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Basic definitions

Notation
Bnm = {f: B" — B™}, where B = {0,1}. J
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Notation
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Definition
Circuit complexity of a function f is the smallest number of gates in a circuit
computing f (such circuit is called an optimal circuit for f)

C(f) = min C(c).

c:Vx c(x)=Ff(x)

Definition

fn € Bpm, injective. The measure of feeble one-wayness Mg(7,) =

Definition
{f,} is feebly one-way of order k if liminf,_,., C(f,) = oo and
liminf,_ o Me(f,) = k, with k € (1, 00].
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Hiltgen's function of order 3/2

fo((x1, %)) = (V1, ---Yn)s
where
Yi = Xi D Xjq1 1<i<n

Vi = X1 @X(,,/Q“ ®x, I=n.
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Theorem
For all n > 5, the functions f, satisfy C(f,) = n+1 and C(f;) = [3(n—1)]. J

n

Corollary
{f,} is feebly one-way of order 3/2. J




Methods

© Gate elimination.

@ Lower bounds (Lamagna and Savage).

Theorem
If f € B, depends non-idly on each of its n variables, then

C(fy>n—1.

Theorem

Let f = {f(o), e f(m)} € By m. If the m component functions () are pairwise
different and if they satisfy C(f(’)) > c > 1, then

C(f)>c+m—1.

4/12




Hiltgen's function of order 3/2

Proof.
0 C(fn) S n—+ 1.
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5/12




Hiltgen's function of order 3/2

Proof.
Q C(f,) <n+1.
Q C(f)) =n+1
@ Consider S; = {x1, X[n/27,Xn}, S2 = {x1,...,xn} \ S1.

@ Set x; =0 Vx; € S,. We eliminate at least n — 1 gates.
0 C(yn)=2.
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Hiltgen's function of order 3/2

Proof.
Q C(f,) <n+1.
Q C(f)) =n+1
® Consider 51 = {x1, Xfn/27,%n}, S2 = {x1,...,xa} \ S1.

© Set x; =0 Vx; € S2. We eliminate at least n — 1 gates.
o C(f;)=13(n-1)].
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Hiltgen's function of order 3/2

Proof.

Q C(f)) <n+1

Q@ C(f,)) >n+ 1
® Consider 51 = {x1, Xfn/27,%n}, S2 = {x1,...,xa} \ S1.
© Set x; =0 Vx; € S2. We eliminate at least n — 1 gates.
0 C(yn)=2.

o C(f,Y)=[3(n-1)].
o C(x)>[n/2] —1.
@ C(fi")=([n/21=1)+n-1=3(n-1)].
© xi =yi®xis1,i #n= C(f; ") < |3(n—1)].
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Hiltgen's function of order 3/2

onsider S1 = {x1,Xtn/21, Xn}, S2 = {x1,...,xn} \ S1.
et x; = 0 Vx; € S2. We eliminate at least n — 1 gates.

(
C(f,
)
)
© C(y) =
(s
)
)
)

o wm

D=3 (n—l)J

C(xi) > [n/2] — 1.
C(f,)>([n/21 = 1)+ n—1=3(n—-1)].
Xi = Yi @ Xit1, #n = C(fn ! < L%(nfl)J'

Remark
Hiltgen improved this family of permutations and got order 2.
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Perspectives

o Linear constructions: < n — 1 gates per one bit of
output.

o fislinear = f1is also linear.
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Perspectives

o Linear constructions: < n — 1 gates per one bit of
output.

o fislinear = f1is also linear.

o Nonlinear constructions are necessary!
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Non-linear function of order 2

yi = (X1 P x2)Xn B Xn_1
o = (1@ x)xn D x2

Y3 =x1Dx3
Ya =Xx38Xxa
Yn—-1 — Xp—2 D Xp—1

Yn = Xn
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Non-linear function of order 2

yi = (X1 D x2)xn D Xp—1
Y2 = (X198 x2)Xn B X2
Y3 =x1Dx3
Ya =Xx38Xxa

Yn—1 = Xn—2 D Xp—1
Yn = Xn
Xn = Yn

2 =1 D...DYn1)YnDYy2
Xne1 =D ... DYn1)Yn D0
Xp—2 = ( )

( )

YD DB Yn-1)YnDYy1 D yn
Xp3 =W1D... BYn-1)YnDPY1 D Yn-1D Yn-o2

X3 :(}/1@~--@Yn71)yn69y1@ynﬂ@...@ﬂ
x1 =D DY)V B Y1I DB Y1 D ... DYs
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Non-linear function of order 2

Theorem
{f,} is feebly one-way of order 2. J
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Non-linear function of order 2

Theorem
{f,} is feebly one-way of order 2.

Proof.

Q@ n-1<C(fh)<n+1l

Q@ 2n-3<C(f,YY<2n-2.
(= 2n 3<M,:(f)<2" 2
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Average case complexity

Notation

Co(f) — the minimal size of a circuit that correctly computes a function f € B,
on more than an of its inputs (a € (0,1)).
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Average case complexity
Notation

Co(f) — the minimal size of a circuit that correctly computes a function f € B,
on more than an of its inputs (a € (0, 1)).

Theorem
C3/4(fn_1) >2n—4.
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Average case complexity
Notation

Co(f) — the minimal size of a circuit that correctly computes a function f € B,
on more than an of its inputs (a € (0,1)).

Theorem
C3/4(fn_1) > 2n — 4.

Proof (Idea)

@ Consider optimal circuit for f,!

@ Step: substitute in place of y; (i # n) value from {0,1, y,,y, ® 1} that
eliminates at least 2 gates.

© Repeat n — 2 times.
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Average case complexity

Notation

Co(f) — the minimal size of a circuit that correctly computes a function f € B,
on more than an of its inputs (a € (0,1)).

Theorem
C3/4(fn_1) > 2n — 4.

Proof (Idea)

@ Consider optimal circuit for £~

@ Step: substitute in place of y; (i # n) value from {0,1, y,,y, ® 1} that
eliminates at least 2 gates.

1

© Repeat n — 2 times.

Lemma (unformally)

We can repeat our step n — 2 times.
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Average case complexity
Lemma (formalization)

In circuit, which computes £,

Yig=a1,-eyi=a| with / <n-3,n¢ {h,...,i} and
Vk € [1..1] a, € {0,1,yn, ¥» © 1} on more than 3 inputs, one can substitute in

place of y; (i # n) value from {0,1, y,, y, ® 1} that eliminates at least 2 gates
and obtained circuit computes f,~! on more than % residuary inputs.
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and obtained circuit computes f,~! on more than % residuary inputs.

Proof.
Consider topmost gate g. Let y; and y; be inputs.

© y; enters some other gate and i # n.
© Neither y; nor y; enters any other gate and i, j # n.
© j = n, y; doesn't enter any other gate and g is non-linear.

@ j = n, y; doesn't enter any other gate and g is linear.




Average case complexity

Lemma (formalization)

In circuit, which computes fn’l

Yig=a1,-eyi=a| with / <n-3,n¢ {h,...,i} and
Vk € [1..1] aj, € {0,1,yn,yn @ 1} on more than 3 inputs, one can substitute in

place of y; (i # n) value from {0,1, y,, y, ® 1} that eliminates at least 2 gates
and obtained circuit computes f,~! on more than % residuary inputs.

Proof.
Consider topmost gate g. Let y; and y; be inputs.

© y; enters some other gate and i # n.
© Neither y; nor y; enters any other gate and i, j # n.
© j = n, y; doesn't enter any other gate and g is non-linear.

@ j = n, y; doesn't enter any other gate and g is linear.
Assume g is output hx. Then

O Xklya=1=YiI®...0f Xkly,m0 = VI D .. ..
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Average case complexity

Lemma (formalization)

In circuit, which computes fn’l

Yig=a1,-eyi=a| with / <n-3,n¢ {h,...,i} and
Vk € [1..1] aj, € {0,1,yn,yn @ 1} on more than 3 inputs, one can substitute in

place of y; (i # n) value from {0,1, y,, y, ® 1} that eliminates at least 2 gates
and obtained circuit computes f,~! on more than % residuary inputs.

Proof.
Consider topmost gate g. Let y; and y; be inputs.

© y; enters some other gate and i # n.
© Neither y; nor y; enters any other gate and i, j # n.
© j = n, y; doesn't enter any other gate and g is non-linear.

@ j = n, y; doesn't enter any other gate and g is linear.
Assume g is output hx. Then

O Xklya=1=YiI®...0f Xkly,m0 = VI D .. ..
Q Xk = Yn.

g has children. Substitute y; = y, or y; = y, ® 1.




Hardness amplification

Let H(x () LxMY = (D), .. F(x(™M)Y),
)

where x( (x,l, Cey Xi)

Theorem

p(m) - any function.
Cjotm(H) = (20— 4)(m — logys p(m)).




Further research

@ to improve the order of security;

@ to devise other feebly secure cryptographic primitives.
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Further research

@ to improve the order of security;
@ to devise other feebly secure cryptographic primitives.

Known results:
o Linear feebly trapdoor construction (based on Hiltgen's
function of order 3/2) of order g—g;
e Quadratic feebly trapdoor construction (based on function of
order 2) of order {.

12 /12



