Analysis of the network security of the Estonian Mobile-ID identification protocol

Peeter Laud & Meelis Roos Cybernetica AS & Tartu University

The object

- A SIM-card that
 - contains two private keys;
 - is capable of signing with those keys;
 - works like an "'ordinary" SIM-card otherwise.
- During its activation SK AS issues certificates that
 - bind the corresponding public keys to your name;
 - state that the use of the first key is in identification
 - ...and the use of the second key is in signing documents.

The signing procedure

- \blacksquare The card receives (x, M) from the mobile operator.
 - \bullet x the (short) message to sign;
 - a couple of dozen bytes.
 - might be the hash of the "real" message.
 - lacktriangle M an explanatory text.
 - the channel from operator to SIM-card is secure.
- \blacksquare The card computes the control code cc(x) of x.
 - \bullet $cc(x) \in \{0000, 0001, 0002, \dots, 9999\}$
- \blacksquare The card shows cc(x) and M to the user (through the phone).
- \blacksquare If cc(x) and M OK, the user gives his/her PIN to the card.
 - ◆ Different PIN-s for different keys.
- The card verifies PIN, sends $\operatorname{sig}_{\operatorname{sk}}(x)$ to the operator.

 r_1 — a random number (10 bytes)

 r_2 — a short random number

DigiDocService computes

"Base" security model

- There are several users and servers, some under adversarial control.
- DigiDocService and mobile operator are honest.
 - No confusion between different mobile operators.
- Client apps. and phones have no malware.
 - ◆ The channels between the user and client app. / phone are secure.
- The adversary controls the insecure channels. It can read and write them.
- The adversary can take messages apart and construct new messages. It can generate new keys, random numbers, etc.
- The adversary can start new sessions.
- The adversary schedules all parties.

Perfect cryptography assumption

- Messages have structure
 - ♦ It is their syntax tree.
- A message can be analysed only according to its structure:
 - From (m_1, m_2) find m_1 and m_2 .
 - lacktriangle From $\operatorname{enc}_k(m)$ and k find m.
 - etc.
- To construct a message, we need all of its parts:
 - lacktriangle Need sk and m to construct $\operatorname{sig}_{\operatorname{sk}}(m)$.
 - etc.
- Different structure \Rightarrow different message.
 - does not apply to control codes.
- This is a constraint on the adversary!

Security properties we care about

- If U and S are honest then the TLS key they agreed on will not become known to the adversary.
- If S thinks it talks to U using key K and U is honest then U thinks it talks to S using key K.

We are protecting an honest server

 \blacksquare Integrity for U follows from the properties of TLS handshake.

Analysing the protocol

- We use the perfect cryptography assumption.
- The question "does protocol \mathfrak{P} " satisfy the security property \mathfrak{S} ?" is undecidable in general.
- Still, there are tools that take the description of a protocol and output whether it is secure.
 - Handle restricted classes of protocols.
 - Sometimes give wrong answer.
 - Only err at the side of caution.
- We have used ProVerif, http://www.proverif.ens.fr
- In the base security model the Mobile-ID identification protocol is secure against network attacks.

Relaxing the security model

- DigiDocService and Mobile Operator are just mediating parties.
- The security of the protocol should not depend on their honesty.

S

S

A possible scenario Generate r_2 , r'_2 , such that $cc(r_1||r_2) = c = cc(r'_1||r'_2)$ U, S', m', r'_1 UU, S,DDS

A possible scenario $S', m', r_1 \parallel r_2$ U, S', m', r_1' UU, S,DDS ΜO $cc(r_1||r_2) = c = cc(r_1'||r_2')$

A possible scenario $S', m', r_1 \parallel r_2$ U, S', m', r_1' UU, S,DDS MO $cc(r_1||r_2) = c = cc(r_1'||r_2')$

Malware in user's computer

- Full control over the client app. means knowing the TLS keys.
- Even a keylogger can cause a lot of harm if using the ID-card.

Malware in user's computer

- Full control over the client app. means knowing the TLS keys.
- Even a keylogger can cause a lot of harm if using the ID-card.
 - When using Mobile-ID, a keylogger in computer cannot record PINs.
- A similar level of control for the mobile-ID protocol might be the control over which control code is shown to the user.
- If the display manipulator also has network access then . . .

S

Confusing the user about server identities

- If the user is duped to connect to a rogue site, then a man-in-the-middle attack is possible.
 - ◆ The attack gives the adversary access to the real site in the name of the user.
 - ◆ This attack is also present when authenticating with passwords (code cards, code calculators, one-time passwords, etc.)
 - ◆ This attack is **not** present when using the ID-card.

Issues with SIM-card software

- \blacksquare The SIM-card software shows embedded newlines in m as line breaks.
 - lacktriangle The server can construct a message m that obscures the actual control code.
 - ◆ Not exploitable if the DigiDocService is honest; but must be considered otherwise.

Suggested changes

- Instead of signing the challenge r, sign (r, S).
- Whole challenge r should be chosen and the control code CC_1 computed by S.
 - lacktriangle S must avoid control code collsions in parallel sessions with the same U.
- Change the way m and CC_2 are shown on the phone screen and/or educate users such that CC_2 will not be obscured.

Still no protection against trojans in phone or computer.