
Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Finding Races in the Heap

Vesal Vojdani

University of Tartu
Technische Universität München

Mäetaguse Theory Days ’09



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Data Races

Definition (Race condition)
An unintended indeterminism due to the lack of
proper ordering constraints in the program.

Lead to subtle and dangerous bugs.
Violate Murphy’s Law⇒ hard to test!



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Famous Examples

Therac-25 radiation therapy machine
Killed 3 people!
Race condition only occurred if setup was
changed quickly; testers were not as fast.

North American Blackout of 2003
Two processes got write accesses to a shared
resource and corrupted it.
Alarm subsystem looped indefinitely.
The race had a window of only milliseconds!



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Outline of Talk

1 Coarse-grained locking (static locks)
The Lockset Algorithm

2 Fine-grained (per-element locking)
JAVA: Conditional Must-Not Aliasing
C: Existentially Typed Flow (requires annotations)
C: Interprocedural Must-Alias Analysis

3 Medium-grained (per-bucket locking)
JAVA: Disjoint Reachability Analysis
C: Region Analysis

4 Unified ApproachTM to Race Detection



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

The Lockset Analysis

For each program point
Compute set of locks that must be held.
lock(l) adds the lock that l must point to.
unlock(l) removes locks that l may point to.

For each expression e in the program
Check if e may point to a shared variable.
Write down the access with set of mutexes held.

Shared var has no common lock⇒ race!



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Simple Example (no race)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l1);

v = v+ 1;

unlock(&l1);

List of accesses:
⟨v, {l1}, write, file.c : 2⟩
⟨v, {l1}, write, file.c : 5⟩

v is protected by {l1}.



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Simple Example (race!)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l2);

v = v+ 1;

unlock(&l2);

List of accesses:
⟨v, {l1}, write, file.c : 2⟩
⟨v, {l2}, write, file.c : 5⟩

No common lock!



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Complications

Context-Sensitivity
Path-Sensitivity
Synchronization-Sensitivity

Dynamic Memory Allocation



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Dynamic Data, Static Locks

p = malloc();

lock(&l);

p→d = 5;

unlock(&l);

List of accesses:
⟨alloc@1.d, {l}, . . .⟩
Blob all elements
allocated at that point.
Can be handled as
before.



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Dynamic Data, Dynamic Locks

p = q = malloc();

lock(&p→ l);
q→d = 7;

unlock(&p→ l);

List of accesses:
⟨alloc@1.d, {alloc@1.l}, . . .⟩
Is it the same element in
the blob?
Must-equality analysis!



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Finding Races in the Heap

Keep a symbolic lockset

{p.l}

Use address must-equalities to match
symbolic locksets with accesses.

|= p = q

Use may points-to analysis to associate
inferred invariant with memory locations.

p 7→ {alloc@1}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Per-element locking

typedef struct {
int datum;
char filename[80];
pthread_mutex_t mutex;

} node;

node cache[100];



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Traverse cache

1

main

2

3

4

5

x1 := 0

a1 := c.(x1)

x1 := x1 + 1

update node()

6

update node

7

8

9

lock(a1.m)

access(a1.d)

unlock(a1.m)



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Valid Must-Equalities

1

2

3

4

x1 := 0

a1 := c.(x1)

x1 := x1 + 1

1 No equalities hold!
2 No equalities hold!
3 a1 =̇ c.(x1).
4 a1 =̇ c.(−1+ x1).



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Abstract domain

false

(4− 2x1 =̇ 0)∧ (a1 =̇ c.(x1))⋅ ⋅ ⋅ ⋅ ⋅ ⋅

8− 4x1 =̇ 0 ⋅ ⋅ ⋅ a1 =̇ c.(2)

true

How do we compute E1 ⇒ E2?
Is this a complete lattice?



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Back to Race detection

6

update

7

8

9

lock(a1.m)

access(a1.d)

unlock(a1.m)

We obtain the lockset:
{c.(−1+ x1).m, a1.m}

Lockset must equal held
locks at the access!
Correlate a1.d to a1.m.
Associate invariant with
array c.

Why integer equalities?



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Synchronized Hashtable

locks slots pos



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

What do we need?

Infer the locked addresses
locks[i]

Information about pointers
pos ∈ slot[i]

Disjointness information
slot[i] ∩ slot[j] = ∅



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Region Analysis

Heap Abstraction:

Π× R

What are the disjoint regions?
What region does each pointer belong to?



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Region Analysis

Heap Abstraction:

Π× R

lattice of partitions on A (owners)
region mapping R : V → P(A ∪ {∙})



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Abstraction

A

B

C

p

q



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Abstraction

A

B

C

p

q



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Abstraction

A

B

C

p

q



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Abstraction

Partitions: {A,B}, {C}
Mapping:
p 7→ {A,B}
q 7→ {C}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ ∅
q 7→ ∅



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ {∙}
q 7→ ∅



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ {∙}
q 7→ {A}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ {A}
q 7→ {A}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A,B}, {C}

Mapping:
p 7→ {A,B}
q 7→ {A,B}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A,B}, {C}

Mapping:
p 7→ {A,B}
q 7→ {C}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A,B}, {C}

Mapping:
p 7→ {A,B}
q 7→ {A,B,C}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Dealing with the arrays

Allow symbolic index expressions.
If we need to join two regions with owners
A[e1] and A[e2]

If we |= e1 = e2, just keep one of them.
Otherwise, collapse the array.

Partition lattice Π tracks collapsed arrays.
If an array A has not collapsed in Π,
the regions of A[i] and A[j] are disjoint (i ∕= j).



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Back to the example

The symbolic lockset will be
{locks.(i)}

As we access pos, we have
Points-to analysis: pos 7→ {alloc@55}.
Region analysis: pos ∈ slots.(i).

Associate the invariant with the array. Why?



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Unified Approach to Race Detection

Want to deal with dynamic regions.
List (instead of array) of regions.
Type-based regions for, e.g., per-device
structures.

Where to associate invariants?
Static names.
Allocation sites.
Types.

Regions.



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Solution

Under construction . . .
All the ingredients are there.
Implementation is making good progress.
Where are the theorems?


	Introduction
	Lockset Algorithm
	Must-Equality Analysis
	Region Analysis
	Unified Approach

