
Lower Bounds on Circuit Complexity

A. Kulikov

Steklov Institute of Mathematics at St. Petersburg

Estonian Theory Days
02 October 2009

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)Lower Bounds on Circuit Complexity 1 / 20



Boolean Circuits

inputs: propositional
variables x1, x2, . . . , xn

and constants 0, 1

gates: binary functions

fan-out of a gate is
unbounded

x1 x2 x3 1

⊕ ∧

∨ ∨

≡
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Random Functions are Complex

Shannon counting argument: count how many different Boolean
functions in n variables can be computed by circuits with t gates and
compare this number with the total number 22n

of all Boolean
functions.

The number F (n, t) of circuits of size ≤ t with n input variables does
not exceed (

16(t + n + 2)2
)t
.

Each of t gates is assigned one of 16 possible binary Boolean
functions that acts on two previous nodes, and each previous node
can be either a previous gate (≤ t choices) or a variables or a
constant (≤ n + 2 choices).

For t = 2n/(10n), F (n, t) is approximately 22n/5, which is � 22n
.

Thus, the circuit complexity of almost all Boolean functions on n
variables is exponential in n. Still, we do not know any explicit
function with super-linear circuit complexity.
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Known Lower Bounds

circuit size formula size

full binary basis B2 3n − o(n) n2−o(1)

[Blum] [Nechiporuk]

basis U2 = B2 \ {⊕,≡} 5n − o(n) n3−o(1)

[Iwama et al.] [Hastad]

exponential
monotone basis M2 = {∨,∧} [Razborov; Alon, Boppana;

Andreev; Karchmer, Wigderson]
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Explicit Functions

We are interested in explicitly defined Boolean functions of high
circuit complexity.

Not explicitly defined function of high circuit complexity: enumerate
all Boolean functions on n variables and take the first with circuit
complexity at least 2n/(10n).

To avoid tricks like this one, we say that a function f is explicitly
defined if f −1(1) is in NP.

Usually, under a Boolean function f we actually understand an infinite
sequence {fn | n = 1, 2, . . . }.
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Known Lower Bounds for Circuits over B2

Known Lower Bounds

2n − c [Schnorr, 74]
2.5n − o(n) [Paul, 77]
2.5n − c [Stockmeyer, 77]
3n − o(n) [Blum, 84]

This Talk

In this talk, we will present a proof of a 7n/3− c lower bound which is as
simple as Schnorr’s proof of 2n − c lower bound.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is
essentially the only known method for proving lower bounds on circuit
complexity.
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Gate Elimination Method

The main idea

Take an optimal circuit for the function in question.

Setting some variables to constants obtain a subfunction of the same
type (in order to proceed by induction) and eliminate several gates.

A gate is eliminated if it computes a constant or a variable.

By repeatedly applying this process, conclude that the original circuit
must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.
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Example

x1 x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6
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Example

x1 x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6

assign x1 = 1
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6

1

G5 now computes G3 ⊕ 1 = ¬G3
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G6

¬
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G6

¬

now we can change the binary function assigned to G6
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6

now assign x3 = 0
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Example

x2 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6

0

G1 then is equal to x2
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Example

x2 x4

∨G2

∧G3 ⊕G4

≡G6

0
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Example

x2 x4

∨G2

∧G3 ⊕G4

≡G6

0

G2 = x4
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Example

x2 x4

∧G3 ⊕G4

≡G6
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The Class Qn
2,3

Definition

A function f : {0, 1}n → {0, 1} belongs to the class Qn
2,3 if

1 for all different i , j ∈ {1, . . . , n}, one obtains at least three different
subfunctions by replacing xi and xj by constants;

2 for all i ∈ {1, . . . , n}, one obtains a subfunction in Qn−1
2,3 (if n ≥ 4) by

replacing xi by any constant.

Modular functions

Let MODn
m,r (x1, . . . , xn) = 1 iff

∑n
i=1 xi ≡ r (mod m).

Then MODn
3,r ,MODn

4,r ∈ Qn
2,3, but MODn

2,r 6∈ Qn
2,3.
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Schnorr’s 2n Lower Bound

Theorem

If f ∈ Qn
2,3, then C (f ) ≥ 2n − 8.

Proof

Induction on n. If n ≤ 4, then the statement is trivial.

Consider an optimal circuit and its top gate Q which is fed by
different variables xi and xj (they are different, since the circuit is
optimal).

Note that Q = Q(xi , xj) can only take two values, 0 and 1, when xi

and xj are fixed.

Thus, either xi or xj fans out to another gate P.

By assigning this variable, we eliminate at least two gates and get a
subfunction from Qn−1

2,3 .
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AND-type Gates vs XOR-type Gates

Binary functions

The set B2 of all binary functions contains 16 functions f (x , y):

1 2 constants: 0, 1

2 4 degenerate functions: x , x̄ , y , ȳ .

3 2 XOR-type functions: x ⊕ y ⊕ a, where a ∈ {0, 1}.
4 8 AND-type functions: (x ⊕ a)(y ⊕ b)⊕ c, where a, b, c ∈ {0, 1}.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and
degenerate gates can be easily eliminated.
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3 2 XOR-type functions: x ⊕ y ⊕ a, where a ∈ {0, 1}.
4 8 AND-type functions: (x ⊕ a)(y ⊕ b)⊕ c, where a, b, c ∈ {0, 1}.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and
degenerate gates can be easily eliminated.

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)Lower Bounds on Circuit Complexity 11 / 20



AND-type Gates vs XOR-type Gates

Binary functions

The set B2 of all binary functions contains 16 functions f (x , y):

1 2 constants: 0, 1

2 4 degenerate functions: x , x̄ , y , ȳ .
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3 2 XOR-type functions: x ⊕ y ⊕ a, where a ∈ {0, 1}.
4 8 AND-type functions: (x ⊕ a)(y ⊕ b)⊕ c, where a, b, c ∈ {0, 1}.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and
degenerate gates can be easily eliminated.

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)Lower Bounds on Circuit Complexity 11 / 20



AND-type Gates vs XOR-type Gates

Binary functions

The set B2 of all binary functions contains 16 functions f (x , y):

1 2 constants: 0, 1

2 4 degenerate functions: x , x̄ , y , ȳ .
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AND-type gates are easier to handle than XOR-type gates.

Let Q(xi , xj) = (xi ⊕ a)(xj ⊕ b)⊕ c be an AND-type gate. Then by
assigning xi = a or xj = b we make this gate constant. That is, we
eliminate not only this gate, but also all its direct successors!

While by assigning any constant to xi , we obtain from
Q(xi , xj) = xi ⊕ xj ⊕ c either xj or x̄j .

That is why, in particular, the current record bounds for circuits over
U2 = B2 \ {⊕,≡} are stronger than the bounds over B2.

Usually, the main bottleneck of a proof based on gate elimination is a
circuit whose top contains many XOR-type gates.
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Polynomials over GF(2)

Polynomials over GF(2)

Let τ(f ) denote the unique polynomial over GF(2) representing f .

E.g., τ(MOD3
3,0) = x1x2x3 + (1− x1)(1− x2)(1− x3).

Note that τ(f ) is multi-linear.

It can be easily shown that, for any r , deg(τ(MODn
4,r )) ≤ 3, while

deg(τ(MODn
3,r )) ≥ n − 1.

Lemma (Degree lower bound)

Any circuit computing f contains at least deg(τ(f ))− 1 AND-type gates.
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Combined Complexity Measure

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are
given several AND-type gates in advance.

Let us increase the weight of a
XOR-type gate.

Definition

For a circuit C , let A(C ) and X (C ) denote the number of AND- and
XOR-type gates in C , respectively. Let also µ(C ) = 3X (C ) + 2A(C ).
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An Improved Lower Bound

Lemma

For any circuit C computing f ∈ Qn
2,3, µ(C ) = 3X (C ) + 2A(C ) ≥ 6n− 24.

Proof

As in the previous proof, we consider a top gate Q(xi , xj) and assume
wlog that xi feeds also another gate P.

There are two cases:
xi xj

⊕P ⊕Q

xi xj

∧P Q

In both cases, we can assign xi a constant such that µ is reduced at
least by 6.
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7n/3 Lower Bound

Lemma

Let f ∈ Qn
2,3 and deg(τ(f )) ≥ n − c, then C (f ) ≥ 7n/3− c ′.

proof

Let C be an optimal circuit computing f .

3X (C )+2A(C )≥ 6n − 24
A(C )≥ n − c − 1

C (f ) =3X (C )+3A(C )≥ 7n − 25− c
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Further Improvements

Prove a stronger lower bound on µ. A more involved case analysis is
needed.

Prove stronger lower bound on A(C ).

Remind that τ(MODn
3) = x1x2 . . . xn + . . . , so any circuit computing

MODn
3 must have at least (n − 1) AND-type gates just in order to

compute this monomial.
Probably, more AND-type gates are needed to compute all the other
monomials?
No, there is a circuit computing MODn

3 of size 3n containing exactly n
AND-type gates.
Moreover, any symmetric function can be computed using only n
AND-type gates.
No lower bound better than n − 1 is known! Though the multiplicative
complexity of almost all functions is exponential.
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MOD3 vs MOD4

MOD3 is not simpler than MOD4

For circuits and formulas over B2 and U2, it is known that MOD3 is not
simpler than MOD4. The exact complexity of MOD4 is known for some of
these models: CB2(MODn

4) = 2.5n − c , LB2(MODn
4) = Θ(n log n). The

exact complexity of MOD3 is known for none of these models.

Why MOD3 must be harder than MOD4?

4 is a power of 2, 3 is not. To compute MODn
4, compute the bit

representation of
∑

xi and check the last two bits.

MOD3 survives under substitutions like xi = xj .

CB2(MODn
3) for n ≤ 5 “grows like” 3n.
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Open Problems

1 Close the gaps:

2.5n ≤ CB2(MODn
3) ≤ 3n

4n ≤ CU2(MODn
4) ≤ 5n

2 Prove a cn lower bound (for a constant c > 1) on the
multiplicative complexity of an explicit Boolean function.
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Thank you for your attention!
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