
A Hoare logic for the coinductive trace-based
big-step semantics of While

Keiko Nakata
Institute of Cybernetics, Tallinn University of Technology

Joint work with T. Uustalu

October 2009

Motivation

There are important programs that are not supposed to
terminate, e.g. operating systems and data base systems.

Our motivation is to set up a foundational framework in a
constructive type theory that accounts for both terminating and
diverging program runs.

Applications include

• certified compilers, program transformations
• information flow analysis

What we have done

We study the While language.

We have devised:

• trace-based big-step relational semantics, as well as
small-step relational semantics and big-step & small-step
functional semantics
They are all defined coinductively and equivalent
constructively.

• Hoare logic, sound and complete with respect to the
semantics

All results are formalized fully constructively in Coq.

The While language

x , y , z ∈ Variables
e ∈ Expressions
v ∈ Integers
σ ∈ Variables → Integers

statement s ::= skip | s0; s1 | x := e
| if e then st else sf | while e do st

Notations
The While language

σ[x 7→ v] denotes the update of σ with v at x .

JeKσ evaluates e in the state σ.
E.g. Jx + yK{x 7→ 2, x 7→ 2} = 4

σ |= e denotes that e evaluates to truth (non-zero) in σ.
E.g {x 7→ 2, x 7→ 2} |= x + y

σ 6|= e denotes that e evaluates to falsity (zero) in σ.
E.g {x 7→ 2, x 7→ 2} 6|= x − y

Traces

Traces τ ∈ trace are possibly infinite non-empty sequences of
states, defined coinductively by:

〈σ〉 ∈ trace
τ ∈ trace

σ :: τ ∈ trace

We define bisimilarity (equivalence relation) between traces,
τ ≈ τ ′, coinductively by:

〈σ〉 ≈ 〈σ〉
τ ≈ τ ′

σ :: τ ≈ σ :: τ ′

We think of bisimilar traces as equal, i.e. traces as a setoid with
bisimilarity as the equivalence relation.

Finiteness and infiniteness
Traces

We define inductively a trace predicate finite τ stating that τ is
finite:

finite 〈σ〉
finite τ

finite σ :: τ

We define coinductively a trace predicate infinite τ stating that
τ is infinite:

infinite τ
infinite σ :: τ

We can define infiniteness constructively, not as negation of
finiteness.

Finiteness and infiniteness (2)
Traces

Working in a constructive logic, our trace predicates have a rich
structure.

• ¬ finite |= infinite
• ¬ infinite |= finite is not probable constructively.

(But is provably classically.)

ref.
Constructive logic does not have the law of excluded middle

∀P : Prop,P ∨ ¬P

Big-step semantics
The judgment forms

The evaluation (s, σ)⇒ τ expresses that running a statement s
from a state σ produces a trace τ .

E.g.

(skip, σ)⇒ 〈σ〉

(x := 1 + 3; y := 2, (0,0))⇒ (0,0) :: (4,0) :: 〈(4,2)〉

(if x = 0 then y := 1 else y := 2, (1,0))⇒
(1,0) :: (1,0) :: 〈(1,2)〉

(while true do skip, σ)⇒ σ :: σ :: σ :: . . .

The judgment forms
Big-step semantics

(s, σ)⇒ τ is defined by mutual coinduction together with the
extended evaluation (s, τ) ∗⇒ τ ′.

(s, τ) ∗⇒ τ ′ expresses that running a statement s from the last
state (if it exists) of an already accumulated trace τ results in a
total trace τ ′. Or:

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ) ∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′

E.g.

(x := 1 + 3; y := 2, (0,0) :: 〈(0,1)〉) ∗⇒
(0,0) :: (0,1) :: (4,1) :: 〈(4,2)〉

Inference rules
Big-step semantics

(x := e, σ)⇒ σ :: 〈σ[x 7→ JeKσ]〉

(skip, σ)⇒ 〈σ〉
(s0, σ)⇒ τ (s1, τ)

∗⇒ τ ′

(s0; s1, σ)⇒ τ ′

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ 6|= e (sf , σ :: 〈σ〉) ∗⇒ τ

(if e then st else sf , σ)⇒ τ

σ |= e (st , σ :: 〈σ〉) ∗⇒ τ (while e do st , τ)
∗⇒ τ ′

(while e do st , σ)⇒ τ ′

σ 6|= e

(while e do st , σ)⇒ σ :: 〈σ〉

(s, σ)⇒ τ

(s, 〈σ〉) ∗⇒ τ

(s, τ) ∗⇒ τ ′

(s, σ :: τ)
∗⇒ σ :: τ ′

Hoare logic

Our Hoare-triple {U} s {P} consists of

U : predicate on states
s : statement
P : predicate on traces

{U} s {P} means that running a statement s from a initial state
σ satisfying U produces a trace τ satisfying P.

{x = 3} while x = 0 do x := x − 1 {finite}

{x = −3} while x = 0 do x := x − 1 {infinite}

Notations

U,V : state predicates
P,Q : trace predicates

σ |= U expresses that σ satisfies U.
τ |= P expresses that τ satisfies P.

Logical consequences and equivalence:

∀σ (σ |= U → σ |= V)

U |= V
∀τ (τ |= P → τ |= Q)

P |= Q
P |= Q Q |= P

P ⇔ Q

Assertions

σ |= U
〈σ〉 |= 〈U〉

σ |= U
σ :: 〈σ〉 |= 〈U〉2

σ |= U
σ :: (σ[x 7→ e]) |= U[x 7→ e]

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P

τ ′ |= P τ |=τ ′ Q
τ |= P ∗∗Q

τ |= 〈true〉
τ |= P†

τ ′ |= P τ |=τ ′ P†

τ |= P†

τ |= P τ ↓ σ
σ |= Last P

Singleton operator 〈U〉
Assertions

〈U〉 is a trace predicate that is true of a singleton trace given by
a state satisfying U:

σ |= U
〈σ〉 |= 〈U〉

〈true〉 is true of any singleton trace.

Doubleton operator 〈U〉2
Assertions

〈U〉2 is a trace predicate that is true of a doubleton trace of an
identical state satisfying U:

σ |= U
σ :: 〈σ〉 |= 〈U〉2

Update operator U[x 7→ e]
Assertions

U[x 7→ e] is a trace predicate that is the strong postcondition of
x := e for the precondition U:

σ |= U
σ :: 〈σ[x 7→ e]〉 |= U[x 7→ e]

Chop operator P ∗∗Q
Assertions

Roughly, τ |= P ∗∗Q holds when τ is split into two parts τ ′ and
τ ′′ such that the last state of τ ′ is the first state of τ ′′ and the
prefix τ ′ (resp. the postfix τ ′′) satisfies P (resp. Q):

τ ′ |= P τ |=τ ′ Q
τ |= P ∗∗Q

〈σ〉 |= P
〈σ〉 |=〈σ〉 P

σ :: τ |= P
σ :: τ |=〈σ〉 P

τ ′ |=τ P

σ :: τ ′ |=σ::τ P

τ |=τ ′ P first traverses τ ′, which must be a prefix of τ , then
checks validity of P against the postfix.

In particular, τ |=τ ′ P necessarily holds when τ ′ is infinite.

Chop operator P ∗∗Q (2)
Assertions

The definition of τ |= P ∗∗Q has the desirable property that
if infinite τ and τ |= P then τ |= P ∗∗Q for any Q.

In particular, we have:
• P ∗∗ false⇔ P ∧ infinite.

As a special case: true ∗∗ false⇔ infinite.
• 〈U〉 ∗∗ P |= P

Iteration operator P†
Assertions

P† is a trace predicate that is true of a trace that is zero or
possibly infinite concatenations of traces, each of which
satisfies P:

τ |= 〈true〉
τ |= P†

τ ′ |= P τ |=τ ′ P†

τ |= P†

We have:
P† ⇔ 〈true〉 ∨ (P ∗∗ P†)

Last operator
Assertions

Last P is a state predicate that is true of a state that can be the
last state of a finite trace satisfying P:

τ |= P τ ↓ σ
σ |= Last P

We have:

• Last infinite ⇔ false
• P ⇔ P ∗∗ 〈Last P〉

Inference rules of the Hoare logic

{U} x := e {U[x 7→ e]} {U} skip {〈U〉}

{U} s0 {P} {Last P} s1 {Q}
{U} s0; s1 {P ∗∗Q}

{e ∧ U} st {P} {¬e ∧ U} sf {P}
{U} if e then st else sf {〈U〉2 ∗∗ P}

U |= I {e ∧ I} st {P ∗∗ 〈I〉}
{U} while e do st {〈U〉2 ∗∗ (〈e〉 ∗∗ P ∗∗ 〈I〉2)† ∗∗ 〈I ∧ ¬e〉}

U |= U ′ {U ′} s {P ′} P ′ |= P
{U} s {P}

Soundness and Completeness

Proposition (Soundness)

For any s,U,P, σ, τ , if {U} s {P} and σ |= U and (s, σ)⇒ τ ,
then τ |= P.

Proposition (Completeness)

For any s,U,P, if for all σ, τ , σ |= U and (s, σ)⇒ τ imply τ |= P,
then {U} s {P}.

Embedding of the standard Hoare logics

Proposition (Partial correctness)

For any u, s and v if {u} s {v} is derivable in the partial
correctness Hoare logic, then {u} s {true ∗∗ 〈v〉}.

Proof.
By induction on the derivation of {u} s {v}.

Proposition (Total correctness)

For any u, s and v if {u} s {v} is derivable in the total
correctness Hoare logic, then {u} s {(true ∗∗ 〈v〉) ∧ finite}.

Proof.
By induction on the derivation of {u} s {v}.

Unbounded total search
Example

Variable B : nat → bool
Axiom B_noncontradictory: ¬(∀n,¬B n)
Let s be

while ¬(B x) do x := x + 1

s fails to be terminating, but is nondivergent.

cf.
Markov’s principle: (¬(∀x ,¬B x))⇒ ∃x ,B x
is a classical tautology, but is not valid constructively.

Proof sketch
Unbounded total search is nondivergent

σ x = n ¬(B n) τ |= cofinally (n + 1)

σ :: σ :: τ |= cofinally n

Lemma
cofinally 0 |= ¬infinite.

Proposition

{x = 0} while ¬(B x) do x := x + 1 {(true ∗∗ 〈B x〉) ∧ ¬infinite}

