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Zero-Knowledge Proofs

Full security of cryptographic protocols is
achieved usually by having a
zero-knowledge proof (of knowledge)

Zero-knowledge: does not leak any extra
information
Proof: the actions of any party are
consistent with his committed input Com(x)

We actually are interested in Σ-protocols
(see the paper)
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Range Proofs

It is often sufficient to ZK-prove that
committed input belongs to a correct set,
e.g., is Boolean

Example: we are currently implementing an
e-voting protocol where for correctness, it is
necessary to prove that x ∈ [0, H]

Without such a ZK proof, the voter could
induce “buffer overflow”-type errors
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Homomorphic Commitments

To construct efficient ZK proofs, one needs
to assume that Com satisfies nice algebraic
properties

Homomorphic commitment:
Com(x)Com(x ′) = Com(x + x ′)
From this trivially,∏

Com(xi)
ai = Com(

∑
aixi)

Example: to prove that x ∈ [0, 2` − 1],
commit to bits xi , then ZK-prove that
xi ∈ [0, 1], then compute
Com(x) =

∏
Com(xi)

2i
= Com(

∑
xi2i)
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Additive Combinatorics

Define A + B := {a + b : a ∈ A ∧ b ∈ B}
and b ∗ A = {ba : a ∈ A}

A + B is sumset, b ∗ A is b-dilate of A
Additive combinatorics is the sexy subject
that studies the properties of sumsets
Nobel price winners Terry Tao, Tim Gowers
work on additive combinatorics, and
recently Luca Trevisan and others have
tried to apply additive combinatorics in
theoretical computer science
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ZK-Proofs and AC

Last proof works since
[0, 2` − 1] =

∑
2i ∗ [0, 1]

To prove that x ∈ ValidSet :
commit to some xi , then ZK-prove that xi ∈ Si
for all i , where ValidSet =

∑
bi ∗ Si , then

compute Com(x) =
∏

Com(xi)
bi

Requires:
efficient sumset-presentation
ValidSet =

∑
bi ∗ Si — small n

efficient ZK-proofs that xi ∈ Si —
small/structured sets Si
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Range Proofs

Range proof: ZK proof that given
c = Com(x) ∧ x ∈ [0, H]

Proof that x ∈ [L, H + L] can be built on this by
using the homomorphic properties of Com,
since Com(x + L) = Com(x)Com(L)

Needed in e-voting, e-auctions and many
other applications
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Range Proofs: Previous Work

Folklore: to prove x ∈ [0, H], prove that
x ∈ [0, 2`] ∧ x ∈ [H − 2`, H] for H ≤ 2` < 2H

Twice less efficient than proof that x ∈ [0, 2`]

Lipmaa, Niemi, Asokan, 2002: write
[0, H] =

∑
Gi ∗ [0, 1] with

Gi :=
⌊

(H + 2i)/2i+1
⌋

Twice more efficient than the folklore proof
It’s easy to prove that xi ∈ [0, 1]
Communication complexity: Θ(log H)
Didn’t use the language of additive
combinatorics
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Range Proofs: Previous Work

Camenisch, Chaabouni, Shelat 2008:

Write [0, u` − 1] =
∑

u i ∗ [0, u − 1]
ZK proof that xi ∈ [0, u − 1] done by letting
verifier to sign values 0, . . . , u − 1, and the
prover to prove that he knows signatures on all
values xi
Uses specific signatures schemes based on
bilinear pairings
By selecting optimal u, the communication
complexity is Θ(log H/ log log H)

To prove that x ∈ [0, H], prove that
x ∈ [0, u` − 1] ∧ x ∈ [H − (u` − 1), H] for
H ≤ u` − 1 < 2H — twice less efficient
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Problem that We Solve

[LAN02]: [0, H] =
∑

Gi ∗ [0, 1] with
Gi =

⌊
(H + 2i)/2i+1

⌋

Problem: generalize [LAN02] to the case
u > 2
Question 1: can we write
[0, H] =

∑`−1
i=0 Gi ∗ [0, u − 1] with some Gi

and small `

Question 2: If so, compute Gi
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Problem: generalize [LAN02] to the case
u > 2
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∑`−1
i=0 Gi ∗ [0, u − 1] with some Gi

and small `
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and small `

Question 2: If so, compute Gi
Answer 1: we can write
[0, H] =

∑
Gi ∗ [0, 1] + [0, H ′]

` ≤ logu(H + 1) and H ′ < u − 1
If (u − 1) | H then H ′ = 0

Answer 2: we give a semi-closed form for Gi
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Basic Idea

Write [0, H0] = G0 ∗ [0, u − 1] + [0, H1] such
that H1 is minimal

Equiv.: Cover [0, H0] with u intervals of size
H1 that start at periodic positions iG0
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[0, 17] = 6 ∗ [0, 2] + [0, 5] = 4 ∗ [0, 3] + [0, 5] =

3 ∗ [0, 4] + [0, 5]

Chaabouni, Lipmaa, Shelat Additive Combinatorics and DL-Based Range Protocols



Motivation
Our Results

Previous Work
New Sumset-Representation

Basic Idea

Write [0, H0] = G0 ∗ [0, u − 1] + [0, H1] such
that H1 is minimal
Equiv.: Cover [0, H0] with u intervals of size
H1 that start at periodic positions iG0

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

16151413121110987643210 175

[0, 17] = 6 ∗ [0, 2] + [0, 5] = 4 ∗ [0, 3] + [0, 5] =

3 ∗ [0, 4] + [0, 5]

Chaabouni, Lipmaa, Shelat Additive Combinatorics and DL-Based Range Protocols



Motivation
Our Results

Previous Work
New Sumset-Representation

Basic Idea

Write [0, H0] = G0 ∗ [0, u − 1] + [0, H1] such
that H1 is minimal
Equiv.: Cover [0, H0] with u intervals of size
H1 that start at periodic positions iG0

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

16151413121110987643210 175

[0, 17] = 6 ∗ [0, 2] + [0, 5] = 4 ∗ [0, 3] + [0, 5] =

3 ∗ [0, 4] + [0, 5]
Chaabouni, Lipmaa, Shelat Additive Combinatorics and DL-Based Range Protocols



Motivation
Our Results

Previous Work
New Sumset-Representation

Basic Idea

Cover [0, H0] with u intervals of minimal size
H1 that start at periodic positions iG0

Trivially, H1 ≥ G0 − 1 and
(u − 1)G0 + H1 = H0

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

16151413121110987643210 175

Chaabouni, Lipmaa, Shelat Additive Combinatorics and DL-Based Range Protocols



Motivation
Our Results

Previous Work
New Sumset-Representation

Basic Idea

Cover [0, H0] with u intervals of minimal size
H1 that start at periodic positions iG0

Trivially, H1 ≥ G0 − 1 and
(u − 1)G0 + H1 = H0

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������

��������������������������������������

��������������������������������������

16151413121110987643210 175

Chaabouni, Lipmaa, Shelat Additive Combinatorics and DL-Based Range Protocols



Motivation
Our Results

Previous Work
New Sumset-Representation

Basic Idea

Cover [0, H0] with u intervals of minimal size
H1 that start at periodic positions iG0

Trivially, H1 ≥ G0 − 1 and
(u − 1)G0 + H1 = H0

We need minimal H1 so set H1 := G0 − 1
Thus
(u − 1)G0 + G0 − 1 = H0 =⇒ G0 = (H0 + 1)/u
Since G0 is integer, set G0 := b(H0 + 1)/uc
Also set H1 := H0 − (u − 1)G0

Optimal solution to
[0, H0] = G0 ∗ [0, u − 1] + H1
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Basic Idea

We got [0, H0] = G0 ∗ [0, u − 1] + [0, H1]
with H1 < H0

If H1 ≥ u − 1, then continue recursively by
setting

Gi := b(Hi + 1)/uc
Hi+1 := Hi − (u − 1)Gi

It is easy to see that this process stops
within ` ≤ logu(H + 1) steps
Set H ′ := H` = H − bH/(u − 1)c · (u − 1)
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Theorem

Theorem
[0, H] =

∑`
i=0 Gi ∗ [0, u − 1] + [0, H ′] with

` ≤ logu(H + 1), Gi given by recursive formulas,
and H ′ as in the last slide

Optimal case: u ≈ log2 H/ log2 log2 H, then the
range proof has length Θ(log H/ log H log H)
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Semi-Closed Form for Gi

Theorem
Let H =

∑
hi2i . Then

Gi =
⌊ H

ui+1

⌋
+

⌊
hi+1+(

∑i−1
j=0 hj mod u−1)

u

⌋

See the paper. Proof by induction, requires
some case analysis.
[LAN02] result follows: there u = 2, thus
anything ≡ 0 mod u − 1
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More Details

ZK-proof follows [CCS08], but uses the new
sumset-representation of [0, H]

Additional optimization:
Recall that if (u − 1) | H then H ′ = 0
Instead of x ∈ [0, H] we prove that
(u − 1)x ∈ [0, (u − 1)H]

Range proof twice more efficient than
[CCS08] for general H
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Questions?

Our contribution: cryptographic problem
solved by reformulating a problem in the
language of additive combinatorics, but
solving it by a new (independent) technique

Question: Can you use existing techniques
from AC?
Open question: devise an “efficient”
sumset-representation for a large family of
sets A
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