Multi-Party Computation in Presence of Corrupted Majorities

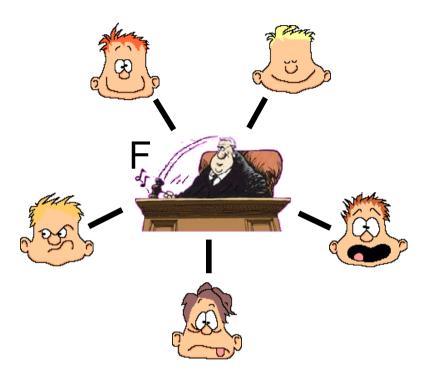
Dominik Raub

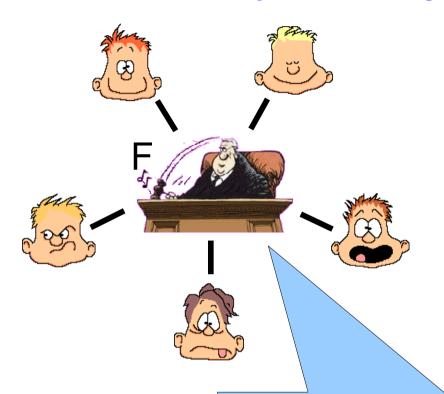
Institute of Theoretical Computer Science ETH Zürich

on joint work with

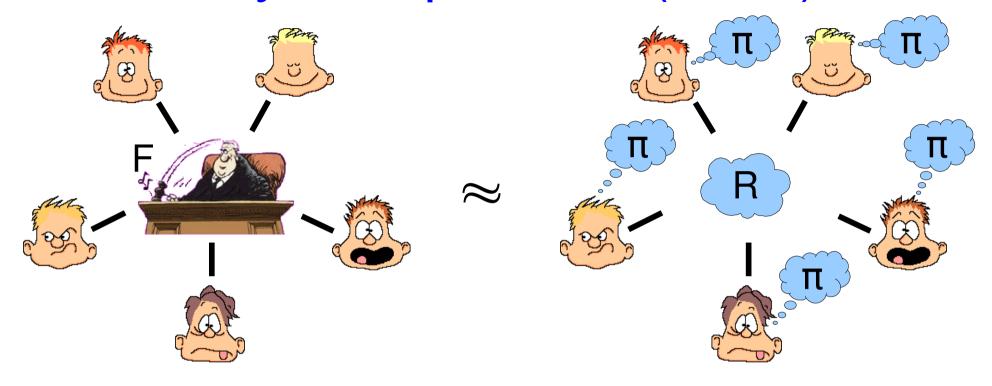
R. Künzler, J. Müller-Quade, C. Lucas, U. Maurer, M. Fitzi

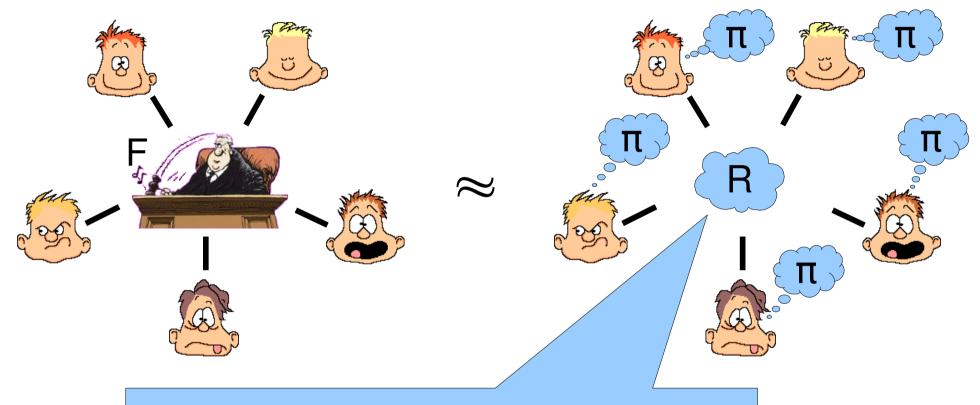
Mäetaguse, 2009/10/04





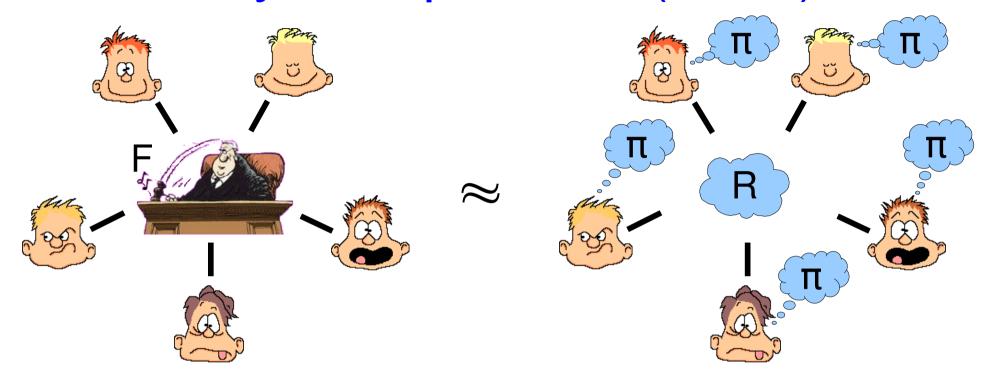
- Voting
- Auctions
- Who is richest?
- ⇒ privacy, correctness required

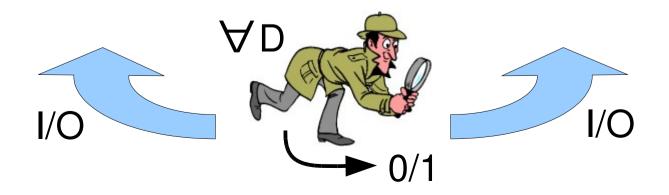




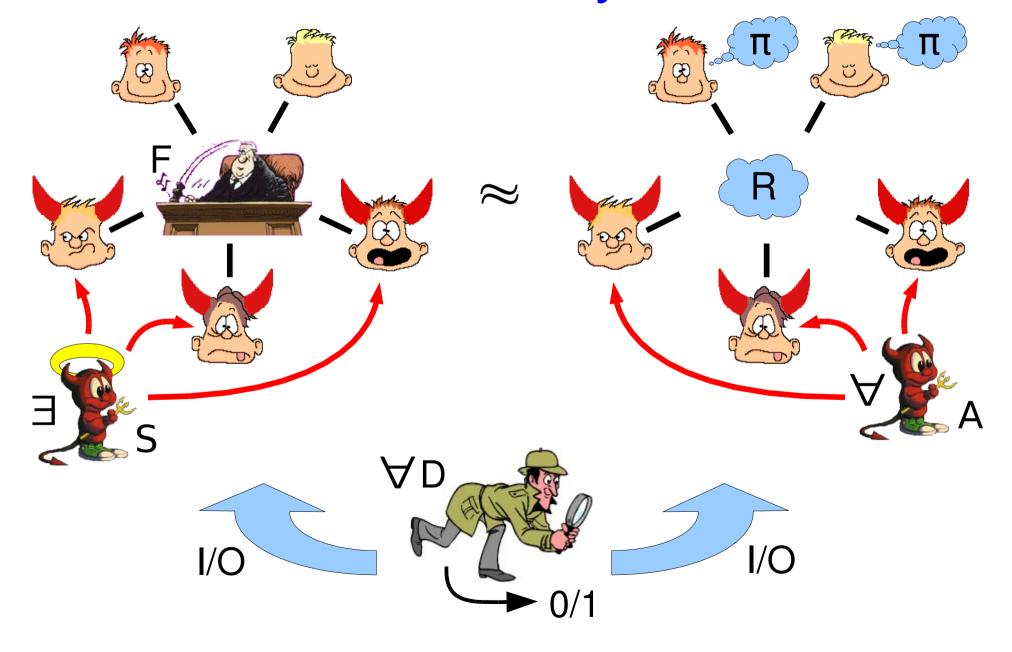
Generally encompasses:

- Secure or authenticated channels
- Optionally BC or PKI
- CRS for UC setting

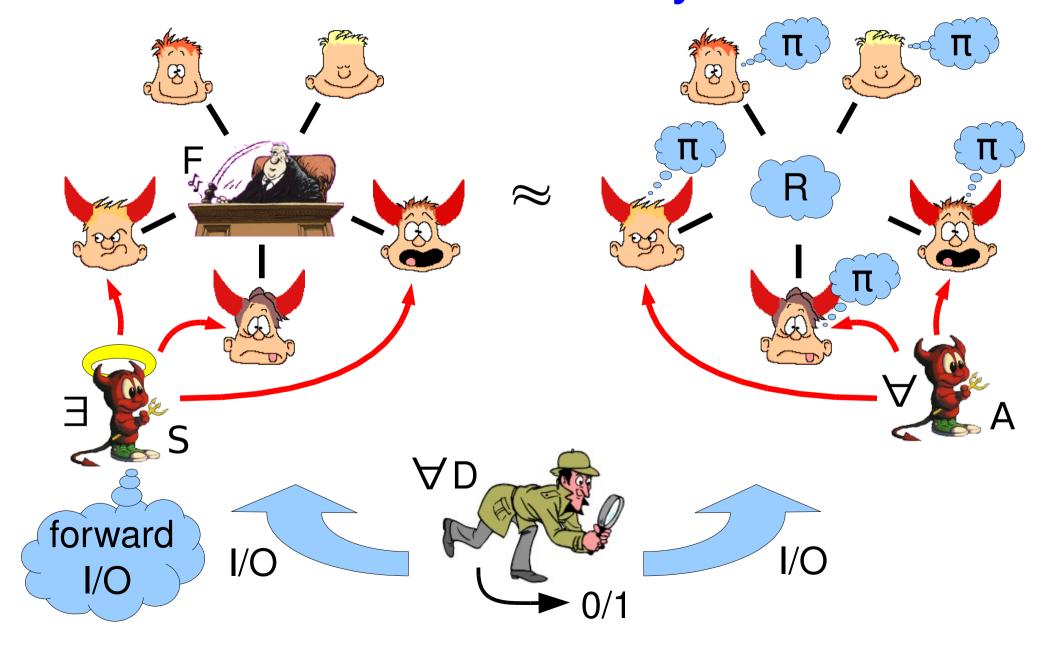




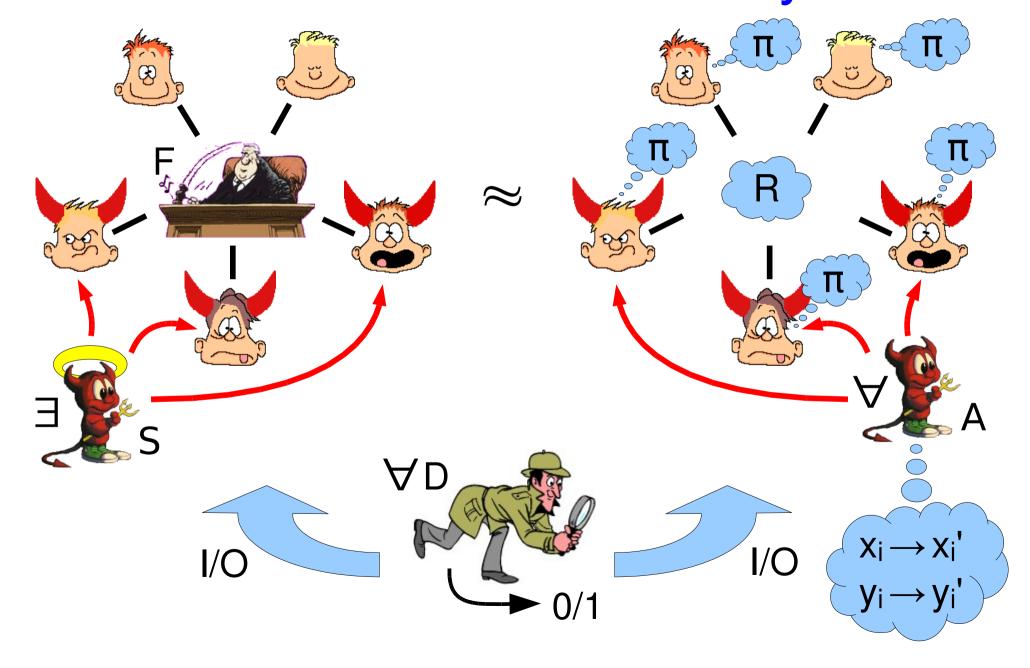
MPC: Active Adversary



MPC: Passive Adversary



MPC: Semi-Honest Adversary



Security Properties for MPC

- Correctness: protocol computes intended result
- Privacy: nobody learns more than intended
- Robustness: everybody receives intended result
- Fairness: everybody receives result, or nobody
- Agreement (on abort): all honest parties receive their result or notification of failure

Security Paradigms for MPC

- Abort Security: agreement, privacy, correctness
- Fair Security: fairness, privacy, correctness
- Full Security: robustness, privacy, correctness

- IT Security: tolerates unbounded adversaries
- CO Security: tolerates computationally bounded adversaries

Limitations for MPC with BC

- Fair security only for t < n/2 corrupted [Cle86]
- IT security only for t < n/2 [Kil00]
- Full security for t₁ and abort security for t₂ only if t₁ + t₂ < n [IKLP06], [Kat07]
- No IT full security for general MPC for t≥n/2
 - ⇒ Which functions can be computed with IT full security for t≥n/2 ?
 - ⇒ Weaker assumptions, graceful degradation?

Limitations for MPC with BC

- Fair security only for t < n/2 corrupted [Cle86]
- IT security only for t < n/2 [Kil00]
- Full security for t₁ and abort security for t₂ only if t₁ + t₂ < n [IKLP06], [Kat07]
- No IT full security for general MPC for t≥n/2
 - \Rightarrow Which functions can be computed with IT full security for $t \ge n/2$?
 - ⇒ Weaker assumptions, graceful degradation?

Security	Adversary	Resources	Fair?	Computable f
IT	passive	auth. BC	yes	F ^{bc} pas
	semi-honest	auth. BC	yes	F ^{bc} sh
	active	auth. BC	yes	F ^{bc} act

Security	Adversary	Resources	Fair?	Computable f
IT	passive	auth. BC	yes	F _{pas}
	semi-honest	auth. BC	yes	F _{act} U
	active	auth. BC	yes	F _{act}

Security	Adversary	Resources	Fair?	Computable f
IT	passive	auth. BC	yes	F _{pas}
	semi-honest	auth. BC	yes	F ^{bc}
	active	auth. BC	yes	F _{act} U

- Today: only symmetric functions
- Then: $F_{sh}^{bc} = F_{pas}^{bc}$

Security	Adversary	Resources	Fair?	Computable f
IT	passive	auth. BC	yes	F _{pas} 0
	semi-honest	auth. BC	yes	F ^{bc}
	active	auth. BC	yes	F _{act}
LT	active	auth. BC	no	F ^{bc}
		auth. chan.	no	Faut
		PKI	no	Fins.pki.

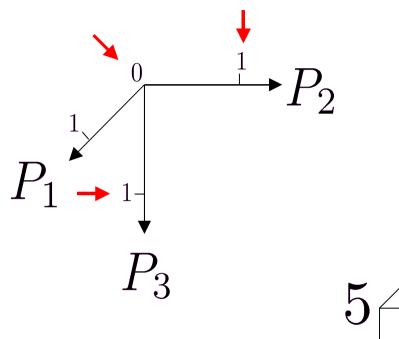
- Long-term (LT) security
 - Computational assumptions only during protocol run

Security	Adversary	Resources	Fair?	Computable f
IT	passive	auth. BC	yes	Fbc n
	semi-honest	auth. BC	yes	F ^{bc}
	active	auth. BC	yes	F _{act} U
LT	active	auth. BC	no	F ^{bc} _{tts} =
		auth. chan.	no	Faut
		PKI	no	Fins.pki

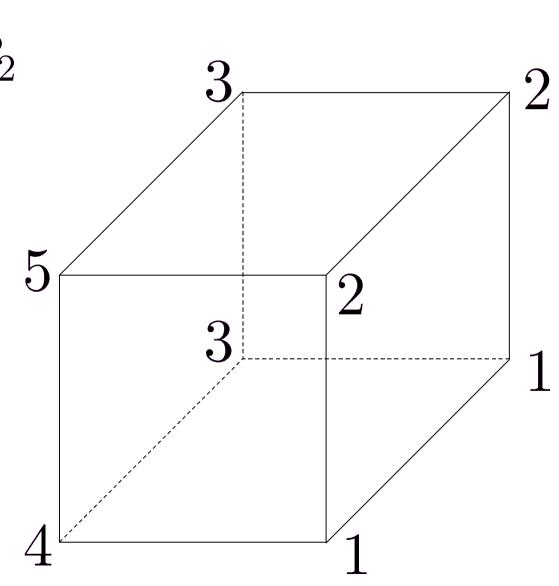
- Long-term (LT) security
 - Computational assumptions only during protocol run

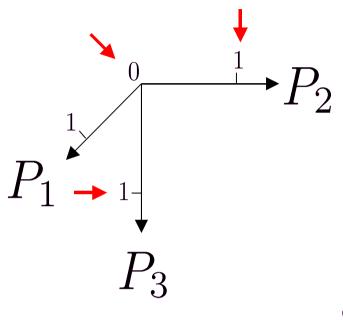
Security	Adversary	Resources	Fair?	Computable f
IT	passive	auth. BC	yes	F _{pas}
	semi-honest	auth. BC	yes	F ^{bc}
	active	auth. BC	yes	Fact
LT	active	auth. BC	no	Fbc =
		auth. chan.	no	Faut
		PKI	no	Fins, pki

- "=": modified [GMW87]-Compiler
 - computationally forces semi-honest behavior
 - maintains IT security against semi-honest adversary

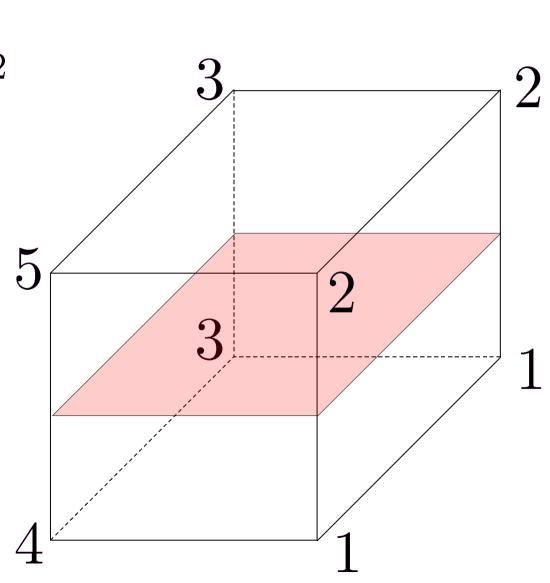


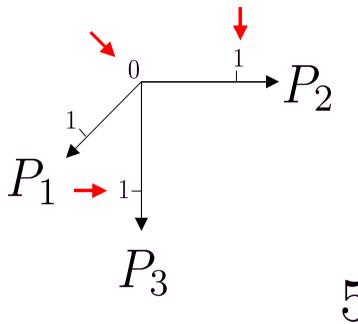
$$\vec{x} = (0, 1, 1)$$



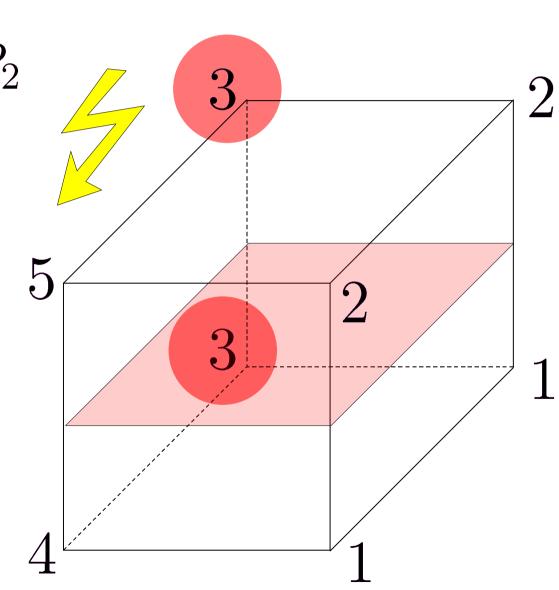


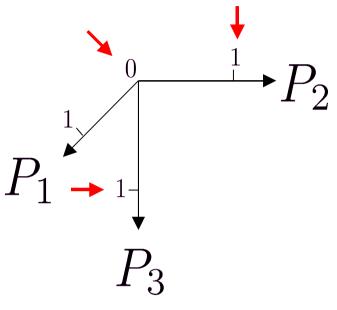
$$\vec{x} = (0, 1, 1)$$



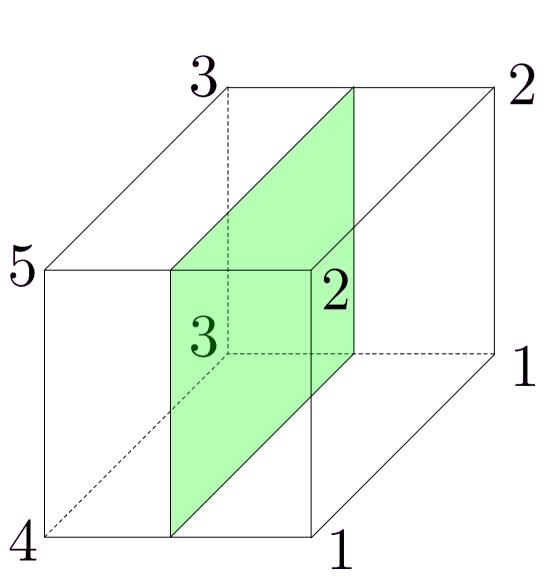


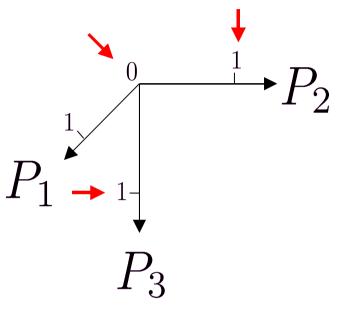
$$\vec{x} = (0, 1, 1)$$



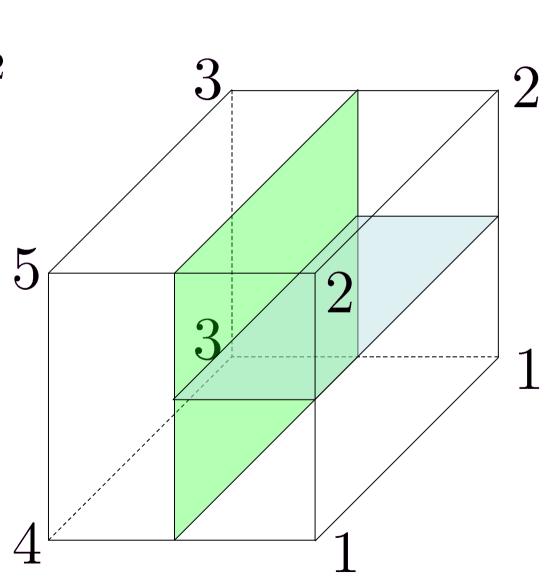


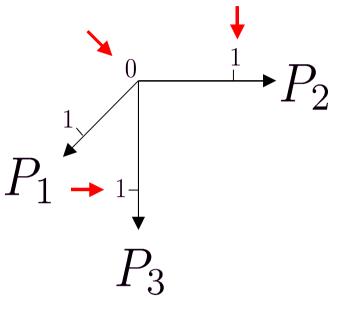
$$\vec{x} = (0, 1, 1)$$



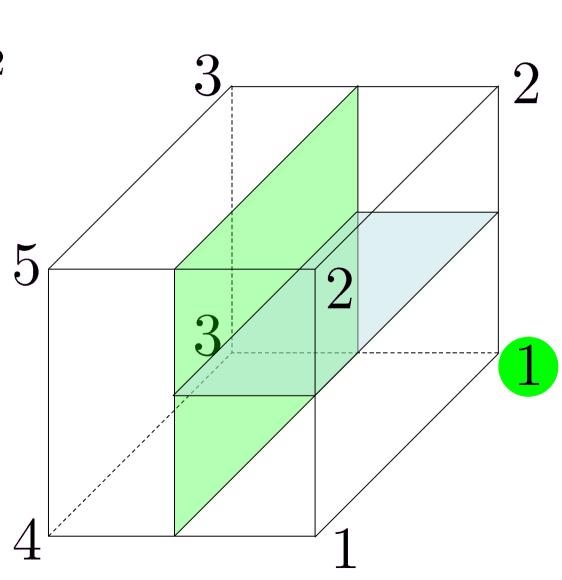


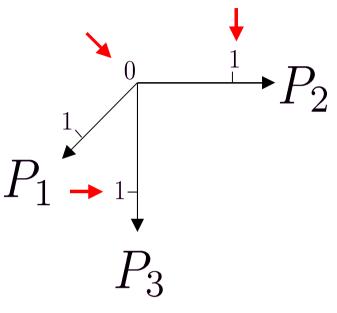
$$\vec{x} = (0, 1, 1)$$





$$\vec{x} = (0, 1, 1)$$

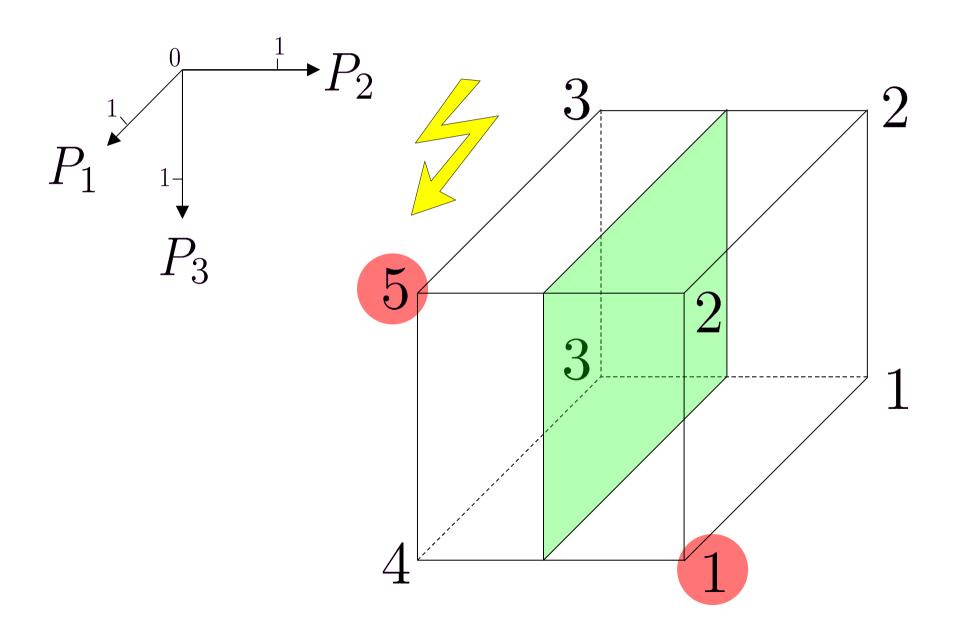




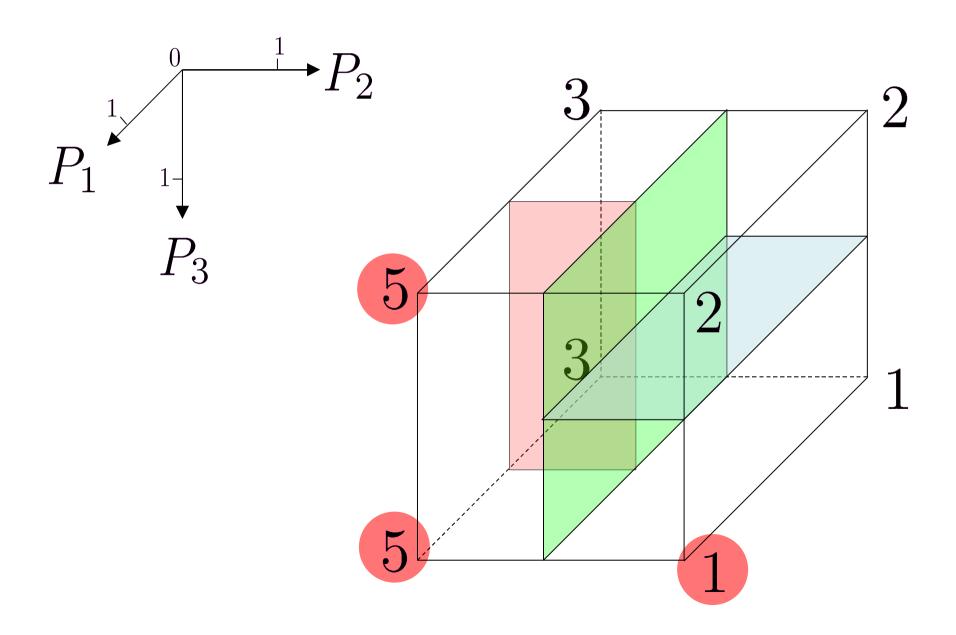
$$\vec{x} = (0, 1, 1)$$



Actively Computable Functions Fact



Actively Computable Functions Fact



Actively Computable: Example

Summary: Computability

- Characterization of computable function classes
 - F_{pas}: decomposability
 - F_{sh}^{bc}: decomposability after removing redundancy
 - F^{bc}_{act}: decomposability after removing redundancy, exchange property (input for every strategy)
- Characterization of long-term security:

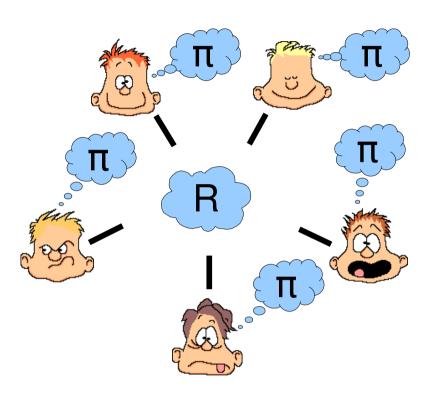
$$F_{tts}^{ins,pki} = F_{tts}^{bc} = F_{tts}^{bc} = F_{sh}^{bc}$$

Limitations for MPC with BC

- Fair security only for t < n/2 corrupted [Cle86]
- IT security only for t < n/2 [Kil00]
- Full security for t₁ and abort security for t₂ only if t₁ + t₂ < n [IKLP06], [Kat07]
- No IT full security for general MPC for t≥n/2
 - ⇒ Which functions can be computed with IT full security for t≥n/2 ?
 - ⇒ Weaker assumptions, graceful degradation?

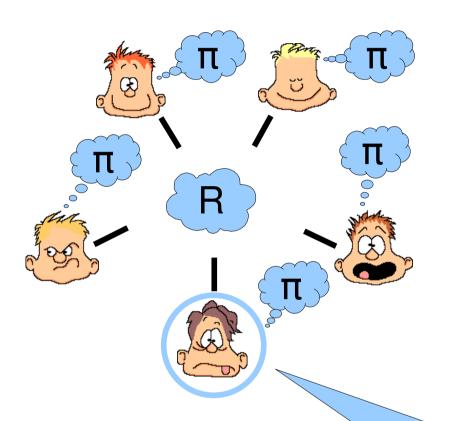
Limitations for MPC with BC

- Fair security only for t < n/2 corrupted [Cle86]
- IT security only for t < n/2 [Kil00]
- Full security for t₁ and abort security for t₂ only if t₁ + t₂ < n [IKLP06], [Kat07]
- No IT full security for general MPC for t≥n/2
 - \Rightarrow Which functions can be computed with IT full security for $t \ge n/2$?
 - ⇒ Weaker assumptions, graceful degradation?
 - ⇒ Hybrid-secure MPC (HMPC)



Goal: For any $\rho < n/2$

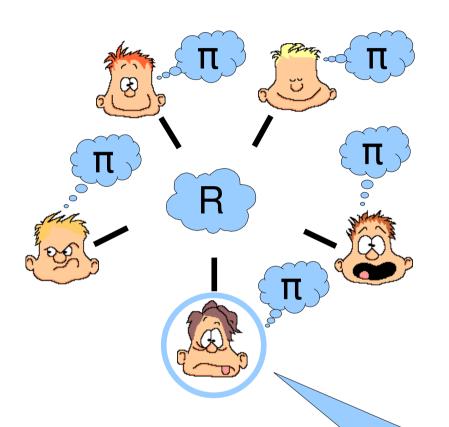
- IT full security for $t \le \rho$
- IT fair security for t < n/2
- CO abort security for t < n-ρ



Goal: For any $\rho < n/2$

- IT full security for t ≤ ρ
- IT fair security for t < n/2
- CO abort security for t < n-ρ

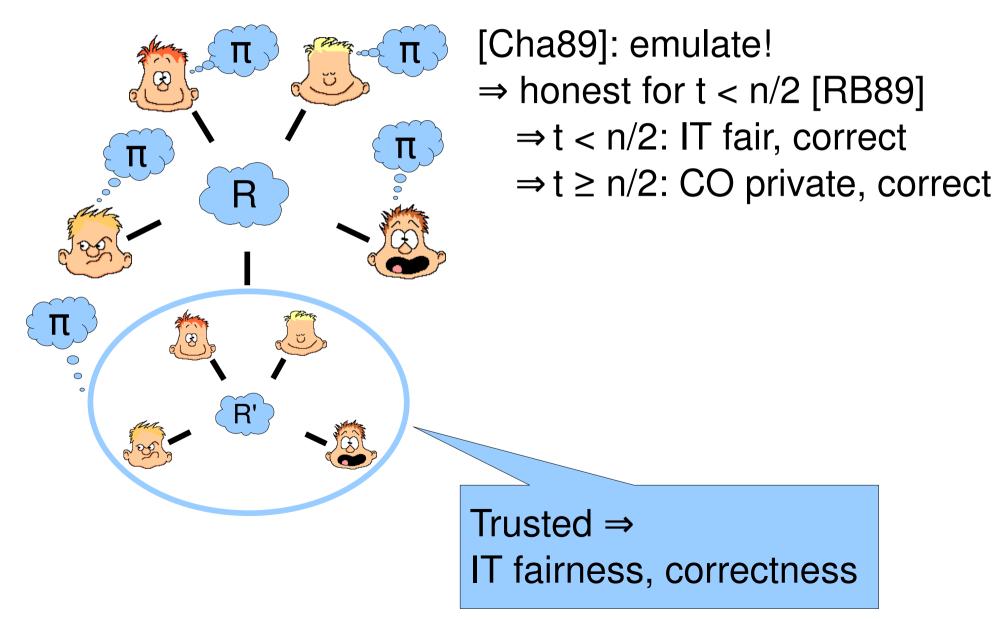
[GMW87], [CLOS01]: can be IT protected

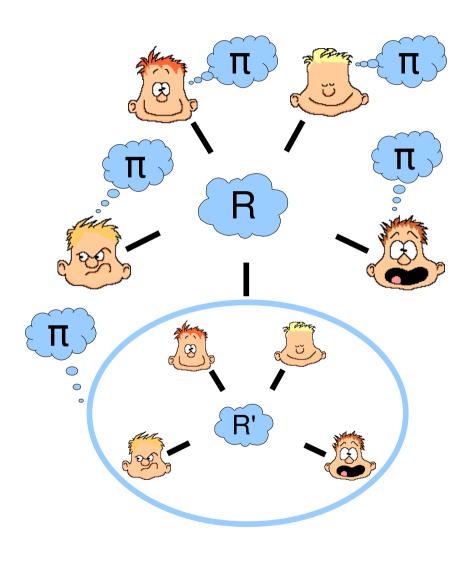


Goal: For any $\rho < n/2$

- IT full security for $t \le \rho$
- IT fair security for t < n/2
- CO abort security for t < n-ρ

Trusted ⇒ IT fairness, correctness





[Cha89]: emulate!

 \Rightarrow honest for t < n/2 [RB89]

 \Rightarrow t < n/2: IT fair, correct

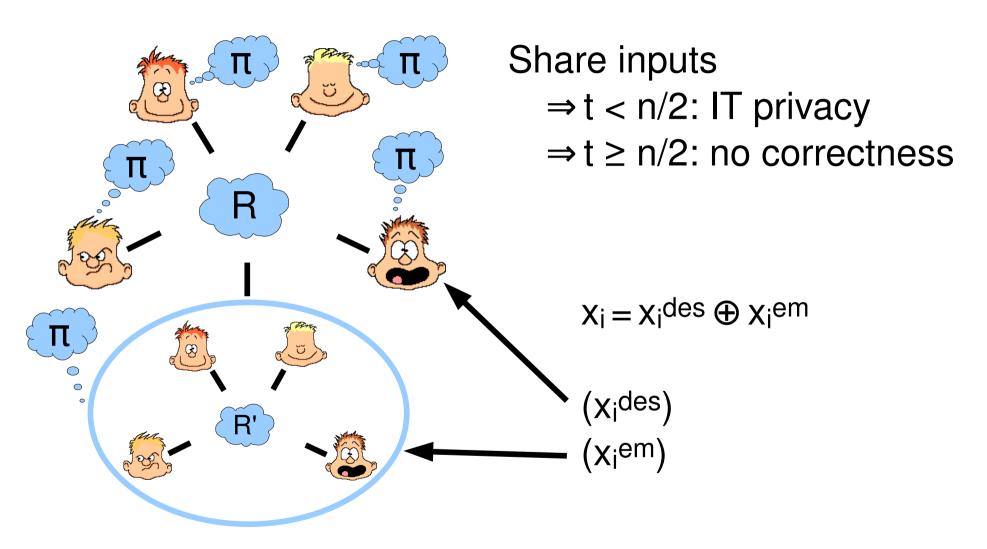
 \Rightarrow t \geq n/2: CO private, correct

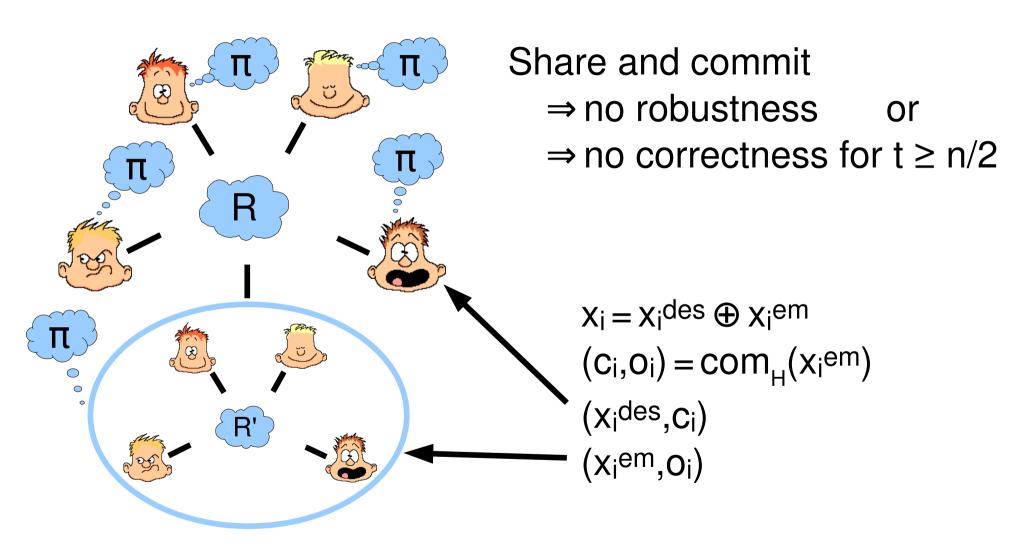
Use sharing qualifying all sets of emulated and n-p actual parties

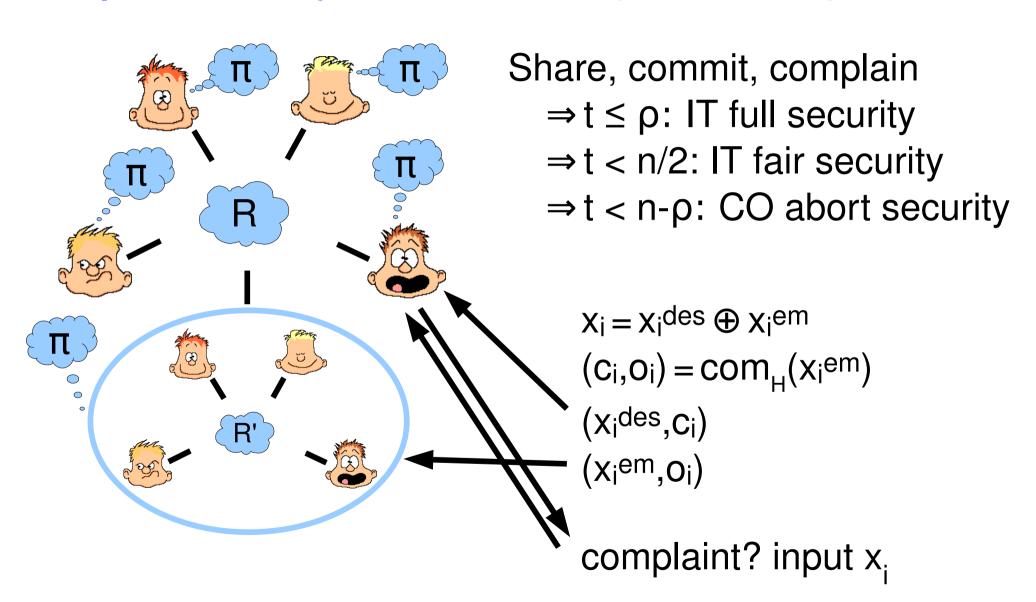
⇒ $t \le \rho$: IT robust, correct

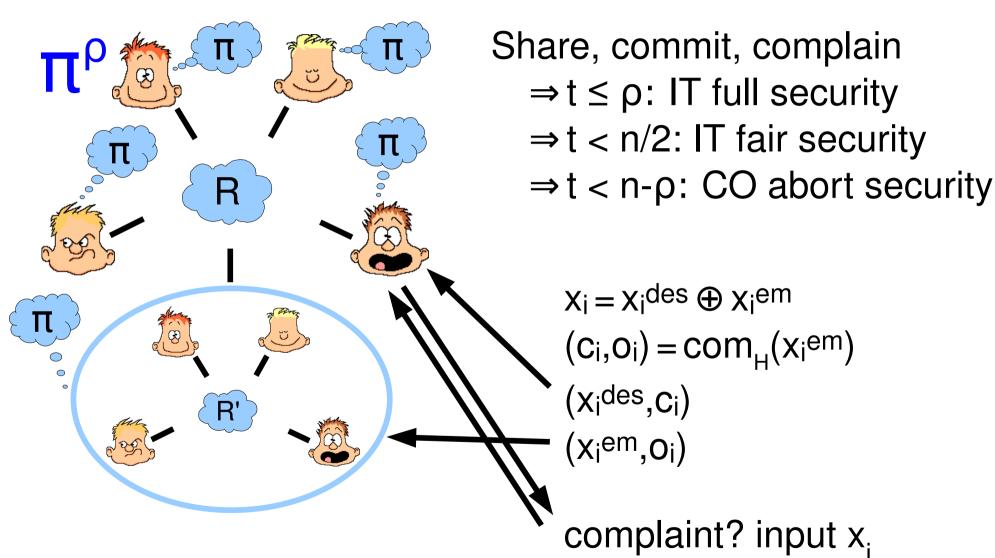
 \Rightarrow t < n/2: IT fair, correct

 \Rightarrow t < n- ρ : CO private, correct









Summary: Hybrid Security

- We provide optimal HMPC protocols and matching tight bounds for the setting
 - with BC

Summary: Hybrid Security

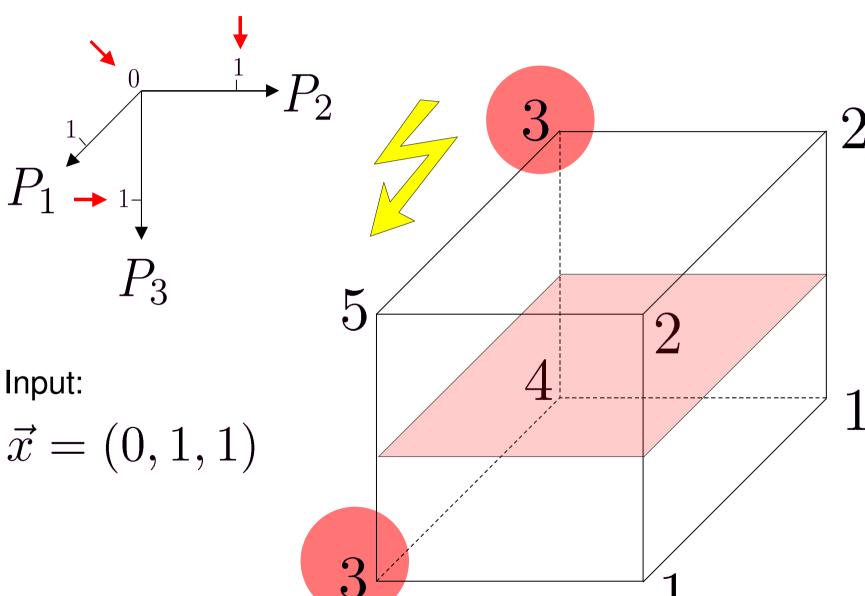
- We provide optimal HMPC protocols and matching tight bounds for the setting
 - with BC
 - without BC but with PKI
 - without BC or PKI
- We treat possibly inconsistent PKIs
- We consider signature forgery separately from other (computational) assumptions

Conclusions

- Characterization of computable function classes
- Characterization of long-term security

Optimal HMPC protocols and matching tight bounds

Passively Computable Functions Fbc pas



Hybrid MPC (HMPC)

- Different guarantees depending on t:
 - For t≤I_r full (robust) security
 - For t≤I_f fair security
 - For t≤L abort security
- While tolerating:
 - For t≤t_c computationally unbounded adversaries
 - For t≤t_σ signature forgery
 - For t≤tp inconsistent PKIs
- ⇒ Graceful degradation

Summary: Hybrid Security

- We provide HMPC protocols for the setting
 - with BC under the bounds $t_c < n/2 \ \Lambda \ I_r \le I_f \le L \ \Lambda \ I_f < n/2 \ \Lambda \ I_r + L < n$
 - without BC but with PKI under the bounds

$$t_c < n/2 \ \Lambda \ I_r \le I_f \le L \ \Lambda \ I_f < n/2 \ \Lambda \ I_r + L < n$$

$$\Lambda \ 2t_\sigma + L < n \ \Lambda \ (t_p > 0 \Rightarrow t_p + 2L < n)$$

- without BC or PKI under the bounds $t_{c} < n/2 \ \, \Lambda \ \, I_{r} \leq I_{f} \leq L \ \, \Lambda \ \, I_{f} < n/2 \ \, \Lambda \ \, (I_{r} > 0 \Rightarrow I_{r} + 2L < n)$
- Our bounds are tight, given $l_r \ge t_p$, t_σ

Limitations for HMPC with BC

- IT security for t ≤ t_c only if t_c < n/2 [KiI00]
- Fair security for t ≤ I_f only if I_f < n/2 [Cle86]
- Full security for t≤l_r and abort security for t≤L only if l_{r+L} < n [IKLP06], [Kat07]

Therefore:

```
t_c < n/2 \ \Lambda \ I_r \le I_f \le L \ \Lambda \ I_f < n/2 \ \Lambda \ I_{r+}L < n (1)
```

Hybrid MPC without BC or PKI

- Fair security for t ≤ I_f only if I_f < n/2 [Cle86]
- IT security for t ≤ t_c only if t_c < n/2 [KiI00]
- Full security for t ≤ I_r and abort security for t ≤ L only if I_r > 0 ⇒ I_{r+2}L < n [FHHW03]
- Protocol π^{ρ} with the BC from [FHHW03] achieves bound $t_c < n/2$ Λ $I_r \le I_f \le L$ Λ $I_f < n/2$ Λ $(I_r > 0 \Rightarrow I_r + 2L < n)$ (2)
- Improves over [FHHW03] for ρ=0, which makes no guarantees for t > n/2

Limits for MPC without BC, with PKI

- Tolerate inconsistent PKI for t ≤ tp
- Tolerate signature forgery for $t \le t_{\sigma}$

We achieve the following bounds

$$t_c < n/2 \quad \Lambda \quad I_r \le I_f \le L \quad \Lambda \quad I_f < n/2 \quad \Lambda \quad I_{r+L} < n$$

$$\Lambda \quad 2t_{\sigma} + L < n \quad \Lambda \quad (t_p > 0 \Rightarrow t_p + 2L < n) \quad (3)$$
 and prove them necessary for $I_r \ge t_p$, t_{σ}

Hybrid MPC without BC, with PKI

- Protocol π^{ρ} with a hybrid BC (HBC) for bounds $2t_{\sigma}+T < n$ Λ $(t_{p} > 0 \Rightarrow t_{p}+2T < n)$ achieves bound (3) (where BC secure for $t \le T$)
- For t_p > 0 treated in [FHW04]
- For t_p = 0 and 2t_σ+T < n we provide an HBC protocol achieving full BC
 - For t = 0 unconditionally
 - For $t \le t_{\sigma}$ conditional on PKI consistency
 - For t ≤ T conditional on unforgeability and PKI consistency

BC with extended validity (BCEV)

- For $2t_{\sigma}+T < n$ and $t_{p}=-1$ BCEV achieves:
 - For $t \le t_{\sigma}$ full broadcast
 - For t ≤ T validity, conditional on unforgeability

BC with extended validity (BCEV)

- For $2t_{\sigma}+T < n$ and $t_{p}=-1$ BCEV achieves:
 - For $t ≤ t_{\sigma}$ full broadcast
 - For t ≤ T validity, conditional on unforgeability
- 1. P_s : multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i$: $\mathsf{BGP}((x_i, \sigma_i))$; $[\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\};$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$
- 3. if $|S_i^{x_i,0}| \ge n T \land |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I) elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

1. P_s : multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)] 2. $\forall P_i$: $BGP((x_i, \sigma_i))$; [$\forall P_j$ receive $((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))$] $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid} \};$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid} \};$ 3. if $|S_i^{x_i,0}| \ge n - T \land |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I) elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

validity:

P_s honest

- 1. P_s : multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)] 2. $\forall P_i$: $BGP((x_i, \sigma_i))$; $[\forall P_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$
 - $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\};$
 - $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$
- 3. if $|S_i^{x_i,0}| \ge n T \wedge |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)
 - elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

validity:

P_s honest

 $= (m,\sigma_s(m))$

1. $\check{\mathsf{P}}_s$: multisend $(m, \sigma_s(m))$;

- [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i$: $\mathsf{BGP}((x_i, \sigma_i))$; $[\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\};$
 - $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$
- 3. if $|S_i^{x_i,0}| \ge n T \wedge |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)
 - elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

validity: P_s honest

for P_j honest = $((m,\sigma_s(m)), ?)$

 $= (m, \sigma_s(m))$

1. $\check{\mathsf{P}}_s$: multisend $(m, \sigma_s(m))$;

- [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i$: $\mathsf{BGP}((x_i, \sigma_i))$; $[\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\};$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$
- 3. if $|S_i^{x_i,0}| \ge n T \wedge |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)
 - elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

validity: P_s honest

for P_j honest = $((m,\sigma_s(m)), ?)$

 $= (m, \sigma_s(m))$

1. $\check{\mathsf{P}}_s$: multisend $(m, \sigma_s(m))$;

- [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i$: $\mathsf{BGP}((x_i, \sigma_i))$; $[\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid} \};$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid} \};$
- 3. if $|S_i^{x_i,0}| \ge n T \wedge |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)
 - elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

holds always (for $x_i=m$)

validity: P_s honest

for P_j honest = $((m,\sigma_s(m)), ?)$

 $= (m, \sigma_s(m))$

1. $\check{\mathsf{P}}_s$: multisend $(m, \sigma_s(m))$;

- [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i \colon \mathsf{BGP}((x_i, \sigma_i)); \quad [\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\}; \quad \text{holds for } \mathsf{t} > \mathsf{t}_{\sigma}$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\}; \quad \text{(and } \mathsf{x}_i = \mathsf{m})$
- 3. if $|S_i^{x_i,0}| \ge n T \land |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)
 - $\operatorname{elsif}|S_i^0| > |S_i^1| \text{ then } y_i := 0 \text{ else } y_i := 1 \text{ fi.} \tag{II}$

holds always (for $x_i=m$)

```
validity:
```

secure for

```
for P<sub>i</sub> honest
P_s honest t \le t_\sigma < n/3 = ((m, \sigma_s(m)), ?)
```

 $= (m, \sigma_s(m))$

- 1. P_s : multisend $(m, \sigma_s(m))$;
- [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i \colon \mathsf{BGP}((x_i, \sigma_i)); \quad [\forall \mathsf{P}_i \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\}; \text{ holds for } t > t_{\sigma}$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$ (and $x_i = m$)
- 3. if $|S_i^{x_i,0}| \ge n-T \wedge |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)

$$\operatorname{elsif}|S_i^0| > |S_i^1| \text{ then } y_i := 0 \text{ else } y_i := 1 \text{ fi.} \tag{II}$$

holds always (for $x_i=m$)

validity: P_s honest

secure for

for P_i honest $t \le t_{\sigma} < n/3$ = ((m,\sigma_s(m)), ?)

 $= (m, \sigma_s(m))$

- 1. P_s : multisend $(m, \sigma_s(m))$;
- [receive (x_i, σ_i)]
- 2. $\forall \mathsf{P}_i \colon \mathsf{BGP}((x_i, \sigma_i)); \quad [\forall \mathsf{P}_i \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{ j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid} \}; \text{ holds for } t > t_{\sigma} \}$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$ (and $x_i = m$)
- 3. if $|S_i^{x_i,0}| \ge n-T \wedge |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I)
 - elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi.

holds always (for $x_i=m$)

holds for $t \le t_{\sigma}$ (and m=0)

1. P_s : multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)] 2. $\forall P_i$: $BGP((x_i, \sigma_i))$; [$\forall P_j$ receive $((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))$] $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid} \};$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid} \};$ 3. if $|S_i^{x_i,0}| \ge n - T \land |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I) elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

secure for $t \le t_{\sigma} < n/3$

1. P_s: multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)] 2. $\forall \mathsf{P}_i$: BGP $((x_i, \sigma_i))$; [$\forall \mathsf{P}_j$ receive $((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))$] $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid} \};$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid} \};$ 3. if $|S_i^{x_i,0}| \ge n - T \land |S_i^{1-x_i}| = 0 \text{ then } y_i := x_i$ (I) elsif $|S_i^0| > |S_i^1| \text{ then } y_i := 0 \text{ else } y_i := 1 \text{ fi.}$ (II)

secure for $t \le t_{\sigma} < n/3$

1.
$$P_s$$
: multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)]

- 2. $\forall \mathsf{P}_i$: $\mathsf{BGP}((x_i, \sigma_i))$; $[\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$ $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\}; \quad \mathsf{S}_i^{\mathsf{v}} = \mathsf{S}_j^{\mathsf{v}}$ $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\}; \quad \mathsf{S}_i^{\mathsf{v}} = \mathsf{S}_j^{\mathsf{v}}$
- 3. if $|S_i^{x_i,0}| \ge n T \land |S_i^{1-x_i}| = 0$ then $y_i := x_i$ (I) elsif $|S_i^0| > |S_i^1|$ then $y_i := 0$ else $y_i := 1$ fi. (II)

secure for $t \le t_{\sigma} < n/3$

1.
$$P_s$$
: multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)]
2. $\forall P_i$: $BGP((x_i, \sigma_i))$; $[\forall P_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$

$$S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\}; \quad \mathbf{S_i^{v} = S_j^{v}}$$

$$S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$$

3. if
$$|S_i^{x_i,0}| \ge n - T \land |S_i^{1-x_i}| = 0$$
 then $y_i := x_i$ (I)

elsif
$$|S_i^0| > |S_i^1|$$
 then $y_i := 0$ else $y_i := 1$ fi. (II)

all decisions here identical

secure for $t \le t_{\sigma} < n/3$

1.
$$P_s$$
: multisend $(m, \sigma_s(m))$; [receive (x_i, σ_i)]
2. $\forall P_i$: $BGP((x_i, \sigma_i))$; [$\forall P_j$ receive $((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))$]
 $S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid}\};$ $S_i^v = S_j^v$
 $S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$ identical S_i^v

3. if
$$|S_i^{x_i,0}| \ge n - T \wedge |S_i^{1-x_i}| = 0$$
 then $y_i := x_i$ (I)

elsif
$$|S_i^0| > |S_i^1|$$
 then $y_i := 0$ else $y_i := 1$ fi. (II)

all decisions here identical

secure for $t \le t_{\sigma} < n/3$

 $j \in S_i^{v,0} \Leftrightarrow j \in S_i^v$ for P_j honest

1. P_s : multisend $(m, \sigma_s(m))$;

[receive (x_i, σ_i)]

2. $\forall \mathsf{P}_i$: $\mathsf{BGP}((x_i, \sigma_i))$; $[\forall \mathsf{P}_j \text{ receive } ((v_i^{j,0}, \sigma_i^{j,0}), (v_i^j, \sigma_i^j))]$

$$S_i^{v,0} := \{j | v_i^{j,0} = v \land \sigma_i^{j,0} \text{valid} \};$$

$$S_i^{\ v} = S_j^{\ v}$$

$$S_i^v := \{j | v_i^j = v \land \sigma_i^j \text{valid}\};$$

identical Si^v

3. if $|S_i^{x_i,0}| \ge n - T \land |S_i^{1-x_i}| = 0 \text{ then } y_i := x_i$ (I)

elsif
$$|S_i^0| > |S_i^1|$$
 then $y_i := 0$ else $y_i := 1$ fi. (II)

all decisions here identical

Hybrid Broadcast (HBC)

- For $2t_{\sigma}+T < n$ and $t_{p} = 0$ HBC achieves
 - For t = 0 full BC
 - For $t \le t_{\sigma}$ full BC, conditional on PKI consistency
 - For t ≤ T full BC, conditional on unforgeability and PKI consistency
- Protocol idea:
 - Attempt detectable precomputation of a new PKI [FHHW03]; fall back to existing PKI
 - Run an HBC for 2t_σ+T < n and t_p = -1 constructed from BCEV and DS

Hybrid Broadcast (HBC) for $t_p = -1$

```
1. P_s: DS(m);
                                                                        receive d_i
                                                                        [receive b_i]
2. P_s: BCEV(m);
                                                        [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
     if \exists v : |M_i^v| \ge n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                                [receive S_i^{\jmath}] (I)
                  and y_i := v;
                                                                       [receive S_i^j]
      else DS(\emptyset);
                  If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                  and |S_i^j| \ge n - t_\sigma then y_i := v;
                  else y_i := d_i;
                  fi
```

>

HBC: Security for t≤t_σ

```
1. P_s: DS(m);
                                                                          [receive d_i]
                                                                          [receive b_i]
2. P_s: BCEV(m);
                                                          [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
    if \exists v : |M_i^v| \geq n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                                  [receive S_i^{\jmath}] (I)
                  and y_i := v;
                                                                         [receive S_i^j]
      else DS(\emptyset);
                  If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                  and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
                  else y_i := d_i;
                  fi
```

HBC: Security for t≤t_σ

```
1. P_s: DS(m); BC for t \le t_{\sigma}
                                                                       receive d_i
2. P_s: BCEV(m);
                                                                       [receive b_i]
                                                        [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
4. if \exists v : |M_i^v| \ge n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                               [receive S_i^{\jmath}] (I)
                 and y_i := v;
                                                                      [receive S_i^j]
      else DS(\emptyset);
                 If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                 and |S_i^j| \ge n - t_\sigma then y_i := v;
                 else y_i := d_i;
                  fi
```

HBC: Security for t≤t_σ

```
1. P_s: DS(m); BC for t \le t_{\sigma}
                                                                          receive d_i
2. P_s: BCEV(m);
                                                                          [receive b_i]
                                                          [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{\sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid}\};
4. if \exists v : |M_i^v| \geq n - t_\sigma \text{ then } DS(M_i^v)
      and y_i := v; holds for \mathsf{t} \leq \mathsf{t}_\sigma [receive S_i^j] (I) [receive S_i^j]
                  If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                  and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
                  else y_i := d_i;
                  fi
```

```
1. P_s: DS(m);
                                                                       [receive d_i]
2. P_s: BCEV(m);
                                                                        [receive b_i]
                                                        [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
4. if \exists v : |M_i^v| \ge n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                                [receive S_i^{\jmath}] (I)
                 and y_i := v;
                                                                       [receive S_i^j]
      else DS(\emptyset);
                  If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                  and |S_i^j| \ge n - t_\sigma then y_i := v;
                  else y_i := d_i;
                  fi
```

>

```
1. P_s: DS(m); BC for t > t_{\sigma}
                                                                       receive d_i
2. P_s: BCEV(m);
                                                                       [receive b_i]
                                                       [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
4. if \exists v : |M_i^v| \ge n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                               [receive S_i^{\jmath}] (I)
                 and y_i := v;
                                                                      [receive S_i^j]
      else DS(\emptyset);
                 If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                 and |S_i^j| \ge n - t_\sigma then y_i := v;
                 else y_i := d_i;
                 fi
```

```
1. P_s: DS(m); BC for t > t_{\sigma}
                                                                         [receive d_i]
2. P_s: BCEV(m);
                                                                         [receive b_i]
                                                          [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
4. if \exists v : |M_i^v| \ge n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                                 [receive S_i^{\jmath}] (I)
                  and y_i := v;
                                                                        [receive S_i^j]
      else DS(\emptyset);
                 If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
consistent
                  and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
  for t > t_{\sigma}
                  else y_i := d_i;
```

>

```
P_s: DS(m); \longrightarrow BC for t > t_\sigma
                                                                      [receive d_i]
2. P_s: BCEV(m);
                                                                      [receive b_i]
                                                       [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
3. Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{\sigma_i^j | c_i^j = v \land \sigma_i^j \text{valid}\}; if holds then ...
4. if \exists v : |M_i^v| \geq n - t_{\sigma} then DS(M_i^v)
                                                              [receive S_i^j] (I)
                 and y_i := v;
                                                                     [receive S_i^j]
      else DS(\emptyset);
                If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
consistent
                 and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
  for t > t_{\sigma}
                 else y_i := d_i;
```

>

```
P_s: DS(m); \longrightarrow BC for t > t_{\sigma}
                                                                     [receive d_i]
2. P_s: BCEV(m);
                                                                     [receive b_i]
3. Multisend (b_i, \sigma_i(b_i));
                                                      [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
      M_i^v := \{\sigma_i^j | c_i^j = v \land \sigma_i^j \text{valid}\}; if holds then ...
4. if \exists v : |M_i^v| \geq n - t_{\sigma} then DS(M_i^v)
                                                             [receive S_i^j] (I)
                 and y_i := v;
                                                                    [receive S_i^j]
      else DS(\emptyset);
                If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
consistent
                 and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
  for t > t_{\sigma}
                 else y_i := d_i;
                                          also holds
                                          for same v
```

```
1. P_s: DS(m);
                                                                        [receive d_i]
                                                                        [receive b_i]
2. P_s: BCEV(m);
                                                         [\forall \mathsf{P}_i \text{ receive } (c_i^j, \sigma_i^j)]
    Multisend (b_i, \sigma_i(b_i));
      M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
    if \exists v : |M_i^v| \ge n - t_\sigma \text{ then } \mathrm{DS}(M_i^v)
                                                                [receive S_i^{\jmath}] (I)
                  and y_i := v;
                                                                       [receive S_i^j]
      else DS(\emptyset);
                  If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
                  and |S_i^j| \ge n - t_\sigma then y_i := v;
                  else y_i := d_i;
                  fi
```

```
1. P_s: DS(m); BC for t > t_{\sigma}
                                                           receive d_i
3. Multisend (b_i, \sigma_i(b_i)); [\forall P_i \text{ receive } (c_i^j, \sigma_i^j)]
     M_i^v := \{ \sigma_i^j | c_i^j = v \wedge \sigma_i^j \text{valid} \};
4. if \exists v : |M_i^v| \geq n - t_\sigma \text{ then } DS(M_i^v)
                                                     [receive S_i^j] (I)
              and y_i := v;
                                                          [receive S_i^j]
     else DS(\emptyset);
              If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
              and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
              else y_i := d_i;
               fi
```

```
1. P_s: DS(m); BC for t > t_{\sigma}
                                                          [receive d_i]
3. Multisend (b_i, \sigma_i(b_i)); [\forall P_i \text{ receive } (c_i^j, \sigma_i^j)]
     M_i^v := \{\sigma_i^j | c_i^j = v \land \sigma_i^j \text{valid}\}; \text{ can only hold for } v = m
4. if \exists v : |M_i^v| \geq n - t_{\sigma} then DS(M_i^v)
                                                    [receive S_i^j] (I)
              and y_i := v;
                                                          [receive S_i^j]
     else DS(\emptyset);
              If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
              and |S_i^{\mathcal{I}}| \geq n - t_{\sigma} then y_i := v;
              else y_i := d_i;
              fi
```

```
P_s: DS(m); BC for t > t_{\sigma}
                                                         [receive d_i]
Multisend (b_i, \sigma_i(b_i)); [\forall P_i \text{ receive } (c_i^j, \sigma_i^j)]
     M_i^v := \{\sigma_i^j | c_i^j = v \land \sigma_i^j \text{valid}\}; \text{ can only hold for } v = m
4. if \exists v : |M_i^v| \geq n - t_{\sigma} then DS(M_i^v)
                                                   [receive S_i^j] (I)
              and y_i := v;
                                                        [receive S_i^j]
     else DS(\emptyset);
              If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
              and |S_i^j| \ge n - t_\sigma then y_i := v;
              else y_i := d_i;
              fi
                                       can only hold for v = m
```

>

```
P_s: DS(m); BC for t > t_{\sigma}
                                                            [receive d_i]
P_s: BCEV(m); — guarantees validity [receive b_i]
 Multisend (b_i, \sigma_i(b_i)); [\forall P_i \text{ receive } (c_i^j, \sigma_i^j)]
  M_i^v := \{\sigma_i^j | c_i^j = v \land \sigma_i^j \text{valid}\}; \text{ can only hold for } v = m
 if \exists v : |M_i^v| \geq n - t_{\sigma} then \mathrm{DS}(M_i^v)
                                                      [receive S_i^j] (I)
            and y_i := v;
                                                            [receive S_i^j]
  else DS(\emptyset);
            If \exists v \text{ and a set } S_i^j \text{ of valid signatures on } v
            and |S_i^j| \ge n - t_\sigma then y_i := v;
            else y_i := d_i;
                                         can only hold for v = m
```

>