Lower Bounds on Circuit Complexity

A. Kulikov

Steklov Institute of Mathematics at St. Petersburg

Estonian Theory Days 02 October 2009

- inputs: propositional variables x₁, x₂,..., x_n and constants 0, 1
- gates: binary functions
- fan-out of a gate is unbounded

• Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.

- Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n, t) of circuits of size ≤ t with n input variables does not exceed

$$(16(t+n+2)^2)^t$$
.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

- Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n, t) of circuits of size ≤ t with n input variables does not exceed

$$(16(t+n+2)^2)^t$$
.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

• For
$$t = 2^n/(10n)$$
, $F(n, t)$ is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.

- Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n, t) of circuits of size ≤ t with n input variables does not exceed

$$(16(t+n+2)^2)^t$$
.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

• For $t = 2^n/(10n)$, F(n, t) is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.

• Thus, the circuit complexity of almost all Boolean functions on *n* variables is exponential in *n*. Still, we do not know any explicit function with super-linear circuit complexity.

Known Lower Bounds

	circuit size	formula size
full binary basis B_2	3n-o(n)	$n^{2-o(1)}$
	[Blum]	[Nechiporuk]
basis $U_2 = B_2 \setminus \{\oplus, \equiv\}$	5n - o(n)	$n^{3-o(1)}$
	[lwama et al.]	[Hastad]
	exponential	
monotone basis $M_2 = \{\lor, \land\}$	[Razborov; Alon, Boppana;	
	Andreev; Karchmer, Wigderson]	

Explicit Functions

• We are interested in explicitly defined Boolean functions of high circuit complexity.

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least 2ⁿ/(10n).
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.
- Usually, under a Boolean function f we actually understand an infinite sequence {f_n | n = 1, 2, ...}.

Known Lower Bounds for Circuits over B_2

Known Lower Bounds

 $\begin{array}{ll} 2n-c & [Schnorr, 74] \\ 2.5n-o(n) & [Paul, 77] \\ 2.5n-c & [Stockmeyer, 77] \\ 3n-o(n) & [Blum, 84] \end{array}$

Known Lower Bounds

 $\begin{array}{ll} 2n-c & [Schnorr, 74] \\ 2.5n-o(n) & [Paul, 77] \\ 2.5n-c & [Stockmeyer, 77] \\ 3n-o(n) & [Blum, 84] \end{array}$

This Talk

In this talk, we will present a proof of a 7n/3 - c lower bound which is as simple as Schnorr's proof of 2n - c lower bound.

Known Lower Bounds

 $\begin{array}{ll} 2n-c & [Schnorr, 74] \\ 2.5n-o(n) & [Paul, 77] \\ 2.5n-c & [Stockmeyer, 77] \\ 3n-o(n) & [Blum, 84] \end{array}$

This Talk

In this talk, we will present a proof of a 7n/3 - c lower bound which is as simple as Schnorr's proof of 2n - c lower bound.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

Gate Elimination Method

• Take an optimal circuit for the function in question.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.

The Class $Q_{2,3}^n$

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

Got all different i, j ∈ {1,..., n}, one obtains at least three different subfunctions by replacing x_i and x_j by constants;

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- If for all different i, j ∈ {1,..., n}, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
- for all *i* ∈ {1,..., *n*}, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if *n* ≥ 4) by replacing *x_i* by any constant.
Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- If for all different i, j ∈ {1,..., n}, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
- If or all i ∈ {1,..., n}, one obtains a subfunction in Qⁿ⁻¹_{2,3} (if n ≥ 4) by replacing x_i by any constant.

Modular functions

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- If for all different i, j ∈ {1,..., n}, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
- for all *i* ∈ {1,..., *n*}, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if *n* ≥ 4) by replacing *x_i* by any constant.

Modular functions

• Let $MOD_{m,r}^n(x_1,\ldots,x_n) = 1$ iff $\sum_{i=1}^n x_i \equiv r \pmod{m}$.

Definition

A function $f: \{0,1\}^n \to \{0,1\}$ belongs to the class $Q_{2,3}^n$ if

- If for all different i, j ∈ {1,..., n}, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
- for all *i* ∈ {1,..., *n*}, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if *n* ≥ 4) by replacing *x_i* by any constant.

Modular functions

- Let $MOD_{m,r}^n(x_1,\ldots,x_n) = 1$ iff $\sum_{i=1}^n x_i \equiv r \pmod{m}$.
- Then $\operatorname{MOD}_{3,r}^n, \operatorname{MOD}_{4,r}^n \in Q_{2,3}^n$, but $\operatorname{MOD}_{2,r}^n \notin Q_{2,3}^n$.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

Proof

• Induction on *n*. If $n \leq 4$, then the statement is trivial.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on *n*. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_i and x_j (they are different, since the circuit is optimal).

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on *n*. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_i and x_j (they are different, since the circuit is optimal).
- Note that $Q = Q(x_i, x_j)$ can only take two values, 0 and 1, when x_i and x_j are fixed.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on *n*. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate *Q* which is fed by different variables *x_i* and *x_j* (they are different, since the circuit is optimal).
- Note that $Q = Q(x_i, x_j)$ can only take two values, 0 and 1, when x_i and x_j are fixed.
- Thus, either x_i or x_j fans out to another gate P.

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \ge 2n - 8$.

- Induction on *n*. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate *Q* which is fed by different variables *x_i* and *x_j* (they are different, since the circuit is optimal).
- Note that $Q = Q(x_i, x_j)$ can only take two values, 0 and 1, when x_i and x_j are fixed.
- Thus, either x_i or x_j fans out to another gate P.
- By assigning this variable, we eliminate at least two gates and get a subfunction from $Q_{2,3}^{n-1}$.

Binary functions

Binary functions

The set B_2 of all binary functions contains 16 functions f(x, y):

2 constants: 0, 1

Binary functions

- 2 constants: 0, 1
- **2** 4 degenerate functions: x, \bar{x} , y, \bar{y} .

Binary functions

- 2 constants: 0, 1
- **2** 4 degenerate functions: x, \bar{x} , y, \bar{y} .
- **3** 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.

Binary functions

- 2 constants: 0, 1
- **2** 4 degenerate functions: x, \bar{x} , y, \bar{y} .
- **3** 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.
- **3** AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in \{0, 1\}$.

Binary functions

The set B_2 of all binary functions contains 16 functions f(x, y):

- 2 constants: 0, 1
- 2 4 degenerate functions: x, \bar{x} , y, \bar{y} .
- **3** 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.
- **3** AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in \{0, 1\}$.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.

AND-type Gates vs XOR-type Gates

• AND-type gates are easier to handle than XOR-type gates.

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i , we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or \bar{x}_j .

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i , we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or \bar{x}_j .
- That is why, in particular, the current record bounds for circuits over *U*₂ = *B*₂ \ {⊕, ≡} are stronger than the bounds over *B*₂.

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i , we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or \bar{x}_j .
- That is why, in particular, the current record bounds for circuits over *U*₂ = *B*₂ \ {⊕, ≡} are stronger than the bounds over *B*₂.
- Usually, the main bottleneck of a proof based on gate elimination is a circuit whose top contains many XOR-type gates.

Polynomials over GF(2)

• Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(MOD_{3,0}^3) = x_1x_2x_3 + (1-x_1)(1-x_2)(1-x_3).$

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(MOD_{3,0}^3) = x_1x_2x_3 + (1-x_1)(1-x_2)(1-x_3).$
- Note that $\tau(f)$ is multi-linear.

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(MOD_{3,0}^3) = x_1x_2x_3 + (1-x_1)(1-x_2)(1-x_3).$
- Note that $\tau(f)$ is multi-linear.
- It can be easily shown that, for any r, $\deg(\tau(\text{MOD}_{4,r}^n)) \leq 3$, while $\deg(\tau(\text{MOD}_{3,r}^n)) \geq n-1$.

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau(MOD_{3,0}^3) = x_1x_2x_3 + (1-x_1)(1-x_2)(1-x_3).$
- Note that $\tau(f)$ is multi-linear.
- It can be easily shown that, for any r, $\deg(\tau(\text{MOD}_{4,r}^n)) \leq 3$, while $\deg(\tau(\text{MOD}_{3,r}^n)) \geq n-1$.

Lemma (Degree lower bound)

Any circuit computing f contains at least $deg(\tau(f)) - 1$ AND-type gates.

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance.

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Definition

For a circuit C, let A(C) and X(C) denote the number of AND- and XOR-type gates in C, respectively. Let also $\mu(C) = 3X(C) + 2A(C)$.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

• As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

• As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \ge 6n - 24$.

Proof

• As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.

 In both cases, we can assign x_i a constant such that μ is reduced at least by 6.
Lemma

Let $f \in Q_{2,3}^n$ and $\deg(\tau(f)) \ge n - c$, then $C(f) \ge 7n/3 - c'$.

Lemma

Let $f \in Q_{2,3}^n$ and $\deg(\tau(f)) \ge n - c$, then $C(f) \ge 7n/3 - c'$.

proof

Let C be an optimal circuit computing f.

Lemma

Let
$$f\in Q_{2,3}^n$$
 and $\deg(au(f))\geq n-c$, then $C(f)\geq 7n/3-c'.$

proof

Let C be an optimal circuit computing f.

$$\frac{3X(C) + 2A(C) \ge 6n - 24}{A(C) \ge n - c - 1}$$
$$\frac{A(C) \ge n - c - 1}{C(f) = 3X(C) + 3A(C) \ge 7n - 25 - c}$$

• Prove a stronger lower bound on μ. A more involved case analysis is needed.

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on A(C).

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on A(C).
 - Remind that τ(MODⁿ₃) = x₁x₂...x_n + ..., so any circuit computing MODⁿ₃ must have at least (n − 1) AND-type gates just in order to compute this monomial.

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on A(C).
 - Remind that τ(MODⁿ₃) = x₁x₂...x_n + ..., so any circuit computing MODⁿ₃ must have at least (n − 1) AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on A(C).
 - Remind that τ(MODⁿ₃) = x₁x₂...x_n + ..., so any circuit computing MODⁿ₃ must have at least (n − 1) AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?
 - No, there is a circuit computing MOD₃ⁿ of size 3n containing exactly n AND-type gates.

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on A(C).
 - Remind that τ(MODⁿ₃) = x₁x₂...x_n + ..., so any circuit computing MODⁿ₃ must have at least (n − 1) AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?
 - No, there is a circuit computing MOD₃ⁿ of size 3n containing exactly n AND-type gates.
 - Moreover, any symmetric function can be computed using only *n* AND-type gates.

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on A(C).
 - Remind that τ(MODⁿ₃) = x₁x₂...x_n + ..., so any circuit computing MODⁿ₃ must have at least (n − 1) AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?
 - No, there is a circuit computing MOD₃ⁿ of size 3n containing exactly n AND-type gates.
 - Moreover, any symmetric function can be computed using only *n* AND-type gates.
 - No lower bound better than n-1 is known! Though the multiplicative complexity of almost all functions is exponential.

MOD_3 vs MOD_4

MOD_3 is not simpler than MOD_4

For circuits and formulas over B_2 and U_2 , it is known that MOD_3 is not simpler than MOD_4 . The exact complexity of MOD_4 is known for some of these models: $C_{B_2}(MOD_4^n) = 2.5n - c$, $L_{B_2}(MOD_4^n) = \Theta(n \log n)$. The exact complexity of MOD_3 is known for none of these models.

MOD_3 vs MOD_4

MOD_3 is not simpler than MOD_4

For circuits and formulas over B_2 and U_2 , it is known that MOD_3 is not simpler than MOD_4 . The exact complexity of MOD_4 is known for some of these models: $C_{B_2}(MOD_4^n) = 2.5n - c$, $L_{B_2}(MOD_4^n) = \Theta(n \log n)$. The exact complexity of MOD_3 is known for none of these models.

Why MOD_3 must be harder than MOD_4 ?

$\mathrm{MOD}_3 \ vs \ \mathrm{MOD}_4$

MOD_3 is not simpler than MOD_4

For circuits and formulas over B_2 and U_2 , it is known that MOD_3 is not simpler than MOD_4 . The exact complexity of MOD_4 is known for some of these models: $C_{B_2}(MOD_4^n) = 2.5n - c$, $L_{B_2}(MOD_4^n) = \Theta(n \log n)$. The exact complexity of MOD_3 is known for none of these models.

Why MOD_3 must be harder than MOD_4 ?

• 4 is a power of 2, 3 is not. To compute MOD_4^n , compute the bit representation of $\sum x_i$ and check the last two bits.

$\mathrm{MOD}_3 \ vs \ \mathrm{MOD}_4$

MOD_3 is not simpler than MOD_4

For circuits and formulas over B_2 and U_2 , it is known that MOD_3 is not simpler than MOD_4 . The exact complexity of MOD_4 is known for some of these models: $C_{B_2}(MOD_4^n) = 2.5n - c$, $L_{B_2}(MOD_4^n) = \Theta(n \log n)$. The exact complexity of MOD_3 is known for none of these models.

Why MOD_3 must be harder than MOD_4 ?

- 4 is a power of 2, 3 is not. To compute MODⁿ₄, compute the bit representation of ∑ x_i and check the last two bits.
- MOD₃ survives under substitutions like $x_i = x_j$.

MOD_3 is not simpler than MOD_4

For circuits and formulas over B_2 and U_2 , it is known that MOD_3 is not simpler than MOD_4 . The exact complexity of MOD_4 is known for some of these models: $C_{B_2}(MOD_4^n) = 2.5n - c$, $L_{B_2}(MOD_4^n) = \Theta(n \log n)$. The exact complexity of MOD_3 is known for none of these models.

Why MOD_3 must be harder than MOD_4 ?

- 4 is a power of 2, 3 is not. To compute MODⁿ₄, compute the bit representation of ∑ x_i and check the last two bits.
- MOD₃ survives under substitutions like $x_i = x_j$.
- $C_{B_2}(MOD_3^n)$ for $n \le 5$ "grows like" 3n.

Open Problems

Close the gaps:

 $2.5n \le C_{B_2}(\text{MOD}_3^n) \le 3n$ $4n \le C_{U_2}(\text{MOD}_4^n) \le 5n$

Close the gaps:

 $2.5n \le C_{B_2}(\text{MOD}_3^n) \le 3n$ $4n \le C_{U_2}(\text{MOD}_4^n) \le 5n$

2 Prove a *cn* lower bound (for a constant c > 1) on the multiplicative complexity of an explicit Boolean function.

Thank you for your attention!