Lower Bounds on Circuit Complexity

A. Kulikov

Steklov Institute of Mathematics at St. Petersburg

Estonian Theory Days
02 October 2009
inputs: propositional variables x_1, x_2, \ldots, x_n and constants 0, 1

gates: binary functions

fan-out of a gate is unbounded
Random Functions are Complex

Shannon counting argument: count how many different Boolean functions in \(n \) variables can be computed by circuits with \(t \) gates and compare this number with the total number \(2^{2^n} \) of all Boolean functions.

The number \(F(n, t) \) of circuits of size \(\leq t \) with \(n \) input variables does not exceed \((16(t + n + 2))^2 \) \(t \).

Each of \(t \) gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate (\(\leq t \) choices) or a variable or a constant (\(\leq n + 2 \) choices).

For \(t = 2^{n / (10n)} \), \(F(n, t) \) is approximately \(2^{2^n / 5} \), which is \(\ll 2^{2^n} \).

Thus, the circuit complexity of almost all Boolean functions on \(n \) variables is exponential in \(n \). Still, we do not know any explicit function with super-linear circuit complexity.
Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.

The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed $(16(t + n + 2)^2)^t$.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

For $t = 2^{n/(10n)}$, $F(n, t)$ is approximately $2^{2^{n/5}}$, which is $\ll 2^{2^{n}}$.

Thus, the circuit complexity of almost all Boolean functions on n variables is exponential in n. Still, we do not know any explicit function with super-linear circuit complexity.
Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in \(n \) variables can be computed by circuits with \(t \) gates and compare this number with the total number \(2^{2n} \) of all Boolean functions.

- The number \(F(n, t) \) of circuits of size \(\leq t \) with \(n \) input variables does not exceed
 \[
 (16(t + n + 2)^2)^t.
 \]

 Each of \(t \) gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate (\(\leq t \) choices) or a variables or a constant (\(\leq n + 2 \) choices).
Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.

- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed
 \[(16(t + n + 2)^2)^t.\]

 Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variable or a constant ($\leq n + 2$ choices).

- For $t = 2^n/(10n)$, $F(n, t)$ is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.
Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number 2^{2^n} of all Boolean functions.

- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

 $$ (16(t + n + 2)^2)^t. $$

 Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

- For $t = 2^n/(10n)$, $F(n, t)$ is approximately $2^{2n}/5$, which is $\ll 2^{2n}$.

- Thus, the circuit complexity of almost all Boolean functions on n variables is exponential in n. Still, we do not know any explicit function with super-linear circuit complexity.
Known Lower Bounds

<table>
<thead>
<tr>
<th>Basis</th>
<th>Circuit Size</th>
<th>Formula Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>full binary basis B_2</td>
<td>$3n - o(n)$</td>
<td>$n^{2-o(1)}$</td>
</tr>
<tr>
<td></td>
<td>[Blum]</td>
<td>[Nechiporuk]</td>
</tr>
<tr>
<td>basis $U_2 = B_2 \setminus {\oplus, \equiv}$</td>
<td>$5n - o(n)$</td>
<td>$n^{3-o(1)}$</td>
</tr>
<tr>
<td></td>
<td>[Iwama et al.]</td>
<td>[Hastad]</td>
</tr>
<tr>
<td>monotone basis $M_2 = {\lor, \land}$</td>
<td>exponential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Razborov; Alon, Boppana; Andreev; Karchmer, Wigderson]</td>
<td></td>
</tr>
</tbody>
</table>
Explicit Functions

We are interested in explicitly defined Boolean functions of high circuit complexity. Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^{n^2/10}$. To avoid tricks like this one, we say that a function f is explicitly defined if $f - 1$ is in NP. Usually, under a Boolean function f we actually understand an infinite sequence $\{f_n | n = 1, 2, ...\}$.
Explicit Functions

We are interested in explicitly defined Boolean functions of high circuit complexity.
Explicit Functions

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.

We are interested in explicitly defined Boolean functions of high circuit complexity.

Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.

To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.
Explicit Functions

- We are interested in explicitly defined Boolean functions of high circuit complexity.
- Not explicitly defined function of high circuit complexity: enumerate all Boolean functions on n variables and take the first with circuit complexity at least $2^n/(10n)$.
- To avoid tricks like this one, we say that a function f is explicitly defined if $f^{-1}(1)$ is in NP.
- Usually, under a Boolean function f we actually understand an infinite sequence $\{f_n \mid n = 1, 2, \ldots \}$.
Known Lower Bounds for Circuits over B_2

Known Lower Bounds

- $2n - c$ [Schnorr, 74]
- $2.5n - o(n)$ [Paul, 77]
- $2.5n - c$ [Stockmeyer, 77]
- $3n - o(n)$ [Blum, 84]
Known Lower Bounds for Circuits over B_2

Known Lower Bounds

- $2n - c$ [Schnorr, 74]
- $2.5n - o(n)$ [Paul, 77]
- $2.5n - c$ [Stockmeyer, 77]
- $3n - o(n)$ [Blum, 84]

This Talk

In this talk, we will present a proof of a $7n/3 - c$ lower bound which is as simple as Schnorr’s proof of $2n - c$ lower bound.
Known Lower Bounds for Circuits over B_2

Known Lower Bounds

- $2n - c$ [Schnorr, 74]
- $2.5n - o(n)$ [Paul, 77]
- $2.5n - c$ [Stockmeyer, 77]
- $3n - o(n)$ [Blum, 84]

This Talk

In this talk, we will present a proof of a $7n/3 - c$ lower bound which is as simple as Schnorr’s proof of $2n - c$ lower bound.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.
Gate Elimination Method

The main idea

Take an optimal circuit for the function in question. Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates. A gate is eliminated if it computes a constant or a variable. By repeatedly applying this process, conclude that the original circuit must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.
Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.

Remark

This method is very unlikely to produce non-linear lower bounds.
Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.

Remark

This method is very unlikely to produce non-linear lower bounds.
Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.
Gate Elimination Method

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.
Example
Example

assign $x_1 = 1$
Example

G_5 now computes $G_3 \oplus 1 = \neg G_3$
Example

\[x_2 \oplus G_1 \lor x_3 \lor G_2 \land x_3 \oplus G_4 \land \neg G_6 \]
now we can change the binary function assigned to G_6
Example

\[x_2 \oplus G_1 \lor G_2 \land G_3 \oplus G_4 \equiv G_6 \]
Example

now assign $x_3 = 0$
Example

\[G_1 \oplus G_2 \lor G_3 \land G_4 \equiv G_6 \]

Then is equal to \(x_2 \)

\[x_2 \rightarrow G_1 \]

\[0 \rightarrow G_2 \]

\[G_3 \rightarrow G_4 \]

\[G_6 \rightarrow x_4 \]
Example

\[x_2 \lor G_2 \land G_3 \oplus G_4 \equiv G_6 \]

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)
Example

\[G_2 = x_4 \]
Example
The Class $Q_{2,3}^n$

Definition

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ belongs to the class $Q_{2,3}^n$ if

1. for all different $i, j \in \{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
2. for all $i \in \{1, \ldots, n\}$, one obtains a subfunction in $Q_{n-1,3}^2$ (if $n \geq 4$) by replacing x_i by any constant.
The Class $Q_{2,3}^n$

Definition

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ belongs to the class $Q_{2,3}^n$ if

1. for all different $i, j \in \{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;
The Class $Q_{2,3}^n$

Definition

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ belongs to the class $Q_{2,3}^n$ if

1. for all different $i, j \in \{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;

2. for all $i \in \{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_i by any constant.
The Class $Q_{2,3}^n$

Definition

A function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ belongs to the class $Q_{2,3}^n$ if

1. for all different $i, j \in \{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;

2. for all $i \in \{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_i by any constant.

Modular functions
The Class $Q_{2,3}^n$

Definition

A function $f : \{0, 1\}^n \to \{0, 1\}$ belongs to the class $Q_{2,3}^n$ if

1. for all different $i, j \in \{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;

2. for all $i \in \{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_i by any constant.

Modular functions

- Let $\text{MOD}_{m,r}^n(x_1, \ldots, x_n) = 1$ iff $\sum_{i=1}^n x_i \equiv r \pmod{m}$.

The Class $Q_{2,3}^n$

Definition

A function $f : \{0, 1\}^n \to \{0, 1\}$ belongs to the class $Q_{2,3}^n$ if

1. for all different $i, j \in \{1, \ldots, n\}$, one obtains at least three different subfunctions by replacing x_i and x_j by constants;

2. for all $i \in \{1, \ldots, n\}$, one obtains a subfunction in $Q_{2,3}^{n-1}$ (if $n \geq 4$) by replacing x_i by any constant.

Modular functions

- Let $\text{MOD}_{m,r}^n(x_1, \ldots, x_n) = 1$ iff $\sum_{i=1}^n x_i \equiv r \pmod{m}$.
- Then $\text{MOD}_{3,r}^n, \text{MOD}_{4,r}^n \in Q_{2,3}^n$, but $\text{MOD}_{2,r}^n \notin Q_{2,3}^n$.
Theorem

If \(f \in Q_{2,3}^n \), then \(C(f) \geq 2n - 8 \).
Schnorr’s $2n$ Lower Bound

Theorem

If $f \in Q_{2,3}^n$, then $C(f) \geq 2n - 8$.

Proof
Schnorr’s 2n Lower Bound

Theorem

If \(f \in Q_{2,3}^n \), then \(C(f) \geq 2n - 8 \).

Proof

- Induction on \(n \). If \(n \leq 4 \), then the statement is trivial.
Theorem

If \(f \in Q_{2,3}^n \), then \(C(f) \geq 2n - 8 \).

Proof

- Induction on \(n \). If \(n \leq 4 \), then the statement is trivial.
- Consider an optimal circuit and its top gate \(Q \) which is fed by different variables \(x_i \) and \(x_j \) (they are different, since the circuit is optimal).
Schnorr’s 2n Lower Bound

Theorem

If \(f \in Q_{2,3}^n \), then \(C(f) \geq 2n - 8 \).

Proof

- Induction on \(n \). If \(n \leq 4 \), then the statement is trivial.
- Consider an optimal circuit and its top gate \(Q \) which is fed by different variables \(x_i \) and \(x_j \) (they are different, since the circuit is optimal).
- Note that \(Q = Q(x_i, x_j) \) can only take two values, 0 and 1, when \(x_i \) and \(x_j \) are fixed.
Schnorr’s 2n Lower Bound

Theorem

If \(f \in Q_{2,3}^n \), then \(C(f) \geq 2n - 8 \).

Proof

- Induction on \(n \). If \(n \leq 4 \), then the statement is trivial.
- Consider an optimal circuit and its top gate \(Q \) which is fed by different variables \(x_i \) and \(x_j \) (they are different, since the circuit is optimal).
- Note that \(Q = Q(x_i, x_j) \) can only take two values, 0 and 1, when \(x_i \) and \(x_j \) are fixed.
- Thus, either \(x_i \) or \(x_j \) fans out to another gate \(P \).
Theorem

If \(f \in Q^n_{2,3} \), then \(C(f) \geq 2n - 8 \).

Proof

- Induction on \(n \). If \(n \leq 4 \), then the statement is trivial.
- Consider an optimal circuit and its top gate \(Q \) which is fed by different variables \(x_i \) and \(x_j \) (they are different, since the circuit is optimal).
- Note that \(Q = Q(x_i, x_j) \) can only take two values, 0 and 1, when \(x_i \) and \(x_j \) are fixed.
- Thus, either \(x_i \) or \(x_j \) fans out to another gate \(P \).
- By assigning this variable, we eliminate at least two gates and get a subfunction from \(Q^{n-1}_{2,3} \).
AND-type Gates vs XOR-type Gates

Binary functions

The set B_2 of all binary functions contains 16 functions $f(x, y)$:

- 2 constants: 0, 1
- 4 degenerate functions: x, \overline{x}, y, \overline{y}.
- 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where a, b, $c \in \{0, 1\}$.
- 4 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.

Remark: Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.
Binary functions

The set B_2 of all binary functions contains 16 functions $f(x, y)$:

1. 2 constants: 0, 1
Binary functions

The set B_2 of all binary functions contains 16 functions $f(x, y)$:

1. 2 constants: 0, 1
2. 4 degenerate functions: x, \bar{x}, y, \bar{y}.
AND-type Gates vs XOR-type Gates

Binary functions

The set B_2 of all binary functions contains 16 functions $f(x, y)$:

1. 2 constants: 0, 1
2. 4 degenerate functions: x, \bar{x}, y, \bar{y}.
3. 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.

Remark: Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.
AND-type Gates vs XOR-type Gates

Binary functions

The set B_2 of all binary functions contains 16 functions $f(x, y)$:

1. 2 constants: 0, 1
2. 4 degenerate functions: x, \bar{x}, y, \bar{y}.
3. 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.
4. 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in \{0, 1\}$.

Remark: Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.
AND-type Gates vs XOR-type Gates

Binary functions

The set B_2 of all binary functions contains 16 functions $f(x, y)$:

1. 2 constants: 0, 1
2. 4 degenerate functions: x, \bar{x}, y, \bar{y}.
3. 2 XOR-type functions: $x \oplus y \oplus a$, where $a \in \{0, 1\}$.
4. 8 AND-type functions: $(x \oplus a)(y \oplus b) \oplus c$, where $a, b, c \in \{0, 1\}$.

Remark

Optimal circuits contain AND- and XOR-type gates only, as constant and degenerate gates can be easily eliminated.
AND-type Gates vs XOR-type Gates

AND-type gates are easier to handle than XOR-type gates. Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!

While by assigning any constant to x_i, we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or $\overline{x_j}$. That is why, in particular, the current record bounds for circuits over $\mathbb{F}_2^2 = \mathbb{B}_2 \{\oplus, \equiv\}$ are stronger than the bounds over \mathbb{B}_2.

Usually, the main bottleneck of a proof based on gate elimination is a circuit whose top contains many XOR-type gates.
AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let \(Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c \) be an AND-type gate. Then by assigning \(x_i = a \) or \(x_j = b \) we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!

While by assigning any constant to \(x_i \), we obtain from \(Q(x_i, x_j) = x_i \oplus x_j \oplus c \) either \(x_j \) or \(\overline{x_j} \). That is why, in particular, the current record bounds for circuits over \(U_2 = \{\oplus, \equiv\} \) are stronger than the bounds over \(B_2 \). Usually, the main bottleneck of a proof based on gate elimination is a circuit whose top contains many XOR-type gates.
AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let $Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c$ be an AND-type gate. Then by assigning $x_i = a$ or $x_j = b$ we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to x_i, we obtain from $Q(x_i, x_j) = x_i \oplus x_j \oplus c$ either x_j or \bar{x}_j.
AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let \(Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c \) be an AND-type gate. Then by assigning \(x_i = a \) or \(x_j = b \) we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to \(x_i \), we obtain from \(Q(x_i, x_j) = x_i \oplus x_j \oplus c \) either \(x_j \) or \(\bar{x}_j \).
- That is why, in particular, the current record bounds for circuits over \(U_2 = B_2 \setminus \{\oplus, \equiv\} \) are stronger than the bounds over \(B_2 \).
AND-type Gates vs XOR-type Gates

- AND-type gates are easier to handle than XOR-type gates.
- Let \(Q(x_i, x_j) = (x_i \oplus a)(x_j \oplus b) \oplus c \) be an AND-type gate. Then by assigning \(x_i = a \) or \(x_j = b \) we make this gate constant. That is, we eliminate not only this gate, but also all its direct successors!
- While by assigning any constant to \(x_i \), we obtain from \(Q(x_i, x_j) = x_i \oplus x_j \oplus c \) either \(x_j \) or \(\overline{x}_j \).
- That is why, in particular, the current record bounds for circuits over \(U_2 = B_2 \setminus \{\oplus, \equiv\} \) are stronger than the bounds over \(B_2 \).
- Usually, the main bottleneck of a proof based on gate elimination is a circuit whose top contains many XOR-type gates.
Polynomials over $\mathbb{GF}(2)$

Let $\tau(f)$ denote the unique polynomial over $\mathbb{GF}(2)$ representing f. E.g., $\tau(MOD_3, 0) = x_1x_2x_3 + (1 - x_1)(1 - x_2)(1 - x_3)$.

Note that $\tau(f)$ is multi-linear.

It can be easily shown that, for any r, $\deg(\tau(MOD_n^4, r)) \leq 3$, while $\deg(\tau(MOD_n^3, r)) \geq n - 1$.

Lemma (Degree lower bound) Any circuit computing f contains at least $\deg(\tau(f)) - 1$ AND-type gates.
Polynomials over $\text{GF}(2)$

Let $\tau(f)$ denote the unique polynomial over $\text{GF}(2)$ representing f.

E.g., $\tau(\text{MOD}_3 x) = x^1 x^2 x^3 + (1 - x^1)(1 - x^2)(1 - x^3)$.

Note that $\tau(f)$ is multi-linear.

It can be easily shown that, for any r, $\deg(\tau(\text{MOD}_n r)) \leq 3$, while $\deg(\tau(\text{MOD}_n r)) \geq n - 1$.

Lemma (Degree lower bound)
Any circuit computing f contains at least $\deg(\tau(f)) - 1$ AND-type gates.
Polynomials over GF(2)

Let \(\tau(f) \) denote the unique polynomial over GF(2) representing \(f \).

E.g., \(\tau(\text{MOD}_3,0) = x_1x_2x_3 + (1-x_1)(1-x_2)(1-x_3) \).
Polynomials over $\text{GF}(2)$

- Let $\tau(f)$ denote the unique polynomial over $\text{GF}(2)$ representing f.
- E.g., $\tau(\text{MOD}_{3,0}^3) = x_1x_2x_3 + (1 - x_1)(1 - x_2)(1 - x_3)$.
- Note that $\tau(f)$ is multi-linear.
Polynomials over $\text{GF}(2)$

- Let $\tau(f)$ denote the unique polynomial over $\text{GF}(2)$ representing f.
- E.g., $\tau(\text{MOD}_3^3, 0) = x_1x_2x_3 + (1 - x_1)(1 - x_2)(1 - x_3)$.
- Note that $\tau(f)$ is multi-linear.
- It can be easily shown that, for any r, $\deg(\tau(\text{MOD}_4^n, r)) \leq 3$, while $\deg(\tau(\text{MOD}_3^n, r)) \geq n - 1$.
Let \(\tau(f) \) denote the unique polynomial over \(\text{GF}(2) \) representing \(f \).

E.g., \(\tau(\text{MOD}_3^3, 0) = x_1 x_2 x_3 + (1 - x_1)(1 - x_2)(1 - x_3) \).

Note that \(\tau(f) \) is multi-linear.

It can be easily shown that, for any \(r \), \(\deg(\tau(\text{MOD}_4^n, r)) \leq 3 \), while \(\deg(\tau(\text{MOD}_3^n, r)) \geq n - 1 \).

Lemma (Degree lower bound)

Any circuit computing \(f \) contains at least \(\deg(\tau(f)) - 1 \) AND-type gates.
Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance.
Idea

Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.
Combined Complexity Measure

Idea
Thus, in a bottleneck case we see only XOR-type gates, however we are given several AND-type gates in advance. Let us increase the weight of a XOR-type gate.

Definition
For a circuit C, let $A(C)$ and $X(C)$ denote the number of AND- and XOR-type gates in C, respectively. Let also $\mu(C) = 3X(C) + 2A(C)$.
Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \geq 6n - 24$.
Lemma

For any circuit C computing $f \in Q^n_{2,3}$, $\mu(C) = 3X(C) + 2A(C) \geq 6n - 24$.

Proof
An Improved Lower Bound

Lemma

*For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \geq 6n - 24$.***

Proof

- As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \geq 6n - 24$.

Proof

- As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.
- There are two cases:
An Improved Lower Bound

Lemma

For any circuit C computing $f \in Q_{2,3}^n$, $\mu(C) = 3X(C) + 2A(C) \geq 6n - 24$.

Proof

- As in the previous proof, we consider a top gate $Q(x_i, x_j)$ and assume wlog that x_i feeds also another gate P.
- There are two cases:

 - In both cases, we can assign x_i a constant such that μ is reduced at least by 6.
Lemma

Let \(f \in Q^n_{2,3} \) and \(\deg(\tau(f)) \geq n - c \), then \(C(f) \geq \frac{7n}{3} - c' \).
Lemma

Let \(f \in Q_{2,3}^n \) and \(\deg(\tau(f)) \geq n - c \), then \(C(f) \geq \frac{7n}{3} - c' \).

proof

Let \(C \) be an optimal circuit computing \(f \).
Lemma

Let $f \in Q_{2,3}^n$ and $\deg(\tau(f)) \geq n - c$, then $C(f) \geq 7n/3 - c'$.

proof

Let C be an optimal circuit computing f.

\[
3X(C) + 2A(C) \geq 6n - 24
\]

\[
A(C) \geq n - c - 1
\]

\[
C(f) = 3X(C) + A(C) \geq 7n - 25 - c
\]
Further Improvements

Prove a stronger lower bound on μ. A more involved case analysis is needed.

Prove stronger lower bound on $A(C)$. Remind that $\tau(MOD_{n^3}) = x_1 x_2 \ldots x_n + \ldots$, so any circuit computing MOD_{n^3} must have at least $(n-1)$ AND-type gates just in order to compute this monomial.

Probably, more AND-type gates are needed to compute all the other monomials? No, there is a circuit computing MOD_{n^3} of size 3^n containing exactly n AND-type gates. Moreover, any symmetric function can be computed using only n AND-type gates.

No lower bound better than $n - 1$ is known! Though the multiplicative complexity of almost all functions is exponential.
Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
 - Remind that $\tau(\text{MOD}_3^n) = x_1x_2 \ldots x_n + \ldots$, so any circuit computing MOD_3^n must have at least $(n - 1)$ AND-type gates just in order to compute this monomial.
Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
 - Remind that $\tau(\text{MOD}_3^n) = x_1x_2\ldots x_n + \ldots$, so any circuit computing MOD_3^n must have at least $(n - 1)$ AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?

No, there is a circuit computing MOD_3^n of size 3^n containing exactly n AND-type gates. Moreover, any symmetric function can be computed using only n AND-type gates. No lower bound better than $n - 1$ is known! Though the multiplicative complexity of almost all functions is exponential.
Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
 - Remind that $\tau(MOD_3^n) = x_1 x_2 \ldots x_n + \ldots$, so any circuit computing MOD_3^n must have at least $(n - 1)$ AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?
 - No, there is a circuit computing MOD_3^n of size $3n$ containing exactly n AND-type gates.
Further Improvements

- Prove a stronger lower bound on μ. A more involved case analysis is needed.
- Prove stronger lower bound on $A(C)$.
 - Remind that $\tau(\text{MOD}_{3}^{n}) = x_1x_2 \ldots x_n + \ldots$, so any circuit computing MOD_{3}^{n} must have at least $(n - 1)$ AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?
 - No, there is a circuit computing MOD_{3}^{n} of size $3n$ containing exactly n AND-type gates.
 - Moreover, any symmetric function can be computed using only n AND-type gates.
Further Improvements

- Prove a stronger lower bound on \(\mu \). A more involved case analysis is needed.
- Prove stronger lower bound on \(A(C) \).
 - Remind that \(\tau(\text{MOD}_3^n) = x_1 x_2 \ldots x_n + \ldots \), so any circuit computing \(\text{MOD}_3^n \) must have at least \((n - 1)\) AND-type gates just in order to compute this monomial.
 - Probably, more AND-type gates are needed to compute all the other monomials?
 - No, there is a circuit computing \(\text{MOD}_3^n \) of size \(3n\) containing exactly \(n \) AND-type gates.
 - Moreover, any symmetric function can be computed using only \(n \) AND-type gates.
 - No lower bound better than \(n - 1 \) is known! Though the multiplicative complexity of almost all functions is exponential.
MOD₃ vs MOD₄

MOD₃ is not simpler than MOD₄

For circuits and formulas over B_2 and U_2, it is known that MOD₃ is not simpler than MOD₄. The exact complexity of MOD₄ is known for some of these models: $C_{B_2}(\text{MOD}_4^n) = 2.5n - c$, $L_{B_2}(\text{MOD}_4^n) = \Theta(n \log n)$. The exact complexity of MOD₃ is known for none of these models.
MOD₃ is not simpler than MOD₄

For circuits and formulas over $B₂$ and $U₂$, it is known that MOD₃ is not simpler than MOD₄. The exact complexity of MOD₄ is known for some of these models: $C_{B₂}(\text{MOD}_n^4) = 2.5n - c$, $L_{B₂}(\text{MOD}_n^4) = \Theta(n \log n)$. The exact complexity of MOD₃ is known for none of these models.

Why MOD₃ must be harder than MOD₄?
MOD$_3$ vs MOD$_4$

MOD$_3$ is not simpler than MOD$_4$

For circuits and formulas over B_2 and U_2, it is known that MOD$_3$ is not simpler than MOD$_4$. The exact complexity of MOD$_4$ is known for some of these models: $C_{B_2}(\text{MOD}_4^n) = 2.5n - c$, $L_{B_2}(\text{MOD}_4^n) = \Theta(n \log n)$. The exact complexity of MOD$_3$ is known for none of these models.

Why MOD$_3$ must be harder than MOD$_4$?

- 4 is a power of 2, 3 is not. To compute MOD$_4^n$, compute the bit representation of $\sum x_i$ and check the last two bits.
MOD₃ vs MOD₄

MOD₃ is not simpler than MOD₄

For circuits and formulas over B_2 and U_2, it is known that MOD₃ is not simpler than MOD₄. The exact complexity of MOD₄ is known for some of these models: $C_{B_2}(\text{MOD}_4^n) = 2.5n - c$, $L_{B_2}(\text{MOD}_4^n) = \Theta(n \log n)$. The exact complexity of MOD₃ is known for none of these models.

Why MOD₃ must be harder than MOD₄?

- 4 is a power of 2, 3 is not. To compute MOD_4^n, compute the bit representation of $\sum x_i$ and check the last two bits.
- MOD₃ survives under substitutions like $x_i = x_j$.

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)

Lower Bounds on Circuit Complexity
MOD₃ vs MOD₄

MOD₃ is not simpler than MOD₄

For circuits and formulas over B_2 and U_2, it is known that MOD₃ is not simpler than MOD₄. The exact complexity of MOD₄ is known for some of these models: $C_{B_2}(\text{MOD}_4^n) = 2.5n - c$, $L_{B_2}(\text{MOD}_4^n) = \Theta(n \log n)$. The exact complexity of MOD₃ is known for none of these models.

Why MOD₃ must be harder than MOD₄?

- 4 is a power of 2, 3 is not. To compute MOD₄, compute the bit representation of $\sum x_i$ and check the last two bits.
- MOD₃ survives under substitutions like $x_i = x_j$.
- $C_{B_2}(\text{MOD}_3^n)$ for $n \leq 5$ “grows like” $3n$.
Open Problems

1. Close the gaps:

\[n \leq C_B 2 \mod n^3 \leq 3n^4 \leq C_U 2 \mod n^4 \leq 5n^2 \]

2. Prove a \(cn \) lower bound (for a constant \(c > 1 \)) on the multiplicative complexity of an explicit Boolean function.
Open Problems

1. Close the gaps:

\[2.5n \leq C_{B_2}(\text{MOD}_3^n) \leq 3n \]

\[4n \leq C_{U_2}(\text{MOD}_4^n) \leq 5n \]
Open Problems

1. Close the gaps:

\[2.5n \leq C_{B_2}(\text{MOD}_3^n) \leq 3n \]

\[4n \leq C_{U_2}(\text{MOD}_4^n) \leq 5n \]

2. Prove a \(cn \) lower bound (for a constant \(c > 1 \)) on the multiplicative complexity of an explicit Boolean function.
Thank you for your attention!