Propositional proof complexity Mini-tutorial

Edward A. Hirsch
http://logic.pdmi.ras.ru/~hirsch
Steklov Institute of Mathematics at St.Petersburg

Estonian Theory Days - October 3, 2009

Propositional proof complexity Mini-tutorial

Edward A. Hirsch
http://logic.pdmi.ras.ru/~hirsch

Steklov Institute of Mathematics at St.Petersburg
Estonian Theory Days - October 3, 2009

- Proof systems - definitions and examples.
- A lower bound.
- Connection to optimal algorithms.
- Connection to disjoint NP pairs.

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping $\Pi:\{0,1\}^{*} \rightarrow L$.

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping $\Pi:\{0,1\}^{*} \rightarrow L$.

We consider proof systems for the language of Boolean tautologies TAUT (propositional proof systems).

Definition (almost equivalent)

A propositional proof system is a polynomial-time verification procedure V such that

$$
F \text { is a tautology } \Longleftrightarrow \exists \pi V(F, \pi)=\text { '' } \mathrm{OK} \text { '. }
$$

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping $\Pi:\{0,1\}^{*} \rightarrow L$.

We consider proof systems for the language of Boolean tautologies TAUT (propositional proof systems).

Definition (almost equivalent)

A propositional proof system is a polynomial-time verification procedure V such that

$$
F \text { is a tautology } \Longleftrightarrow \exists \pi V(F, \pi)=\text { '" } 0 \text { '". }
$$

Every algorithm for TAUT yields a proof system, but not vice versa.

Proof systems

Definition (Cook, Reckhow, 70s)

A proof system for language L is a polynomial-time surjective mapping $\Pi:\{0,1\}^{*} \rightarrow L$.

We consider proof systems for the language of Boolean tautologies TAUT (propositional proof systems).

Definition (almost equivalent)

A propositional proof system is a polynomial-time verification procedure V such that

$$
F \text { is a tautology } \Longleftrightarrow \exists \pi V(F, \pi)=\text { '" } 0 \mathrm{~K}^{\prime} \text { '. }
$$

Every algorithm for TAUT yields a proof system, but not vice versa.

Fact

$\mathbf{N P}=\mathbf{c o}-\mathbf{N P}$ iff there is a proof system that has a polynomial-size proof for every tautology.

Example: Resolution

- Consider the negation of input formula F; it has no satisfying assignments iff F is a tautology.
- W.I.o.g. it is in CNF, e.g.,

$$
(a \vee b \vee \neg c) \wedge(a \vee c) \wedge(a \vee \neg b) \wedge(\neg a)
$$

- Resolution is the inference of logical consequences:

$$
\frac{(x \vee \alpha) \quad(\neg x \vee \beta)}{\alpha \vee \beta}
$$

- We finish when we infer the empty disjunction (i.e., contradiction).
- Any such inference is a valid resolution proof (can be very long!).

Example: Nullstellensatz

- Boolean variable $\mapsto 0 / 1$ variable.
- $\neg x \mapsto(1-x)$.
- clause $a \vee b \vee c \vee \ldots \mapsto$ polynomial $(1-a)(1-b)(1-c) \ldots$.
- Add polynomials $x^{2}-x$ for every variable x.
- Boolean formula is unsatisfiable iff all these polynomials p_{i} have no common roots.
- Hilbert's Nullstellensatz: hence, there are polynomials g_{i} such that $\sum_{i} p_{i} g_{i}=1$ (constant polynomial).
- This set $\left\{g_{i}\right\}_{i}$ is a proof!

Example: Cutting Plane

- Boolean variable $\mapsto 0 / 1$ variable.
- $\neg x \mapsto(1-x)$.
- clause $a \vee b \vee c \vee \ldots \mapsto$ inequality $a+b+c \geq 1$.
- Add trivial inequalities $x \geq 0$ and $1 \geq x$.
- Boolean formula is unsatisfiable iff the system of inequalities has integer solutions.
- Infer logical consequences:

$$
\frac{A \geq 0 \quad B \geq 0}{k A+\ell B \geq 0} ; \quad \frac{k A \geq \ell}{A \geq\lceil\ell / k\rceil}
$$

for positive integers k, ℓ.

- We finish when we infer $-1 \geq 0$ (i.e., contradiction).

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
- $\bigvee_{j} x_{i j}$
- i-th pigeon is sitting somewhere,
$\vee \neg x_{i j} \vee \neg x_{i^{\prime} j}$
- two pigeons cannot sit together.

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
- $\bigvee_{j} x_{i j}$
- i-th pigeon is sitting somewhere,
$\vee \neg x_{i j} \vee \neg x_{i^{\prime} j}$
- two pigeons cannot sit together.
- No polynomial-size Resolution proofs [Haken, 80s].

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
- $\bigvee_{j} x_{i j}$
$-i$-th pigeon is sitting somewhere,
$\vee \neg x_{i j} \vee \neg x_{i^{\prime} j}$
- two pigeons cannot sit together.
- No polynomial-size Resolution proofs [Haken, 80s].
- Polynomial-size Cutting Plane proof:

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
$\Rightarrow \sum_{j} x_{i j} \geq 1$ (*)
$-i$-th pigeon is sitting somewhere,
- $x_{i j}+x_{i^{\prime} j} \leq 1$
- two pigeons cannot sit together.
- No polynomial-size Resolution proofs [Haken, 80s].
- Polynomial-size Cutting Plane proof:

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
$\Rightarrow \sum_{j} x_{i j} \geq 1$
$-i$-th pigeon is sitting somewhere,
- $x_{i j}+x_{i^{\prime} j} \leq 1$
- two pigeons cannot sit together.
- No polynomial-size Resolution proofs [Haken, 80s].
- Polynomial-size Cutting Plane proof:

$$
\frac{\frac{x_{i j}+x_{i^{\prime} j} \leq 1}{} \quad x_{i^{\prime} j+x_{i^{\prime \prime} j} \leq 1}^{2\left(x_{i j}+x_{i^{\prime} j}+x_{i^{\prime \prime} j}\right) \leq 3} \quad x_{i^{\prime \prime} j}+x_{i j} \leq 1}{\frac{x_{i j}+x_{i^{\prime} j}+x_{i^{\prime \prime} j} \leq 1}{\ldots \ldots}}
$$

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
$>\sum_{j} x_{i j} \geq 1$ (*)
- i-th pigeon is sitting somewhere,
- $x_{i j}+x_{i^{\prime} j} \leq 1$
- two pigeons cannot sit together.
- No polynomial-size Resolution proofs [Haken, 80s].
- Polynomial-size Cutting Plane proof:

$$
\frac{\frac{x_{i j}+x_{i^{\prime} j} \leq 1}{} \quad x_{i^{\prime} j}+x_{i^{\prime \prime} j} \leq 1 \quad x_{i^{\prime \prime} j}+x_{i j} \leq 1}{2\left(x_{i j}+x_{i^{\prime} j}+x_{i^{\prime \prime} j}\right) \leq 3}{\frac{x_{i j}+x_{i^{\prime} j}+x_{i^{\prime \prime} j} \leq 1}{\sum_{i} \ldots}}_{\frac{x_{i j} \leq 1}{2}}
$$

$-\operatorname{In}$ total $\sum_{i j} x_{i j} \leq m$.

Pigeon-hole principle

- Variable $x_{i j}-i$-th pigeon is in j-th hole $(1 \leq i \leq n+1,1 \leq j \leq n)$.
$>\sum_{j} x_{i j} \geq 1$
- i-th pigeon is sitting somewhere,
- $x_{i j}+x_{i^{\prime} j} \leq 1$
- two pigeons cannot sit together.
- No polynomial-size Resolution proofs [Haken, 80s].
- Polynomial-size Cutting Plane proof:

$$
\frac{\frac{x_{i j}+x_{i^{\prime} j} \leq 1}{} \frac{x_{i^{\prime} j}+x_{i^{\prime \prime} j} \leq 1 \quad x_{i^{\prime \prime} j}+x_{i j} \leq 1}{2\left(x_{i j}+x_{i^{\prime} j}+x_{i^{\prime \prime} j}\right) \leq 3}}{\frac{\frac{x_{i j}+x_{i^{\prime} j}+x_{i^{\prime \prime} j} \leq 1}{\ldots \ldots}}{\frac{\sum_{i} x_{i j} \leq 1}{2}}}
$$

\Rightarrow In total $\sum_{i j} x_{i j} \leq m$.
\Rightarrow But $(*)$ gives $\sum_{j i} x_{i j} \geq m+1$.

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written $S \leq W$) iff S-proofs are at most as long as W-proofs (up to a polynomial p):
$\forall F \in$ TAUT \mid shortest S-proof of $F \mid \leq p(\mid$ shortest W-proof of $F \mid)$.

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written $S \leq W$) iff S-proofs are at most as long as W-proofs (up to a polynomial p):
$\forall F \in$ TAUT \mid shortest S-proof of $F \mid \leq p(\mid$ shortest W-proof of $F \mid)$.
S strictly simulates W (written $S<W$) if in addition $W \not \leq S$.
For example, Cutting Plane strictly simulates Resolution.

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written $S \leq W$) iff S-proofs are at most as long as W-proofs (up to a polynomial p):
$\forall F \in$ TAUT \mid shortest S-proof of $F \mid \leq p(\mid$ shortest W-proof of $F \mid)$.
S strictly simulates W (written $S<W$) if in addition $W \not \leq S$.
For example, Cutting Plane strictly simulates Resolution.

Definition

p-simulation \leq_{p} is a constructive version:
For any s-size W-proof one can compute a $p(s)$-size S-proof in polynomial time.

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written $S \leq W$) iff S-proofs are at most as long as W-proofs (up to a polynomial p):
$\forall F \in$ TAUT \mid shortest S-proof of $F \mid \leq p(\mid$ shortest W-proof of $F \mid)$.
S strictly simulates W (written $S<W$) if in addition $W \not \leq S$.
For example, Cutting Plane strictly simulates Resolution.

Definition

p-simulation \leq_{p} is a constructive version:
For any s-size W-proof one can compute a $p(s)$-size S-proof in polynomial time.

Definition

(p-)optimal proof system is the smallest element in this lattice.

Simulation and Optimal system

Definition

A proof system S simulates a proof system W (written $S \leq W$) iff S-proofs are at most as long as W-proofs (up to a polynomial p):
$\forall F \in$ TAUT \mid shortest S-proof of $F \mid \leq p(\mid$ shortest W-proof of $F \mid)$.
S strictly simulates W (written $S<W$) if in addition $W \not \leq S$.
For example, Cutting Plane strictly simulates Resolution.

Definition

p-simulation \leq_{p} is a constructive version:
For any s-size W-proof one can compute a $p(s)$-size S-proof in polynomial time.

Definition

(p-)optimal proof system is the smallest element in this lattice. Does it exist?..

A lower bound for Resolution

Clique is a monotone function: if a graph does not have a clique, its subgraphs don't. Thus it is computable by monotone circuits (no negations).

Theorem (Razborov, 80s; Pudlak, 90s)

Polynomial-size monotone Boolean (and even real) circuits cannot compute Clique. They cannot even distinguish m-cliques from complete ($m-1$)-partite graphs, where $m=\left\lfloor(n / \log n)^{2 / 3} / 8\right\rfloor, n$ is the number of vertices.

Our strategy: short proof \mapsto small monotone Boolean circuit.

Clique-coloring formula

Claims that there is an m-clique in an ($m-1$)-colorable graph with n vertices. Variables:

- $q_{k i}$ maps number k to vertex i,
- $e_{i j}$ stays for the edge $\{i, j\}$,
- $c_{i \ell}$ colors vertex i by color ℓ.

Clauses:

- $\bigvee_{i=1}^{n} q_{k i}$
- there is a mapping of $\{1, \ldots, m\}$ to the graph,
$\triangleright \neg q_{k i} \vee \neg q_{k^{\prime} i}$
- it is injective,
$\vee \neg q_{k i} \vee \neg q_{k^{\prime}, j} \vee e_{i j}$
- its image is indeed a clique,
- $\bigvee_{\ell=1}^{m-1} c_{i \ell}$
- each vertex is colored,
$\triangleright \neg e_{i j} \vee \neg c_{i \ell} \vee \neg c_{j \ell}$.
- the coloring is correct.

Monotone interpolation [Pudlák, 90s]

- For every fixed graph $\left\{e_{i j}\right\}_{i, j}$, we have only $q_{\text {...-clauses }}$ (clique) and $c_{\text {....clauses (coloring). }}$
- Either there is no clique or there is no coloring.

Deciding between the two alternatives distinguishes m-cliques from ($m-1$)-colorable graphs.

- The main thing to prove: A short proof of the initial formula gives a small monotone circuit for this problem, which does not exist by Razborov's theorem.

Optimal algorithms

Definition

A is an optimal algorithm for language L if for any other algorithm A^{\prime} there is a polynomial p such that $\forall x \in L$

$$
\operatorname{time}_{A}(x) \leq p\left(\operatorname{time}_{A^{\prime}}(x)+|x|\right)
$$

Levin's optimal algorithm for SAT:
run "in parallel" all possible algorithms outputting satisfying assignments; check the results and output as soon as a correct one found.

Remark

Levin's algorithm is not for TAUT.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)
\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)
\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.

- Optimal algorithm is polynomial-time on every polynomial-time recognizable set of tautologies.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)

\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.

- Optimal algorithm is polynomial-time on every polynomial-time recognizable set of tautologies.
- For every proof system Π, one can write in polynomial time the tautology $\mathrm{Con}_{\square, n}$ meaning the system is correct for formulas of size n.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)

\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.

- Optimal algorithm is polynomial-time on every polynomial-time recognizable set of tautologies.
- For every proof system Π, one can write in polynomial time the tautology $\mathrm{Con}_{\pi, n}$ meaning the system is correct for formulas of size n.
- Thus optimal algorithm is polynomial-time on $\mathrm{Con}_{\square, n}$.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)

\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.

- Optimal algorithm is polynomial-time on every polynomial-time recognizable set of tautologies.
- For every proof system Π, one can write in polynomial time the tautology $\mathrm{Con}_{\square, n}$ meaning the system is correct for formulas of size n.
- Thus optimal algorithm is polynomial-time on Conп,n.
- Now an optimal proof of F of size n includes
- Description of proof system Π;
- Description of the execution of the optimal algorithm on $\mathrm{Con}_{\pi, n}$;
- A Π-proof of F.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)
\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.
\Longrightarrow :

- Let Π be a p-optimal proof system.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)
\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.
\Longrightarrow :

- Let Π be a p-optimal proof system.
- Optimal algorithm runs in parallel all algorithms A_{i} trying to produce a Π-proof of F.
- The "proof" is checked by $П$. Say "yes" if it's valid.

Optimal algorithms vs Optimal proof systems

Theorem (Krajiček, Pudlák, 89)

\exists p-optimal proof system iff \exists an optimal algorithm for TAUT.
\Longrightarrow :

- Let Π be a p-optimal proof system.
- Optimal algorithm runs in parallel all algorithms A_{i} trying to produce a Π-proof of F.
- The "proof" is checked by Π. Say "yes" if it's valid.
- Since Π is p-optimal, for every algorithm A there is a polynomial-time transformation f of its execution into a Π-proof. Thus A together with f are listed in $\left\{A_{i}\right\}_{i}$.

Heuristic optimal algorithm for TAUT

- Allow randomized algorithms (with bounded error).
- Allow small number ${ }^{1}$ of false theorems (unbounded error there).
- Then an optimal algorithm does exist:
- Run all possible algorithms "in parallel".
- First check each algorithm by generating random non-theorems and making sure the algorithm does not lie quickly.
- Say "yes" as soon as the first good algorithm says so.
- Unfortunately, the equivalence with optimal proof systems is unknown to work.
${ }^{1}$ According to a samplable distribution on non-theorems.

Disjoint NP pairs

- Just a pair (A, B) of two disjoint sets $A, B \in \mathbf{N P}$.
- The problem is to separate A from B : given x, decide between the two alternatives $x \in A$ vs $x \in B$ (if it is outside both, say anything).
- Reduction $(A, B) \rightarrow(C, D)$: polynomial-time f such that $f(A) \subseteq C, f(B) \subseteq D$.
- Are there complete ones? Unknown.

Where they come from

Example

Consider a bitwise cryptosystem.
$A=\{$ possible codes of 0$\}$,
$B=\{$ possible codes of 1$\}$.
One hopes it's impossible to separate in polynomial time!

Example

Consider a proof system Π for TAUT.
$\overline{\mathbf{T A U T}}_{*}=\left\{\left(F, 1^{t}\right) \mid F \in \overline{\mathbf{T A U T}}\right\}$,
$\operatorname{REF}_{\Pi}=\left\{\left(F, 1^{t}\right) \mid F \in\right.$ TAUT, there is a Π-proof of F of size $\left.\leq t\right\}$.
Separation gives automatization!

Simulation vs Reduction

Theorem
Simulation $S \leq W$ yields reduction of the NP pair $\left(\overline{\mathbf{T A U T}}_{*}, \mathbf{R E F}_{w}\right) \rightarrow\left(\overline{\mathbf{T A U T}}_{*}, \mathbf{R E F}_{s}\right)$.

Simulation vs Reduction

Theorem
Simulation $S \leq W$ yields reduction of the NP pair $\left(\overline{\mathbf{T A U T}}_{*}, \mathbf{R E F}_{w}\right) \rightarrow\left(\overline{\mathbf{T A U T}}_{*}, \mathbf{R E F}_{s}\right)$.

Optimal proof system yields complete NP pair.

Simulation vs Reduction

Theorem

Simulation $S \leq W$ yields reduction of the NP pair
$\left(\overline{\mathbf{T A U T}}_{*}, \mathrm{REF}_{W}\right) \rightarrow\left(\overline{\mathbf{T A U T}}_{*}, \mathrm{REF}_{S}\right)$.
Optimal proof system yields complete NP pair.

- Consider $\left(F, 1^{t}\right) \in \operatorname{REF}_{W}$.
- One needs to transform $\left(F, 1^{t}\right)$ claiming t-size Π_{1}-proof into $\left(F, 1^{s}\right)$ claiming s-size Π_{2}-proof.

Simulation vs Reduction

Theorem

Simulation $S \leq W$ yields reduction of the NP pair
$\left(\overline{\mathbf{T A U T}}_{*}, \mathrm{REF}_{W}\right) \rightarrow\left(\overline{\mathbf{T A U T}}_{*}, \mathrm{REF}_{S}\right)$.
Optimal proof system yields complete NP pair.

- Consider $\left(F, 1^{t}\right) \in \operatorname{REF}_{W}$.
- One needs to transform ($F, 1^{t}$) claiming t-size Π_{1}-proof into ($F, 1^{s}$) claiming s-size Π_{2}-proof.
- We know that s polynomially depends on t. Just plug in this polynomial $p:\left(F, 1^{t}\right) \rightarrow\left(F, 1^{p(t)}\right)$.

Simulation vs Reduction

Theorem

Simulation $S \leq W$ yields reduction of the NP pair
$\left(\overline{\mathbf{T A U T}}_{*}, \mathrm{REF}_{W}\right) \rightarrow\left(\overline{\mathrm{TAUT}}_{*}, \mathrm{REF}_{S}\right)$.
Optimal proof system yields complete NP pair.

- Consider $\left(F, 1^{t}\right) \in \operatorname{REF}_{W}$.
- One needs to transform ($F, 1^{t}$) claiming t-size Π_{1}-proof into $\left(F, 1^{s}\right)$ claiming s-size Π_{2}-proof.
- We know that s polynomially depends on t. Just plug in this polynomial $p:\left(F, 1^{t}\right) \rightarrow\left(F, 1^{p(t)}\right)$.
- For $\left(F, 1^{t}\right) \in \overline{\mathbf{T A U T}}^{*}$, the change in 1^{\cdots} does not mater.

Open questions

1. Lower bounds for proof systems.

- Frege-style systems (work with formulas), Gentzen system.
- Semialgebraic systems (quadratic inequalities; disjunctions of linear inequalities).

2. Upper bounds for proof systems.

- We can solve 3 - SAT in time $O\left(1.3^{n}\right)$; what's about proof size - it could be better?

3. Optimal proof system.

- Show a collapse if there is one.
- Construct a heuristic optimal proof system.
- Vice versa, show that equivalence to heuristic optimal algorithms will not work.

