Lower Bounds on Circuit Complexity

A. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Estonian Theory Days
02 October 2009

Boolean Circuits

- inputs: propositional variables $x_{1}, x_{2}, \ldots, x_{n}$ and constants 0,1
- gates: binary functions
- fan-out of a gate is unbounded

Random Functions are Complex

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.
- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

$$
\left(16(t+n+2)^{2}\right)^{t}
$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n+2$ choices).

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.
- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

$$
\left(16(t+n+2)^{2}\right)^{t}
$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n+2$ choices).

- For $t=2^{n} /(10 n), F(n, t)$ is approximately $2^{2^{n} / 5}$, which is $\ll 2^{2^{n}}$.

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.
- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

$$
\left(16(t+n+2)^{2}\right)^{t}
$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n+2$ choices).

- For $t=2^{n} /(10 n), F(n, t)$ is approximately $2^{2^{n} / 5}$, which is $\ll 2^{2^{n}}$.
- Thus, the circuit complexity of almost all Boolean functions on n variables is exponential in n. Still, we do not know any explicit function with super-linear circuit complexity.

Known Lower Bounds

	circuit size	formula size
full binary basis B_{2}	$3 n-o(n)$ [Blum] $]$	$n^{2-o(1)}$ [Nechiporuk]
basis $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$	$5 n-o(n)$ $[$ Iwama et al.]	$n^{3-o(1)}$ [Hastad]
monotone basis $M_{2}=\{\vee, \wedge\}$	exponential [Razborov; Alon, Boppana; Andreev; Karchmer, Wigderson]	

Explicit Functions

Explicit Functions

- We are interested in explicitly defined Boolean functions of high circuit complexity.

Explicit Functions

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^{n} /(10 n)$.

Explicit Functions

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^{n} /(10 n)$.
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.

Explicit Functions

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^{n} /(10 n)$.
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.
- Usually, under a Boolean function f we actually understand an infinite sequence $\left\{f_{n} \mid n=1,2, \ldots\right\}$.

Known Lower Bounds for Circuits over B_{2}

Known Lower Bounds

$2 n-c$	[Schnorr, 74]
$2.5 n-o(n)$	$[$ Paul, 77]
$2.5 n-c$	$[$ Stockmeyer, 77]

$3 n-o(n) \quad[B l u m, 84]$

Known Lower Bounds for Circuits over B_{2}

Known Lower Bounds

$2 n-c$	$[$ Schnorr, 74]
$2.5 n-o(n)$	$[$ Paul, 77]
$2.5 n-c$	$[$ Stockmeyer, 77]
$3 n-o(n)$	$[$ Blum, 84]

This Talk

In this talk, we will present a proof of a $7 n / 3-c$ lower bound which is as simple as Schnorr's proof of $2 n-c$ lower bound.

Known Lower Bounds for Circuits over B_{2}

Known Lower Bounds

$$
\begin{array}{ll}
2 n-c & {[\text { Schnorr, 74] }} \\
2.5 n-o(n) & {[\text { Paul, 77] }} \\
2.5 n-c & {[\text { Stockmeyer, 77] }} \\
3 n-o(n) & {[\text { Blum, 84] }}
\end{array}
$$

This Talk

In this talk, we will present a proof of a $7 n / 3-c$ lower bound which is as simple as Schnorr's proof of $2 n-c$ lower bound.

Gate Elimination
All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

Gate Elimination Method

The main idea

Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.

Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.

Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.

Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.

Example

Example

Example

Example

Example

now we can change the binary function assigned to G_{6}

Example

Example

Example

G_{1} then is equal to x_{2}

Example

Example

Example

The Class $Q_{2,3}^{n}$

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ belongs to the class $Q_{2,3}^{n}$ if

The Class $Q_{2,3}^{n}$

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ belongs to the class $Q_{2,3}^{n}$ if
(1) for all different $i, j \in\{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_{i} and x_{j} by constants;

The Class $Q_{2,3}^{n}$

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ belongs to the class $Q_{2,3}^{n}$ if
(1) for all different $i, j \in\{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_{i} and x_{j} by constants;
(2) for all $i \in\{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_{i} by any constant.

The Class $Q_{2,3}^{n}$

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ belongs to the class $Q_{2,3}^{n}$ if
(1) for all different $i, j \in\{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_{i} and x_{j} by constants;
(2) for all $i \in\{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_{i} by any constant.

Modular functions

The Class $Q_{2,3}^{n}$

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ belongs to the class $Q_{2,3}^{n}$ if
(1) for all different $i, j \in\{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_{i} and x_{j} by constants;
(2) for all $i \in\{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_{i} by any constant.

Modular functions

- Let $\operatorname{MOD}_{m, r}^{n}\left(x_{1}, \ldots, x_{n}\right)=1$ iff $\sum_{i=1}^{n} x_{i} \equiv r(\bmod m)$.

The Class $Q_{2,3}^{n}$

Definition

A function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ belongs to the class $Q_{2,3}^{n}$ if
(1) for all different $i, j \in\{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_{i} and x_{j} by constants;
(2) for all $i \in\{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_{i} by any constant.

Modular functions

- Let $\operatorname{MOD}_{m, r}^{n}\left(x_{1}, \ldots, x_{n}\right)=1$ iff $\sum_{i=1}^{n} x_{i} \equiv r(\bmod m)$.
- Then $\mathrm{MOD}_{3, r}^{n}, \mathrm{MOD}_{4, r}^{n} \in Q_{2,3}^{n}$, but $\mathrm{MOD}_{2, r}^{n} \notin Q_{2,3}^{n}$.

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Proof

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Proof

- Induction on n. If $n \leq 4$, then the statement is trivial.

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Proof

- Induction on n. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_{i} and x_{j} (they are different, since the circuit is optimal).

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Proof

- Induction on n. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_{i} and x_{j} (they are different, since the circuit is optimal).
- Note that $Q=Q\left(x_{i}, x_{j}\right)$ can only take two values, 0 and 1 , when x_{i} and x_{j} are fixed.

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Proof

- Induction on n. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_{i} and x_{j} (they are different, since the circuit is optimal).
- Note that $Q=Q\left(x_{i}, x_{j}\right)$ can only take two values, 0 and 1 , when x_{i} and x_{j} are fixed.
- Thus, either x_{i} or x_{j} fans out to another gate P.

Schnorr's $2 n$ Lower Bound

Theorem
If $f \in Q_{2,3}^{n}$, then $C(f) \geq 2 n-8$.

Proof

- Induction on n. If $n \leq 4$, then the statement is trivial.
- Consider an optimal circuit and its top gate Q which is fed by different variables x_{i} and x_{j} (they are different, since the circuit is optimal).
- Note that $Q=Q\left(x_{i}, x_{j}\right)$ can only take two values, 0 and 1 , when x_{i} and x_{j} are fixed.
- Thus, either x_{i} or x_{j} fans out to another gate P.
- By assigning this variable, we eliminate at least two gates and get a subfunction from $Q_{2,3}^{n-1}$.

AND-type Gates vs XOR-type Gates

Binary functions
The set B_{2} of all binary functions contains 16 functions $f(x, y)$:

AND-type Gates vs XOR-type Gates

Binary functions
The set B_{2} of all binary functions contains 16 functions $f(x, y)$:
(1) 2 constants: 0, 1

AND-type Gates vs XOR-type Gates

Binary functions

The set B_{2} of all binary functions contains 16 functions $f(x, y)$:
(1) 2 constants: 0, 1
(2) 4 degenerate functions: x, \bar{x}, y, \bar{y}.

AND-type Gates vs XOR-type Gates

Binary functions

The set B_{2} of all binary functions contains 16 functions $f(x, y)$:
(1) 2 constants: 0,1
(2) 4 degenerate functions: x, \bar{x}, y, \bar{y}.
(3) 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in\{0,1\}$.

AND-type Gates vs XOR-type Gates

Binary functions

The set B_{2} of all binary functions contains 16 functions $f(x, y)$:
(1) 2 constants: 0, 1
(2) 4 degenerate functions: x, \bar{x}, y, \bar{y}.
(3) 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in\{0,1\}$.
(9) 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in\{0,1\}$.

AND-type Gates vs XOR-type Gates

Binary functions

The set B_{2} of all binary functions contains 16 functions $f(x, y)$:
(1) 2 constants: 0, 1
(2) 4 degenerate functions: x, \bar{x}, y, \bar{y}.
(3) 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in\{0,1\}$.
(9) 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in\{0,1\}$.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q\left(x_{i}, x_{j}\right)=\left(x_{i} \oplus a\right)\left(x_{j} \oplus b\right) \oplus c$ be an AND-type gate. Then by assigning $x_{i}=a$ or $x_{j}=b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q\left(x_{i}, x_{j}\right)=\left(x_{i} \oplus a\right)\left(x_{j} \oplus b\right) \oplus c$ be an AND-type gate. Then by assigning $x_{i}=a$ or $x_{j}=b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_{i}, we obtain from $Q\left(x_{i}, x_{j}\right)=x_{i} \oplus x_{j} \oplus c$ either x_{j} or \bar{x}_{j}.

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q\left(x_{i}, x_{j}\right)=\left(x_{i} \oplus a\right)\left(x_{j} \oplus b\right) \oplus c$ be an AND-type gate. Then by assigning $x_{i}=a$ or $x_{j}=b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_{i}, we obtain from $Q\left(x_{i}, x_{j}\right)=x_{i} \oplus x_{j} \oplus c$ either x_{j} or \bar{x}_{j}.
- That is why, in particular, the current record bounds for circuits over $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$ are stronger than the bounds over B_{2}.

AND-type Gates vs XOR-type Gates

AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q\left(x_{i}, x_{j}\right)=\left(x_{i} \oplus a\right)\left(x_{j} \oplus b\right) \oplus c$ be an AND-type gate. Then by assigning $x_{i}=a$ or $x_{j}=b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_{i}, we obtain from $Q\left(x_{i}, x_{j}\right)=x_{i} \oplus x_{j} \oplus c$ either x_{j} or \bar{x}_{j}.
- That is why, in particular, the current record bounds for circuits over $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$ are stronger than the bounds over B_{2}.
- Usually, the main bottleneck of a proof based on gate elimination is a circuit whose top contains many XOR-type gates.

Polynomials over GF(2)

Polynomials over GF(2)

Polynomials over GF(2)

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.

Polynomials over GF(2)

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over $\mathrm{GF}(2)$ representing f.
- E.g., $\tau\left(\mathrm{MOD}_{3,0}^{3}\right)=x_{1} x_{2} x_{3}+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)$.

Polynomials over GF(2)

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over $\mathrm{GF}(2)$ representing f.
- E.g., $\tau\left(\mathrm{MOD}_{3,0}^{3}\right)=x_{1} x_{2} x_{3}+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)$.
- Note that $\tau(f)$ is multi-linear.

Polynomials over GF(2)

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over $\mathrm{GF}(2)$ representing f.
- E.g., $\tau\left(\mathrm{MOD}_{3,0}^{3}\right)=x_{1} x_{2} x_{3}+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)$.
- Note that $\tau(f)$ is multi-linear.
- It can be easily shown that, for any $r, \operatorname{deg}\left(\tau\left(\operatorname{MOD}_{4, r}^{n}\right)\right) \leq 3$, while $\operatorname{deg}\left(\tau\left(\operatorname{MOD}_{3, r}^{n}\right)\right) \geq n-1$.

Polynomials over GF(2)

Polynomials over GF(2)

- Let $\tau(f)$ denote the unique polynomial over GF(2) representing f.
- E.g., $\tau\left(\mathrm{MOD}_{3,0}^{3}\right)=x_{1} x_{2} x_{3}+\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)$.
- Note that $\tau(f)$ is multi-linear.
- It can be easily shown that, for any $r, \operatorname{deg}\left(\tau\left(\operatorname{MOD}_{4, r}^{n}\right)\right) \leq 3$, while $\operatorname{deg}\left(\tau\left(\operatorname{MOD}_{3, r}^{n}\right)\right) \geq n-1$.

Lemma (Degree lower bound)
Any circuit computing f contains at least $\operatorname{deg}(\tau(f))-1$ AND-type gates.

Combined Complexity Measure

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance.

Combined Complexity Measure

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Combined Complexity Measure

Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Definition

For a circuit C, let $A(C)$ and $X(C)$ denote the number of AND- and XOR-type gates in C, respectively. Let also $\mu(C)=3 X(C)+2 A(C)$.

An Improved Lower Bound

Lemma
For any circuit C computing $f \in Q_{2,3}^{n}, \mu(C)=3 X(C)+2 A(C) \geq 6 n-24$.

An Improved Lower Bound

Lemma
For any circuit C computing $f \in Q_{2,3}^{n}, \mu(C)=3 X(C)+2 A(C) \geq 6 n-24$.

Proof

An Improved Lower Bound

Lemma
For any circuit C computing $f \in Q_{2,3}^{n}, \mu(C)=3 X(C)+2 A(C) \geq 6 n-24$.

Proof

- As in the previous proof, we consider a top gate $Q\left(x_{i}, x_{j}\right)$ and assume wlog that x_{i} feeds also another gate P.

An Improved Lower Bound

Lemma

For any circuit C computing $f \in Q_{2,3}^{n}, \mu(C)=3 X(C)+2 A(C) \geq 6 n-24$.

Proof

- As in the previous proof, we consider a top gate $Q\left(x_{i}, x_{j}\right)$ and assume wlog that x_{i} feeds also another gate P.
- There are two cases:

An Improved Lower Bound

Lemma

For any circuit C computing $f \in Q_{2,3}^{n}, \mu(C)=3 X(C)+2 A(C) \geq 6 n-24$.

Proof

- As in the previous proof, we consider a top gate $Q\left(x_{i}, x_{j}\right)$ and assume wlog that x_{i} feeds also another gate P.
- There are two cases:

- In both cases, we can assign x_{i} a constant such that μ is reduced at least by 6 .

7n/3 Lower Bound

Lemma

Let $f \in Q_{2,3}^{n}$ and $\operatorname{deg}(\tau(f)) \geq n-c$, then $C(f) \geq 7 n / 3-c^{\prime}$.

7n/3 Lower Bound

Lemma
Let $f \in Q_{2,3}^{n}$ and $\operatorname{deg}(\tau(f)) \geq n-c$, then $C(f) \geq 7 n / 3-c^{\prime}$.
proof
Let C be an optimal circuit computing f.

7n/3 Lower Bound

Lemma
Let $f \in Q_{2,3}^{n}$ and $\operatorname{deg}(\tau(f)) \geq n-c$, then $C(f) \geq 7 n / 3-c^{\prime}$.
proof
Let C be an optimal circuit computing f.

$$
\begin{aligned}
3 X(C)+2 A(C) & \geq 6 n-24 \\
A(C) & \geq n-c-1 \\
\hline C(f)=3 X(C)+3 A(C) & \geq 7 n-25-c
\end{aligned}
$$

Further Improvements

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
- Remind that $\tau\left(\mathrm{MOD}_{3}^{n}\right)=x_{1} x_{2} \ldots x_{n}+\ldots$, so any circuit computing MOD_{3}^{n} must have at least $(n-1)$ AND-type gates just in order to compute this monomial.

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
- Remind that $\tau\left(\mathrm{MOD}_{3}^{n}\right)=x_{1} x_{2} \ldots x_{n}+\ldots$, so any circuit computing MOD_{3}^{n} must have at least ($n-1$) AND-type gates just in order to compute this monomial.
- Probably, more AND-type gates are needed to compute all the other monomials?

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
- Remind that $\tau\left(\mathrm{MOD}_{3}^{n}\right)=x_{1} x_{2} \ldots x_{n}+\ldots$, so any circuit computing MOD_{3}^{n} must have at least ($n-1$) AND-type gates just in order to compute this monomial.
- Probably, more AND-type gates are needed to compute all the other monomials?
- No, there is a circuit computing MOD_{3}^{n} of size $3 n$ containing exactly n AND-type gates.

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
- Remind that $\tau\left(\mathrm{MOD}_{3}^{n}\right)=x_{1} x_{2} \ldots x_{n}+\ldots$, so any circuit computing MOD_{3}^{n} must have at least ($n-1$) AND-type gates just in order to compute this monomial.
- Probably, more AND-type gates are needed to compute all the other monomials?
- No, there is a circuit computing MOD_{3}^{n} of size $3 n$ containing exactly n AND-type gates.
- Moreover, any symmetric function can be computed using only n AND-type gates.

Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
- Remind that $\tau\left(\mathrm{MOD}_{3}^{n}\right)=x_{1} x_{2} \ldots x_{n}+\ldots$, so any circuit computing MOD_{3}^{n} must have at least ($n-1$) AND-type gates just in order to compute this monomial.
- Probably, more AND-type gates are needed to compute all the other monomials?
- No, there is a circuit computing MOD_{3}^{n} of size $3 n$ containing exactly n AND-type gates.
- Moreover, any symmetric function can be computed using only n AND-type gates.
- No lower bound better than $n-1$ is known! Though the multiplicative complexity of almost all functions is exponential.

MOD_{3} vs MOD_{4}

MOD_{3} is not simpler than MOD_{4}
For circuits and formulas over B_{2} and U_{2}, it is known that MOD_{3} is not simpler than MOD_{4}. The exact complexity of MOD_{4} is known for some of these models: $C_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=2.5 n-c, L_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=\Theta(n \log n)$. The exact complexity of MOD_{3} is known for none of these models.

MOD_{3} vs MOD_{4}

MOD_{3} is not simpler than MOD_{4}
For circuits and formulas over B_{2} and U_{2}, it is known that MOD_{3} is not simpler than MOD_{4}. The exact complexity of MOD_{4} is known for some of these models: $C_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=2.5 n-c, L_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=\Theta(n \log n)$. The exact complexity of MOD_{3} is known for none of these models.

Why MOD_{3} must be harder than MOD_{4} ?

MOD_{3} vs MOD_{4}

MOD_{3} is not simpler than MOD_{4}
For circuits and formulas over B_{2} and U_{2}, it is known that MOD_{3} is not simpler than MOD_{4}. The exact complexity of MOD_{4} is known for some of these models: $C_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=2.5 n-c, L_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=\Theta(n \log n)$. The exact complexity of MOD_{3} is known for none of these models.

Why MOD_{3} must be harder than MOD_{4} ?

- 4 is a power of 2,3 is not. To compute MOD_{4}^{n}, compute the bit representation of $\sum x_{i}$ and check the last two bits.

MOD_{3} vs MOD_{4}

MOD_{3} is not simpler than MOD_{4}
For circuits and formulas over B_{2} and U_{2}, it is known that MOD_{3} is not simpler than MOD_{4}. The exact complexity of MOD_{4} is known for some of these models: $C_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=2.5 n-c, L_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=\Theta(n \log n)$. The exact complexity of MOD_{3} is known for none of these models.

Why MOD_{3} must be harder than MOD_{4} ?

- 4 is a power of 2,3 is not. To compute MOD_{4}^{n}, compute the bit representation of $\sum x_{i}$ and check the last two bits.
- MOD_{3} survives under substitutions like $x_{i}=x_{j}$.

MOD_{3} vs MOD_{4}

MOD_{3} is not simpler than MOD_{4}
For circuits and formulas over B_{2} and U_{2}, it is known that MOD_{3} is not simpler than MOD_{4}. The exact complexity of MOD_{4} is known for some of these models: $C_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=2.5 n-c, L_{B_{2}}\left(\mathrm{MOD}_{4}^{n}\right)=\Theta(n \log n)$. The exact complexity of MOD_{3} is known for none of these models.

Why MOD_{3} must be harder than MOD_{4} ?

- 4 is a power of 2,3 is not. To compute MOD_{4}^{n}, compute the bit representation of $\sum x_{i}$ and check the last two bits.
- MOD_{3} survives under substitutions like $x_{i}=x_{j}$.
- $C_{B_{2}}\left(\mathrm{MOD}_{3}^{n}\right)$ for $n \leq 5$ "grows like" $3 n$.

Open Problems

Open Problems

(1) Close the gaps:

$$
\begin{gathered}
2.5 n \leq C_{B_{2}}\left(\mathrm{MOD}_{3}^{n}\right) \leq 3 n \\
4 n \leq C_{U_{2}}\left(\mathrm{MOD}_{4}^{n}\right) \leq 5 n
\end{gathered}
$$

Open Problems

(1) Close the gaps:

$$
\begin{gathered}
2.5 n \leq C_{B_{2}}\left(\mathrm{MOD}_{3}^{n}\right) \leq 3 n \\
4 n \leq C_{U_{2}}\left(\mathrm{MOD}_{4}^{n}\right) \leq 5 n
\end{gathered}
$$

(2) Prove a cn lower bound (for a constant $c>1$) on the multiplicative complexity of an explicit Boolean function.

Thank you for your attention!

