
Introduction Algorithm Upper Bound

Upper bound for Circuit SAT .

Sergey Nurk

Mathematics and Mechanics Faculty

Saint-Petersburg State University

October 2, 2009



Introduction Algorithm Upper Bound

Outline

Introduction

Algorithm

Upper Bound



Introduction Algorithm Upper Bound

Basic de�nitions

De�nition
Formula (circuit) is called satis�able i� there is a truth assignment

for the variables that makes it evaluate to TRUE.

De�nition
To solve the SAT (Circuit SAT ) problem for the CNF formula

(circuit) means to determine whether it is satis�able or not.



Introduction Algorithm Upper Bound

Basic de�nitions

De�nition
Formula (circuit) is called satis�able i� there is a truth assignment

for the variables that makes it evaluate to TRUE.

De�nition
To solve the SAT (Circuit SAT ) problem for the CNF formula

(circuit) means to determine whether it is satis�able or not.



Introduction Algorithm Upper Bound

What upper bounds for general SATdo we know?

With respect to n

A lot of di�erent results, but nothing better than 2αn.

What do alternative approach give?

• 20.30897m, where m is the number of clauses.

• 20.10299l , where l is the total number of occurrences of all

variables.



Introduction Algorithm Upper Bound

What upper bounds for general SATdo we know?

With respect to n

A lot of di�erent results, but nothing better than 2αn.

What do alternative approach give?

• 20.30897m, where m is the number of clauses.

• 20.10299l , where l is the total number of occurrences of all

variables.



Introduction Algorithm Upper Bound

What upper bounds for general SATdo we know?

With respect to n

A lot of di�erent results, but nothing better than 2αn.

What do alternative approach give?

• 20.30897m, where m is the number of clauses.

• 20.10299l , where l is the total number of occurrences of all

variables.



Introduction Algorithm Upper Bound

What upper bounds for general SATdo we know?

With respect to n

A lot of di�erent results, but nothing better than 2αn.

What do alternative approach give?

• 20.30897m, where m is the number of clauses.

• 20.10299l , where l is the total number of occurrences of all

variables.



Introduction Algorithm Upper Bound

What upper bounds for general SATdo we know?

With respect to n

A lot of di�erent results, but nothing better than 2αn.

What do alternative approach give?

• 20.30897m, where m is the number of clauses.

• 20.10299l , where l is the total number of occurrences of all

variables.



Introduction Algorithm Upper Bound

What about Circuit SAT?

Practically nothing!

Know no approaches for proving upper bounds in form of cn (c < 2

is a constant) for the general case of the Circuit SAT .

What about cm, where m is the size of the circuit?

Topic of this talk is an algorithm, that runs in time O(20.4058m).



Introduction Algorithm Upper Bound

What about Circuit SAT?

Practically nothing!

Know no approaches for proving upper bounds in form of cn (c < 2

is a constant) for the general case of the Circuit SAT .

What about cm, where m is the size of the circuit?

Topic of this talk is an algorithm, that runs in time O(20.4058m).



Introduction Algorithm Upper Bound

What about Circuit SAT?

Practically nothing!

Know no approaches for proving upper bounds in form of cn (c < 2

is a constant) for the general case of the Circuit SAT .

What about cm, where m is the size of the circuit?

Topic of this talk is an algorithm, that runs in time O(20.4058m).



Introduction Algorithm Upper Bound

What about Circuit SAT?

Practically nothing!

Know no approaches for proving upper bounds in form of cn (c < 2

is a constant) for the general case of the Circuit SAT .

What about cm, where m is the size of the circuit?

Topic of this talk is an algorithm, that runs in time O(20.4058m).



Introduction Algorithm Upper Bound

What about Circuit SAT?

Practically nothing!

Know no approaches for proving upper bounds in form of cn (c < 2

is a constant) for the general case of the Circuit SAT .

What about cm, where m is the size of the circuit?

Topic of this talk is an algorithm, that runs in time O(20.4058m).



Introduction Algorithm Upper Bound

Boolean Circuit

• Gates with fan-in 2.

• Single output.

• Consider full binary basis.



Introduction Algorithm Upper Bound

What about degenerate functions?

Proposition

Any gate that computes a function of one variable can be

eliminated from the circuit.



Introduction Algorithm Upper Bound

Informal description

• Simplify the circuit.

• Modify if necessary.

• If circuit is not trivial then �nd 'good' variable.

• 'Split' on this variable.



Introduction Algorithm Upper Bound

Informal description

• Simplify the circuit.

• Modify if necessary.

• If circuit is not trivial then �nd 'good' variable.

• 'Split' on this variable.



Introduction Algorithm Upper Bound

Informal description

• Simplify the circuit.

• Modify if necessary.

• If circuit is not trivial then �nd 'good' variable.

• 'Split' on this variable.



Introduction Algorithm Upper Bound

Formal description

Algorithm Circuit SAT

Input: circuit C .

Output: True if the circuit is satis�able and False otherwise.

1: Return Split(Reduce(C)).



Introduction Algorithm Upper Bound

Formal description

Algorithm Circuit SAT

Input: circuit C .

Output: True if the circuit is satis�able and False otherwise.

1: Return Split(Reduce(C)).



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Split

Input: circuit C , obtained as a result of the function Reduce.

Output: True if the circuit is satis�able and False otherwise.

1: If the output of the circuit C is a constant gate, then return its

value.

2: Choose a variable x that complies with one of the following

conditions:

• outdegree no less than 3;

• outdegree 2 and type-∧ direct successor;

Remark. The function Reduce ensures that such a variable

exists.

3: Return Split(Reduce(C [x = 0])) or
Split(Reduce(C [x = 1]))



Introduction Algorithm Upper Bound

Function Reduce

Input: a circuit C .

Output: a circuit C ′ which:

• is satis�able i� the circuit C is satis�able;

• is a constant gate or contains a variable that complies with the

condition from the second step of the function Split(C);

• its size is no larger than the size of C .



Introduction Algorithm Upper Bound

Function Reduce

Input: a circuit C .

Output: a circuit C ′ which:

• is satis�able i� the circuit C is satis�able;

• is a constant gate or contains a variable that complies with the

condition from the second step of the function Split(C);

• its size is no larger than the size of C .



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

Function Reduce

Step 1. Eliminate constants and degenerate gates.

Step 2. Eliminate non-output gates with the outdegree 0.

Step 3. If the output is a constant gate, then return this constant.

If the output is a variable, return True.

Step 4. If there is a variable of outdegree more than 2, then return

C .

Step 5. If there is a variable of outdegree 2 that has a type-∧
successor, then return C .

Step 6. If there is a variable x of outdegree 2 then ???.

Step 7. Replace an arbitrary top level gate of the circuit C (a gate

whose parents are variables only) with a new input variable. Return

Reduce for the new circuit.



Introduction Algorithm Upper Bound

⊕-chain

We say that for a gate G0 from a circuit C there is a ⊕-chain of

length k in G0 i� there are k gates G1, . . . ,Gk in C , such that:

1. For 1 ≤ i ≤ k , Gi is a type-⊕ gate;

2. For 1 ≤ i ≤ k , Gi is the only successor of the gate Gi−1;

3. There is no ⊕-chain in Gk , i.e., Gk either is the circuit's

output, or has outdegree no less than 2, or its only successor is

a type-∧ gate.



Introduction Algorithm Upper Bound

⊕-chain

We say that for a gate G0 from a circuit C there is a ⊕-chain of

length k in G0 i� there are k gates G1, . . . ,Gk in C , such that:

1. For 1 ≤ i ≤ k , Gi is a type-⊕ gate;

2. For 1 ≤ i ≤ k , Gi is the only successor of the gate Gi−1;

3. There is no ⊕-chain in Gk , i.e., Gk either is the circuit's

output, or has outdegree no less than 2, or its only successor is

a type-∧ gate.



Introduction Algorithm Upper Bound

⊕-chain

We say that for a gate G0 from a circuit C there is a ⊕-chain of

length k in G0 i� there are k gates G1, . . . ,Gk in C , such that:

1. For 1 ≤ i ≤ k , Gi is a type-⊕ gate;

2. For 1 ≤ i ≤ k , Gi is the only successor of the gate Gi−1;

3. There is no ⊕-chain in Gk , i.e., Gk either is the circuit's

output, or has outdegree no less than 2, or its only successor is

a type-∧ gate.



Introduction Algorithm Upper Bound

⊕-chain

We say that for a gate G0 from a circuit C there is a ⊕-chain of

length k in G0 i� there are k gates G1, . . . ,Gk in C , such that:

1. For 1 ≤ i ≤ k , Gi is a type-⊕ gate;

2. For 1 ≤ i ≤ k , Gi is the only successor of the gate Gi−1;

3. There is no ⊕-chain in Gk , i.e., Gk either is the circuit's

output, or has outdegree no less than 2, or its only successor is

a type-∧ gate.



Introduction Algorithm Upper Bound

Step 6.

If there is a variable x of outdegree 2 then consider ⊕-chains
P1, . . . ,Pp and R1, . . . ,Rr that begin in its successors P0 and R0.

Remark. p and r might equal zero in case if the corresponding

⊕-chains are empty.

Two cases:

• ⊕-chains have no common elements.

• ⊕-chains have common elements.



Introduction Algorithm Upper Bound

Step 6.

If there is a variable x of outdegree 2 then consider ⊕-chains
P1, . . . ,Pp and R1, . . . ,Rr that begin in its successors P0 and R0.

Remark. p and r might equal zero in case if the corresponding

⊕-chains are empty.

Two cases:

• ⊕-chains have no common elements.

• ⊕-chains have common elements.



Introduction Algorithm Upper Bound

Step 6.

If there is a variable x of outdegree 2 then consider ⊕-chains
P1, . . . ,Pp and R1, . . . ,Rr that begin in its successors P0 and R0.

Remark. p and r might equal zero in case if the corresponding

⊕-chains are empty.

Two cases:

• ⊕-chains have no common elements.

• ⊕-chains have common elements.



Introduction Algorithm Upper Bound

Step 6.

Case 1. ⊕-chains have no common elements.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

Figure: The case of non-intersecting ⊕-chains

Proposition

Assume there is no path from Rr to Pp. Then there is no path from

x to Li (0 ≤ i ≤ p) and Pp is not the output of the circuit.



Introduction Algorithm Upper Bound

Step 6.

Case 1. ⊕-chains have no common elements.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

Figure: The case of non-intersecting ⊕-chains

Proposition

Assume there is no path from Rr to Pp. Then there is no path from

x to Li (0 ≤ i ≤ p) and Pp is not the output of the circuit.



Introduction Algorithm Upper Bound

Step 6.

Case 1. ⊕-chains have no common elements.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

Figure: The case of non-intersecting ⊕-chains

Proposition

Assume there is no path from Rr to Pp. Then there is no path from

x to Li (0 ≤ i ≤ p) and Pp is not the output of the circuit.



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

y T0

T1

Tr

L0

L1

Lp

⊕P0

⊕P1

...

⊕Pp

⊕R0

⊕R1

...

⊕Rr

Figure: The case of non-intersecting ⊕-chains

Denote the value computed in Pp by y . Then

y = x ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a⇐⇒ x = y ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a.

The right side of second equation does not depend on x . It allows

us to modify the circuit.



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

y T0

T1

Tr

L0

L1

Lp

⊕P0

⊕P1

...

⊕Pp

⊕R0

⊕R1

...

⊕Rr

Figure: The case of non-intersecting ⊕-chains

Denote the value computed in Pp by y . Then

y = x ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a⇐⇒ x = y ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a.

The right side of second equation does not depend on x . It allows

us to modify the circuit.



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

y T0

T1

Tr

L0

L1

Lp

⊕P0

⊕P1

...

⊕Pp

⊕R0

⊕R1

...

⊕Rr

Figure: The case of non-intersecting ⊕-chains

Denote the value computed in Pp by y . Then

y = x ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a⇐⇒ x = y ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a.

The right side of second equation does not depend on x . It allows

us to modify the circuit.



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tr

L0

L1

Lp

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pp ⊕Rr

y T0

T1

Tr

L0

L1

Lp

⊕P0

⊕P1

...

⊕Pp

⊕R0

⊕R1

...

⊕Rr

Figure: The case of non-intersecting ⊕-chains

Denote the value computed in Pp by y . Then

y = x ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a⇐⇒ x = y ⊕ L0⊕ L1⊕ · · · ⊕ Lp ⊕ a.

The right side of second equation does not depend on x . It allows

us to modify the circuit.



Introduction Algorithm Upper Bound

Step 6.
Case 2. Pk coincides with Rm for some 0 ≤ k ≤ p and 0 ≤ m ≤ r .

x T0

T1

Tm−1

L0

L1

Lk−1

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pk−1 ⊕Rm−1

⊕Pk

. . .

Figure: The case of intersecting ⊕-chains

In this case the value computed in Pk is

x ⊕ x ⊕ L0 ⊕ · · · ⊕ Lk−1 ⊕ T0 ⊕ · · · ⊕ Tm−1 ⊕ a



Introduction Algorithm Upper Bound

Step 6.
Case 2. Pk coincides with Rm for some 0 ≤ k ≤ p and 0 ≤ m ≤ r .

x T0

T1

Tm−1

L0

L1

Lk−1

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pk−1 ⊕Rm−1

⊕Pk

. . .

Figure: The case of intersecting ⊕-chains

In this case the value computed in Pk is

x ⊕ x ⊕ L0 ⊕ · · · ⊕ Lk−1 ⊕ T0 ⊕ · · · ⊕ Tm−1 ⊕ a



Introduction Algorithm Upper Bound

Step 6.
Case 2. Pk coincides with Rm for some 0 ≤ k ≤ p and 0 ≤ m ≤ r .

x T0

T1

Tm−1

L0

L1

Lk−1

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pk−1 ⊕Rm−1

⊕Pk

. . .

Figure: The case of intersecting ⊕-chains

In this case the value computed in Pk is

x ⊕ x ⊕ L0 ⊕ · · · ⊕ Lk−1 ⊕ T0 ⊕ · · · ⊕ Tm−1 ⊕ a



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tm−1

L0

L1

Lk−1

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pk−1 ⊕Rm−1

⊕Pk

. . .

L0 T0

L1

Lk−1

⊕

⊕
. . .

⊕
T1

⊕
Tm−1. . .

⊕
. . .

Figure: The case of intersecting ⊕-chains

The value computed in the gate Pk does not depend on x . It allows

us to modify the circuit.

Return Reduce for the new circuit.



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tm−1

L0

L1

Lk−1

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pk−1 ⊕Rm−1

⊕Pk

. . .

L0 T0

L1

Lk−1

⊕

⊕
. . .

⊕
T1

⊕
Tm−1. . .

⊕
. . .

Figure: The case of intersecting ⊕-chains

The value computed in the gate Pk does not depend on x . It allows

us to modify the circuit.

Return Reduce for the new circuit.



Introduction Algorithm Upper Bound

Step 6.

x T0

T1

Tm−1

L0

L1

Lk−1

⊕P0 ⊕R0

⊕P1 ⊕R1

...
...

⊕Pk−1 ⊕Rm−1

⊕Pk

. . .

L0 T0

L1

Lk−1

⊕

⊕
. . .

⊕
T1

⊕
Tm−1. . .

⊕
. . .

Figure: The case of intersecting ⊕-chains

The value computed in the gate Pk does not depend on x . It allows

us to modify the circuit. Return Reduce for the new circuit.



Introduction Algorithm Upper Bound

Splitting step
By x denote splitting variable.

• If the outdegree of x is more than 2 then the substitution of

both constants either reduces the size of the circuit at least by

3 or makes the circuit trivial.

• If the outdegree of x is 2 and one of its successors is a type-∧
gate then the substitution of some constant either reduces the

size of the circuit at least by 3 or makes the circuit trivial and

the substitution.

x

∧A

O

Figure: Interesting case.



Introduction Algorithm Upper Bound

Splitting step
By x denote splitting variable.

• If the outdegree of x is more than 2 then the substitution of

both constants either reduces the size of the circuit at least by

3 or makes the circuit trivial.

• If the outdegree of x is 2 and one of its successors is a type-∧
gate then the substitution of some constant either reduces the

size of the circuit at least by 3 or makes the circuit trivial and

the substitution.

x

∧A

O

Figure: Interesting case.



Introduction Algorithm Upper Bound

Splitting step
By x denote splitting variable.

• If the outdegree of x is more than 2 then the substitution of

both constants either reduces the size of the circuit at least by

3 or makes the circuit trivial.

• If the outdegree of x is 2 and one of its successors is a type-∧
gate then the substitution of some constant either reduces the

size of the circuit at least by 3 or makes the circuit trivial and

the substitution.

x

∧A

O

Figure: Interesting case.



Introduction Algorithm Upper Bound

Upper Bound

Theorem
The running time of the described algorithm is O(20.4058m), where
m is the size of the initial circuit.

Proof: Let us denote by f (m) the maximum number of leaves in

the tree of recursive calls of the described algorithm among all the

circuits of size m.

Previous slide brings us to the following recurrence relation:

f (m) ≤ f (m − 2) + f (m − 3),

for m ≥ 3.

That leads to the upper bound.

f (m) ≤ poly(m)τm ≤ O(20.4058m).



Introduction Algorithm Upper Bound

Upper Bound

Theorem
The running time of the described algorithm is O(20.4058m), where
m is the size of the initial circuit.

Proof: Let us denote by f (m) the maximum number of leaves in

the tree of recursive calls of the described algorithm among all the

circuits of size m.

Previous slide brings us to the following recurrence relation:

f (m) ≤ f (m − 2) + f (m − 3),

for m ≥ 3.

That leads to the upper bound.

f (m) ≤ poly(m)τm ≤ O(20.4058m).



Introduction Algorithm Upper Bound

Upper Bound

Theorem
The running time of the described algorithm is O(20.4058m), where
m is the size of the initial circuit.

Proof: Let us denote by f (m) the maximum number of leaves in

the tree of recursive calls of the described algorithm among all the

circuits of size m.

Previous slide brings us to the following recurrence relation:

f (m) ≤ f (m − 2) + f (m − 3),

for m ≥ 3.

That leads to the upper bound.

f (m) ≤ poly(m)τm ≤ O(20.4058m).



Introduction Algorithm Upper Bound

Upper Bound

Theorem
The running time of the described algorithm is O(20.4058m), where
m is the size of the initial circuit.

Proof: Let us denote by f (m) the maximum number of leaves in

the tree of recursive calls of the described algorithm among all the

circuits of size m.

Previous slide brings us to the following recurrence relation:

f (m) ≤ f (m − 2) + f (m − 3),

for m ≥ 3.

That leads to the upper bound.

f (m) ≤ poly(m)τm ≤ O(20.4058m).



Introduction Algorithm Upper Bound

Thanks for your attention.


	Introduction
	Algorithm
	Upper Bound

