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Motivation

There are important programs that are not supposed to
terminate, e.g. operating systems and data base systems.

Our motivation is to set up a foundational framework in a
constructive type theory that accounts for both terminating and
diverging program runs.

Applications include

• certified compilers, program transformations
• information flow analysis



What we have done

We study the While language.

We have devised:

• trace-based big-step relational semantics, as well as
small-step relational semantics and big-step & small-step
functional semantics
They are all defined coinductively and equivalent
constructively.

• Hoare logic, sound and complete with respect to the
semantics

All results are formalized fully constructively in Coq.



The While language

x , y , z ∈ Variables
e ∈ Expressions
v ∈ Integers
σ ∈ Variables → Integers

statement s ::= skip | s0; s1 | x := e
| if e then st else sf | while e do st



Notations
The While language

σ[x 7→ v ] denotes the update of σ with v at x .

JeKσ evaluates e in the state σ.
E.g. Jx + yK{x 7→ 2, x 7→ 2} = 4

σ |= e denotes that e evaluates to truth (non-zero) in σ.
E.g {x 7→ 2, x 7→ 2} |= x + y

σ 6|= e denotes that e evaluates to falsity (zero) in σ.
E.g {x 7→ 2, x 7→ 2} 6|= x − y



Traces

Traces τ ∈ trace are possibly infinite non-empty sequences of
states, defined coinductively by:

〈σ〉 ∈ trace
τ ∈ trace

σ :: τ ∈ trace

We define bisimilarity (equivalence relation) between traces,
τ ≈ τ ′, coinductively by:

〈σ〉 ≈ 〈σ〉
τ ≈ τ ′

σ :: τ ≈ σ :: τ ′

We think of bisimilar traces as equal, i.e. traces as a setoid with
bisimilarity as the equivalence relation.



Finiteness and infiniteness
Traces

We define inductively a trace predicate finite τ stating that τ is
finite:

finite 〈σ〉
finite τ

finite σ :: τ

We define coinductively a trace predicate infinite τ stating that
τ is infinite:

infinite τ
infinite σ :: τ

We can define infiniteness constructively, not as negation of
finiteness.



Finiteness and infiniteness (2)
Traces

Working in a constructive logic, our trace predicates have a rich
structure.

• ¬ finite |= infinite
• ¬ infinite |= finite is not probable constructively.

(But is provably classically.)

ref.
Constructive logic does not have the law of excluded middle

∀P : Prop,P ∨ ¬P



Big-step semantics
The judgment forms

The evaluation (s, σ)⇒ τ expresses that running a statement s
from a state σ produces a trace τ .

E.g.

(skip, σ)⇒ 〈σ〉

(x := 1 + 3; y := 2, (0,0))⇒ (0,0) :: (4,0) :: 〈(4,2)〉

(if x = 0 then y := 1 else y := 2, (1,0))⇒
(1,0) :: (1,0) :: 〈(1,2)〉

(while true do skip, σ)⇒ σ :: σ :: σ :: . . .



The judgment forms
Big-step semantics

(s, σ)⇒ τ is defined by mutual coinduction together with the
extended evaluation (s, τ) ∗⇒ τ ′.

(s, τ) ∗⇒ τ ′ expresses that running a statement s from the last
state (if it exists) of an already accumulated trace τ results in a
total trace τ ′. Or:

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ) ∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′

E.g.

(x := 1 + 3; y := 2, (0,0) :: 〈(0,1)〉) ∗⇒
(0,0) :: (0,1) :: (4,1) :: 〈(4,2)〉



Inference rules
Big-step semantics

(x := e, σ)⇒ σ :: 〈σ[x 7→ JeKσ]〉

(skip, σ)⇒ 〈σ〉
(s0, σ)⇒ τ (s1, τ)

∗⇒ τ ′

(s0; s1, σ)⇒ τ ′

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ 6|= e (sf , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ (while e do st , τ)
∗⇒ τ ′

(while e do st , σ)⇒ τ ′

σ 6|= e

(while e do st , σ)⇒ σ :: 〈σ〉

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ) ∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′



Hoare logic

Our Hoare-triple {U} s {P} consists of

U : predicate on states
s : statement
P : predicate on traces

{U} s {P} means that running a statement s from a initial state
σ satisfying U produces a trace τ satisfying P.

{x = 3} while x = 0 do x := x − 1 {finite}

{x = −3} while x = 0 do x := x − 1 {infinite}



Notations

U,V : state predicates
P,Q : trace predicates

σ |= U expresses that σ satisfies U.
τ |= P expresses that τ satisfies P.

Logical consequences and equivalence:

∀σ (σ |= U → σ |= V )

U |= V
∀τ (τ |= P → τ |= Q)

P |= Q
P |= Q Q |= P

P ⇔ Q



Assertions

σ |= U
〈σ〉 |= 〈U〉

σ |= U
σ :: 〈σ〉 |= 〈U〉2

σ |= U
σ :: (σ[x 7→ e]) |= U[x 7→ e]

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P

τ ′ |= P τ |=τ ′ Q
τ |= P ∗∗Q

τ |= 〈true〉
τ |= P†

τ ′ |= P τ |=τ ′ P†

τ |= P†

τ |= P τ ↓ σ
σ |= Last P



Singleton operator 〈U〉
Assertions

〈U〉 is a trace predicate that is true of a singleton trace given by
a state satisfying U:

σ |= U
〈σ〉 |= 〈U〉

〈true〉 is true of any singleton trace.



Doubleton operator 〈U〉2
Assertions

〈U〉2 is a trace predicate that is true of a doubleton trace of an
identical state satisfying U:

σ |= U
σ :: 〈σ〉 |= 〈U〉2



Update operator U[x 7→ e]
Assertions

U[x 7→ e] is a trace predicate that is the strong postcondition of
x := e for the precondition U:

σ |= U
σ :: 〈σ[x 7→ e]〉 |= U[x 7→ e]



Chop operator P ∗∗Q
Assertions

Roughly, τ |= P ∗∗Q holds when τ is split into two parts τ ′ and
τ ′′ such that the last state of τ ′ is the first state of τ ′′ and the
prefix τ ′ (resp. the postfix τ ′′) satisfies P (resp. Q):

τ ′ |= P τ |=τ ′ Q
τ |= P ∗∗Q

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P

τ |=τ ′ P first traverses τ ′, which must be a prefix of τ , then
checks validity of P against the postfix.

In particular, τ |=τ ′ P necessarily holds when τ ′ is infinite.



Chop operator P ∗∗Q (2)
Assertions

The definition of τ |= P ∗∗Q has the desirable property that
if infinite τ and τ |= P then τ |= P ∗∗Q for any Q.

In particular, we have:
• P ∗∗ false⇔ P ∧ infinite.

As a special case: true ∗∗ false⇔ infinite.
• 〈U〉 ∗∗ P |= P



Iteration operator P†
Assertions

P† is a trace predicate that is true of a trace that is zero or
possibly infinite concatenations of traces, each of which
satisfies P:

τ |= 〈true〉
τ |= P†

τ ′ |= P τ |=τ ′ P†

τ |= P†

We have:
P† ⇔ 〈true〉 ∨ (P ∗∗ P†)



Last operator
Assertions

Last P is a state predicate that is true of a state that can be the
last state of a finite trace satisfying P:

τ |= P τ ↓ σ
σ |= Last P

We have:

• Last infinite ⇔ false
• P ⇔ P ∗∗ 〈Last P〉



Inference rules of the Hoare logic

{U} x := e {U[x 7→ e]} {U} skip {〈U〉}

{U} s0 {P} {Last P} s1 {Q}
{U} s0; s1 {P ∗∗Q}

{e ∧ U} st {P} {¬e ∧ U} sf {P}
{U} if e then st else sf {〈U〉2 ∗∗ P}

U |= I {e ∧ I} st {P ∗∗ 〈I〉}
{U} while e do st {〈U〉2 ∗∗ (〈e〉 ∗∗ P ∗∗ 〈I〉2)† ∗∗ 〈I ∧ ¬e〉}

U |= U ′ {U ′} s {P ′} P ′ |= P
{U} s {P}



Soundness and Completeness

Proposition (Soundness)

For any s,U,P, σ, τ , if {U} s {P} and σ |= U and (s, σ)⇒ τ ,
then τ |= P.

Proposition (Completeness)

For any s,U,P, if for all σ, τ , σ |= U and (s, σ)⇒ τ imply τ |= P,
then {U} s {P}.



Embedding of the standard Hoare logics

Proposition (Partial correctness)

For any u, s and v if {u} s {v} is derivable in the partial
correctness Hoare logic, then {u} s {true ∗∗ 〈v〉}.

Proof.
By induction on the derivation of {u} s {v}.

Proposition (Total correctness)

For any u, s and v if {u} s {v} is derivable in the total
correctness Hoare logic, then {u} s {(true ∗∗ 〈v〉) ∧ finite}.

Proof.
By induction on the derivation of {u} s {v}.



Unbounded total search
Example

Variable B : nat → bool
Axiom B_noncontradictory: ¬(∀n,¬B n)
Let s be

while ¬(B x) do x := x + 1

s fails to be terminating, but is nondivergent.

cf.
Markov’s principle: (¬(∀x ,¬B x))⇒ ∃x ,B x
is a classical tautology, but is not valid constructively.



Proof sketch
Unbounded total search is nondivergent

σ x = n ¬(B n) τ |= cofinally (n + 1)

σ :: σ :: τ |= cofinally n

Lemma
cofinally 0 |= ¬infinite.

Proposition

{x = 0} while ¬(B x) do x := x + 1 {(true ∗∗ 〈B x〉) ∧ ¬infinite}


