Constructions of feebly secure cryptographic primitives

Olga Melanich

Steklov Institute of Mathematics at St. Petersburg

3.10.2009

Notation

 $B_{n,m}=\{f:B^n o B^m\}$, where $B=\{0,1\}.$

Notation

$$B_{n,m} = \{f : B^n \to B^m\}, \text{ where } B = \{0,1\}.$$

Definition

Circuit complexity of a function f is the smallest number of gates in a circuit computing f (such circuit is called **an optimal circuit** for f)

$$C(f) = \min_{c: \forall x \ c(x) = f(x)} C(c).$$

Notation

$$B_{n,m} = \{f : B^n \to B^m\}, \text{ where } B = \{0,1\}.$$

Definition

Circuit complexity of a function f is the smallest number of gates in a circuit computing f (such circuit is called **an optimal circuit** for f)

$$C(f) = \min_{c: \forall x \ c(x) = f(x)} C(c).$$

Definition

 $f_n \in B_{n,m}$, injective. The measure of feeble one-wayness $M_F(f_n) = \frac{C(f_n^{-1})}{C(f_n)}$.

Notation

$$B_{n,m} = \{f : B^n \to B^m\}, \text{ where } B = \{0,1\}.$$

Definition

Circuit complexity of a function f is the smallest number of gates in a circuit computing f (such circuit is called **an optimal circuit** for f)

$$C(f) = \min_{c: \forall x \ c(x) = f(x)} C(c).$$

Definition

$$f_n \in B_{n,m}$$
, injective. The measure of feeble one-wayness $M_F(f_n) = \frac{C(f_n^{-1})}{C(f_n)}$.

Definition

 $\{f_n\}$ is feebly one-way of order \mathbf{k} if $\liminf_{n\to\infty} C(f_n) = \infty$ and $\liminf_{n\to\infty} M_F(f_n) = k$, with $k \in (1,\infty]$.

$$f_n((x_1,...x_n)) = (y_1,...y_n),$$

where

$$y_i = x_i \oplus x_{i+1} \qquad 1 \le i < n$$

$$y_i = x_1 \oplus x_{\lceil n/2 \rceil} \oplus x_n \quad i = n.$$

$$f_n((x_1,...x_n)) = (y_1,...y_n),$$

where

$$y_i = x_i \oplus x_{i+1} \qquad 1 \le i < n$$

$$y_i = x_1 \oplus x_{\lceil n/2 \rceil} \oplus x_n \quad i = n.$$

$$f_n^{-1}((y_1,...y_n))=(x_1,...x_n),$$

where

$$x_{i} = (y_{1} \oplus \cdots \oplus y_{i-1}) \oplus (y_{\lceil n/2 \rceil} \oplus \cdots \oplus y_{n-1}) \oplus y_{n} \quad 1 \leq i \leq \lceil n/2 \rceil$$

$$x_{i} = (y_{1} \oplus \cdots \oplus y_{\lceil n/2 \rceil - 1}) \oplus (y_{i} \oplus \cdots \oplus y_{n-1}) \oplus y_{n} \quad \lceil n/2 \rceil \leq i \leq n.$$

$$f_n((x_1,...x_n)) = (y_1,...y_n),$$

where

$$y_i = x_i \oplus x_{i+1} \qquad 1 \le i < n$$

$$y_i = x_1 \oplus x_{\lceil n/2 \rceil} \oplus x_n \quad i = n.$$

$$f_n^{-1}((y_1,...y_n)) = (x_1,...x_n),$$

where

$$x_{i} = (y_{1} \oplus \cdots \oplus y_{i-1}) \oplus (y_{\lceil n/2 \rceil} \oplus \cdots \oplus y_{n-1}) \oplus y_{n} \quad 1 \leq i \leq \lceil n/2 \rceil$$

$$x_{i} = (y_{1} \oplus \cdots \oplus y_{\lceil n/2 \rceil - 1}) \oplus (y_{i} \oplus \cdots \oplus y_{n-1}) \oplus y_{n} \quad \lceil n/2 \rceil \leq i \leq n.$$

Theorem

For all n > 5, the functions f_n satisfy $C(f_n) = n + 1$ and $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor$.

$$f_n((x_1,...x_n)) = (y_1,...y_n),$$

where

$$y_i = x_i \oplus x_{i+1}$$
 $1 \le i < n$
 $y_i = x_1 \oplus x_{\lceil n/2 \rceil} \oplus x_n$ $i = n$.

$$f_n^{-1}((y_1,...y_n))=(x_1,...x_n),$$

where

$$x_{i} = (y_{1} \oplus \cdots \oplus y_{i-1}) \oplus (y_{\lceil n/2 \rceil} \oplus \cdots \oplus y_{n-1}) \oplus y_{n} \quad 1 \leq i \leq \lceil n/2 \rceil$$

$$x_{i} = (y_{1} \oplus \cdots \oplus y_{\lceil n/2 \rceil - 1}) \oplus (y_{i} \oplus \cdots \oplus y_{n-1}) \oplus y_{n} \quad \lceil n/2 \rceil \leq i \leq n.$$

Theorem

For all n > 5, the functions f_n satisfy $C(f_n) = n + 1$ and $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor$.

Corollary

 $\{f_n\}$ is feebly one-way of order 3/2.

Methods

- Gate elimination.
- 2 Lower bounds (Lamagna and Savage).

Theorem

If $f \in B_n$ depends non-idly on each of its n variables, then

$$C(f) \geq n-1$$
.

Theorem

Let $f = \{f^{(0)}, \dots, f^{(m)}\} \in B_{n,m}$. If the m component functions $f^{(i)}$ are pairwise different and if they satisfy $C(f^{(i)}) \ge c \ge 1$, then

$$C(f) \geq c + m - 1.$$

- **Q** $C(f_n) \leq n + 1$.
- $C(f_n) \geq n+1.$

- $C(f_n) \le n+1$.
- **2** $C(f_n) \ge n + 1$.
 - $\bullet \ \ \mathsf{Consider} \ S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}, \ S_2 = \{x_1, \dots, x_n\} \setminus S_1.$

- $C(f_n) \leq n+1$.
- **②** $C(f_n) \ge n + 1$.
 - $\textbf{0} \ \ \mathsf{Consider} \ \ S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}, \ \ S_2 = \{x_1, \dots, x_n\} \setminus S_1.$
 - **9** Set $x_i = 0 \quad \forall x_i \in S_2$. We eliminate at least n-1 gates.

- $C(f_n) \leq n+1$.
- $C(f_n) \geq n+1.$
 - **1** Consider $S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}, S_2 = \{x_1, \dots, x_n\} \setminus S_1$.
 - **2** Set $x_i = 0$ $\forall x_i \in S_2$. We eliminate at least n-1 gates.
 - **9** $C(y_n) = 2$.

- $C(f_n) \leq n+1$.
- **2** $C(f_n) \ge n + 1$.
 - **1** Consider $S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}, S_2 = \{x_1, \dots, x_n\} \setminus S_1$.
 - **2** Set $x_i = 0$ $\forall x_i \in S_2$. We eliminate at least n-1 gates.
 - **3** $C(y_n) = 2$.
- $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor.$

- $C(f_n) \leq n+1$.
- **2** $C(f_n) \ge n + 1$.
 - **1** Consider $S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}$, $S_2 = \{x_1, \dots, x_n\} \setminus S_1$.
 - **2** Set $x_i = 0$ $\forall x_i \in S_2$. We eliminate at least n-1 gates.
 - **3** $C(y_n) = 2$.
- $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor.$
 - $C(x_i) \geq \lceil n/2 \rceil 1.$

- $C(f_n) \leq n+1.$
- **2** $C(f_n) \ge n + 1$.
 - **1** Consider $S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}$, $S_2 = \{x_1, \dots, x_n\} \setminus S_1$.
 - **2** Set $x_i = 0$ $\forall x_i \in S_2$. We eliminate at least n-1 gates.
 - **3** $C(y_n) = 2$.
- $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor.$
 - $C(x_i) \geq \lceil n/2 \rceil 1$.
 - $C(f_n^{-1}) \geq (\lceil n/2 \rceil 1) + n 1 = \lfloor \frac{3}{2}(n-1) \rfloor.$

- $C(f_n) \leq n+1$.
- $C(f_n) \ge n+1.$
 - **1** Consider $S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}, S_2 = \{x_1, \dots, x_n\} \setminus S_1$.
 - **2** Set $x_i = 0 \quad \forall x_i \in S_2$. We eliminate at least n-1 gates.
 - **9** $C(y_n) = 2$.
- **3** $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor$.
 - $C(x_i) \ge \lceil n/2 \rceil 1$.
 - $C(f_n^{-1}) \ge (\lceil n/2 \rceil 1) + n 1 = \lfloor \frac{3}{2}(n-1) \rfloor.$
 - $x_i = y_i \oplus x_{i+1}, i \neq n \Longrightarrow C(f_n^{-1}) \leq \lfloor \frac{3}{2}(n-1) \rfloor.$

Proof.

- $C(f_n) \leq n+1.$
- **②** $C(f_n) \ge n + 1$.
 - **1** Consider $S_1 = \{x_1, x_{\lceil n/2 \rceil}, x_n\}$, $S_2 = \{x_1, \dots, x_n\} \setminus S_1$.
 - **2** Set $x_i = 0$ $\forall x_i \in S_2$. We eliminate at least n-1 gates.
 - **9** $C(y_n) = 2$.
- $C(f_n^{-1}) = \lfloor \frac{3}{2}(n-1) \rfloor.$
 - $C(x_i) \geq \lceil n/2 \rceil 1.$
 - $C(f_n^{-1}) \ge (\lceil n/2 \rceil 1) + n 1 = \lfloor \frac{3}{2}(n-1) \rfloor.$
 - $x_i = y_i \oplus x_{i+1}, i \neq n \Longrightarrow C(f_n^{-1}) \leq \lfloor \frac{3}{2}(n-1) \rfloor.$

Remark

Hiltgen improved this family of permutations and got order 2.

Perspectives

- Linear constructions: $\leq n-1$ gates per one bit of output.
- f is linear \implies f^{-1} is also linear.

Perspectives

- Linear constructions: $\leq n-1$ gates per one bit of output.
- f is linear \implies f^{-1} is also linear.
- Nonlinear constructions are necessary!

```
y_1 = (x_1 \oplus x_2)x_n \oplus x_{n-1}
y_2 = (x_1 \oplus x_2)x_n \oplus x_2
y_3 = x_1 \oplus x_3
y_4 = x_3 \oplus x_4
\dots
y_{n-1} = x_{n-2} \oplus x_{n-1}
y_n = x_n
```

```
y_1 = (x_1 \oplus x_2)x_n \oplus x_{n-1}
y_2 = (x_1 \oplus x_2)x_n \oplus x_2
y_3 = x_1 \oplus x_3
y_4 = x_3 \oplus x_4
\dots
y_{n-1} = x_{n-2} \oplus x_{n-1}
y_n = x_n
```

$$x_{n} = y_{n}$$

$$x_{2} = (y_{1} \oplus \ldots \oplus y_{n-1})y_{n} \oplus y_{2}$$

$$x_{n-1} = (y_{1} \oplus \ldots \oplus y_{n-1})y_{n} \oplus y_{1}$$

$$x_{n-2} = (y_{1} \oplus \ldots \oplus y_{n-1})y_{n} \oplus y_{1} \oplus y_{n-1}$$

$$x_{n-3} = (y_{1} \oplus \ldots \oplus y_{n-1})y_{n} \oplus y_{1} \oplus y_{n-1} \oplus y_{n-2}$$

$$\ldots$$

$$x_{3} = (y_{1} \oplus \ldots \oplus y_{n-1})y_{n} \oplus y_{1} \oplus y_{n-1} \oplus \ldots \oplus y_{4}$$

$$x_{1} = (y_{1} \oplus \ldots \oplus y_{n-1})y_{n} \oplus y_{1} \oplus y_{n-1} \oplus \ldots \oplus y_{3}$$

Theorem

 $\{f_n\}$ is feebly one-way of order 2.

Theorem

 $\{f_n\}$ is feebly one-way of order 2.

Theorem

 $\{f_n\}$ is feebly one-way of order 2.

- **②** $n-1 \le C(f_n) \le n+1$.
- $2n-3 \le C(f_n^{-1}) \le 2n-2.$

Theorem

 $\{f_n\}$ is feebly one-way of order 2.

- **1** $n-1 ≤ C(f_n) ≤ n+1$.
- $2n-3 \le C(f_n^{-1}) \le 2n-2.$

Notation

 $C_{\alpha}(f)$ – the minimal size of a circuit that correctly computes a function $f \in B_{n,m}$ on more than αn of its inputs $(\alpha \in (0,1))$.

Notation

 $C_{\alpha}(f)$ – the minimal size of a circuit that correctly computes a function $f \in B_{n,m}$ on more than αn of its inputs $(\alpha \in (0,1))$.

Theorem

$$C_{3/4}(f_n^{-1}) \geq 2n-4.$$

Notation

 $C_{\alpha}(f)$ – the minimal size of a circuit that correctly computes a function $f \in B_{n,m}$ on more than αn of its inputs $(\alpha \in (0,1))$.

Theorem

$$C_{3/4}(f_n^{-1}) \geq 2n - 4.$$

Proof (Idea)

- Consider optimal circuit for f_n^{-1}
- **3** Step: substitute in place of y_i ($i \neq n$) value from $\{0, 1, y_n, y_n \oplus 1\}$ that eliminates at least 2 gates.
- **3** Repeat n-2 times.

Notation

 $C_{\alpha}(f)$ – the minimal size of a circuit that correctly computes a function $f \in B_{n,m}$ on more than αn of its inputs $(\alpha \in (0,1))$.

Theorem

$$C_{3/4}(f_n^{-1}) \ge 2n - 4.$$

Proof (Idea)

- Consider optimal circuit for f_n^{-1}
- **3** Step: substitute in place of y_i ($i \neq n$) value from $\{0, 1, y_n, y_n \oplus 1\}$ that eliminates at least 2 gates.
- **3** Repeat n-2 times.

Lemma (unformally)

We can repeat our step n-2 times.

Lemma (formalization)

In circuit, which computes $f_n^{-1}|_{y_{i_1}=a_1,\ldots,y_{i_l}=a_l}$ with $l\leq n-3$, $n\notin\{i_1,\ldots,i_l\}$ and $\forall k\in[1..l]$ $a_{i_k}\in\{0,1,y_n,y_n\oplus 1\}$ on more than $\frac{3}{4}$ inputs, one can substitute in place of y_i ($i\neq n$) value from $\{0,1,y_n,y_n\oplus 1\}$ that eliminates at least 2 gates and obtained circuit computes f_n^{-1} on more than $\frac{3}{4}$ residuary inputs.

Lemma (formalization)

In circuit, which computes $f_n^{-1}|_{y_{i_1}=a_1,\ldots,y_{i_l}=a_l}$ with $l\leq n-3$, $n\notin\{i_1,\ldots,i_l\}$ and $\forall k\in[1...l]$ $a_{i_k}\in\{0,1,y_n,y_n\oplus 1\}$ on more than $\frac{3}{4}$ inputs, one can substitute in place of y_i ($i\neq n$) value from $\{0,1,y_n,y_n\oplus 1\}$ that eliminates at least 2 gates and obtained circuit computes f_n^{-1} on more than $\frac{3}{4}$ residuary inputs.

Proof.

Consider topmost gate g. Let y_i and y_j be inputs.

- y_i enters some other gate and $i \neq n$.
- 2 Neither y_i nor y_i enters any other gate and $i, j \neq n$.
- i = n, y_i doesn't enter any other gate and g is non-linear.

Lemma (formalization)

In circuit, which computes $f_n^{-1}|_{y_{i_1}=a_1,\ldots,y_{i_l}=a_l}$ with $l\leq n-3$, $n\notin\{i_1,\ldots,i_l\}$ and $\forall k\in[1...l]$ $a_{i_k}\in\{0,1,y_n,y_n\oplus 1\}$ on more than $\frac{3}{4}$ inputs, one can substitute in place of y_i ($i\neq n$) value from $\{0,1,y_n,y_n\oplus 1\}$ that eliminates at least 2 gates and obtained circuit computes f_n^{-1} on more than $\frac{3}{4}$ residuary inputs.

Proof.

Consider topmost gate g. Let y_i and y_j be inputs.

- y_i enters some other gate and $i \neq n$.
- 2 Neither y_i nor y_i enters any other gate and $i, j \neq n$.
- j = n, y_i doesn't enter any other gate and g is non-linear.
- j = n, y_i doesn't enter any other gate and g is linear. Assume g is output h_k . Then

 - $2 x_k = y_n.$

Lemma (formalization)

In circuit, which computes $f_n^{-1}|_{y_{i_1}=a_1,\ldots,y_{i_l}=a_l}$ with $l\leq n-3$, $n\notin\{i_1,\ldots,i_l\}$ and $\forall k\in[1..l]$ $a_{i_k}\in\{0,1,y_n,y_n\oplus 1\}$ on more than $\frac{3}{4}$ inputs, one can substitute in place of y_i $(i\neq n)$ value from $\{0,1,y_n,y_n\oplus 1\}$ that eliminates at least 2 gates and obtained circuit computes f_n^{-1} on more than $\frac{3}{4}$ residuary inputs.

Proof.

Consider topmost gate g. Let y_i and y_j be inputs.

- y_i enters some other gate and $i \neq n$.
- 2 Neither y_i nor y_i enters any other gate and $i, j \neq n$.
- i = n, y_i doesn't enter any other gate and g is non-linear.
- j = n, y_i doesn't enter any other gate and g is linear.

Assume g is output h_k . Then

1
$$x_k|_{y_n=1} = y_l \oplus \dots \text{ or } x_k|_{y_n=0} = y_l \oplus \dots$$

$$2 x_k = y_n.$$

g has children. Substitute $y_i = y_n$ or $y_i = y_n \oplus 1$.

Hardness amplification

Let
$$H(x^{(1)},...,x^{(m)}) = (f_n(x^{(1)}),...,f(x^{(m)})),$$

where $x^{(i)} = (x_{i_1},...,x_{i_n}).$

Theorem p(m) – any function. $C_{1/p(m)}(H^{-1}) \ge (2n-4)(m-\log_{4/3}p(m)).$

Further research

- to improve the order of security;
- to devise other feebly secure cryptographic primitives.

Further research

- to improve the order of security;
- to devise other feebly secure cryptographic primitives.

Known results:

- Linear feebly trapdoor construction (based on Hiltgen's function of order 3/2) of order $\frac{25}{22}$;
- Quadratic feebly trapdoor construction (based on function of order 2) of order $\frac{7}{5}$.