valid.
I Since Π is p-optimal, for every algorithm A there is a polynomial-time

transformation f of its execution into a Π-proof. Thus A together with
f are listed in {Ai}i .

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

=⇒:
I Let Π be a p-optimal proof system.
I Optimal algorithm runs in parallel

all algorithms Ai trying to produce a Π-proof of F .
I The �proof� is checked by Π. Say �yes� if it's valid.

I Since Π is p-optimal, for every algorithm A there is a polynomial-time
transformation f of its execution into a Π-proof. Thus A together with
f are listed in {Ai}i .

12 / 17

Optimal algorithms vs Optimal proof systems

Theorem (Kraj���cek, Pudl�ak, 89)

∃ p-optimal proof system i� ∃ an optimal algorithm for TAUT.

=⇒:
I Let Π be a p-optimal proof system.
I Optimal algorithm runs in parallel

all algorithms Ai trying to produce a Π-proof of F .
I The �proof� is checked by Π. Say �yes� if it's valid.
I Since Π is p-optimal, for every algorithm A there is a polynomial-time

transformation f of its execution into a Π-proof. Thus A together with
f are listed in {Ai}i .

12 / 17

Heuristic optimal algorithm for TAUT

I Allow randomized algorithms (with bounded error).

I Allow small number1 of false theorems (unbounded error there).

I Then an optimal algorithm does exist:
I Run all possible algorithms �in parallel�.
I First check each algorithm by generating random non-theorems and

making sure the algorithm does not lie quickly.
I Say �yes� as soon as the �rst good algorithm says so.

I Unfortunately, the equivalence with optimal proof systems is unknown
to work.

1According to a samplable distribution on non-theorems.
13 / 17

Disjoint NP pairs

I Just a pair (A,B) of two disjoint sets A,B ∈ NP.
I The problem is to separate A from B : given x , decide between the two

alternatives x ∈ A vs x ∈ B (if it is outside both, say anything).

I Reduction (A,B)→ (C ,D):
polynomial-time f such that f (A) ⊆ C , f (B) ⊆ D.

I Are there complete ones? Unknown.

14 / 17

Where they come from

Example

Consider a bitwise cryptosystem.
A = {possible codes of 0},
B = {possible codes of 1}.
One hopes it's impossible to separate in polynomial time!

Example

Consider a proof system Π for TAUT.
TAUT∗ = {(F , 1t) | F ∈ TAUT},
REFΠ = {(F , 1t) | F ∈ TAUT, there is a Π-proof of F of size ≤ t}.
Separation gives automatization!

15 / 17

Simulation vs Reduction

Theorem

Simulation S ≤W yields reduction of the NP pair

(TAUT∗,REFW)→ (TAUT∗,REFS).

I Consider (F , 1t) ∈ REFW .
I One needs to transform (F , 1t) claiming t-size Π1-proof into (F , 1s)

claiming s-size Π2-proof.
I We know that s polynomially depends on t.

Just plug in this polynomial p: (F , 1t)→ (F , 1p(t)).
I For (F , 1t) ∈ TAUT∗, the change in 1... does not mater.

16 / 17

Simulation vs Reduction

Theorem

Simulation S ≤W yields reduction of the NP pair

(TAUT∗,REFW)→ (TAUT∗,REFS).

Optimal proof system yields complete NP pair.

I Consider (F , 1t) ∈ REFW .
I One needs to transform (F , 1t) claiming t-size Π1-proof into (F , 1s)

claiming s-size Π2-proof.
I We know that s polynomially depends on t.

Just plug in this polynomial p: (F , 1t)→ (F , 1p(t)).
I For (F , 1t) ∈ TAUT∗, the change in 1... does not mater.

16 / 17

Simulation vs Reduction

Theorem

Simulation S ≤W yields reduction of the NP pair

(TAUT∗,REFW)→ (TAUT∗,REFS).

Optimal proof system yields complete NP pair.

I Consider (F , 1t) ∈ REFW .
I One needs to transform (F , 1t) claiming t-size Π1-proof into (F , 1s)

claiming s-size Π2-proof.

I We know that s polynomially depends on t.
Just plug in this polynomial p: (F , 1t)→ (F , 1p(t)).

I For (F , 1t) ∈ TAUT∗, the change in 1... does not mater.

16 / 17

Simulation vs Reduction

Theorem

Simulation S ≤W yields reduction of the NP pair

(TAUT∗,REFW)→ (TAUT∗,REFS).

Optimal proof system yields complete NP pair.

I Consider (F , 1t) ∈ REFW .
I One needs to transform (F , 1t) claiming t-size Π1-proof into (F , 1s)

claiming s-size Π2-proof.
I We know that s polynomially depends on t.

Just plug in this polynomial p: (F , 1t)→ (F , 1p(t)).

I For (F , 1t) ∈ TAUT∗, the change in 1... does not mater.

16 / 17

Simulation vs Reduction

Theorem

Simulation S ≤W yields reduction of the NP pair

(TAUT∗,REFW)→ (TAUT∗,REFS).

Optimal proof system yields complete NP pair.

I Consider (F , 1t) ∈ REFW .
I One needs to transform (F , 1t) claiming t-size Π1-proof into (F , 1s)

claiming s-size Π2-proof.
I We know that s polynomially depends on t.

Just plug in this polynomial p: (F , 1t)→ (F , 1p(t)).
I For (F , 1t) ∈ TAUT∗, the change in 1... does not mater.

16 / 17

Open questions

1. Lower bounds for proof systems.
I Frege-style systems (work with formulas), Gentzen system.
I Semialgebraic systems (quadratic inequalities; disjunctions of linear

inequalities).

2. Upper bounds for proof systems.
I We can solve 3− SAT in time O(1.3n);

what's about proof size � it could be better?

3. Optimal proof system.
I Show a collapse if there is one.
I Construct a heuristic optimal proof system.

I Vice versa, show that equivalence to heuristic optimal algorithms will

not work.

17 / 17

