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Data Races

Definition (Race condition)
An unintended indeterminism due to the lack of
proper ordering constraints in the program.

Lead to subtle and dangerous bugs.
Violate Murphy’s Law⇒ hard to test!
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Famous Examples

Therac-25 radiation therapy machine
Killed 3 people!
Race condition only occurred if setup was
changed quickly; testers were not as fast.

North American Blackout of 2003
Two processes got write accesses to a shared
resource and corrupted it.
Alarm subsystem looped indefinitely.
The race had a window of only milliseconds!
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Outline of Talk

1 Coarse-grained locking (static locks)
The Lockset Algorithm

2 Fine-grained (per-element locking)
JAVA: Conditional Must-Not Aliasing
C: Existentially Typed Flow (requires annotations)
C: Interprocedural Must-Alias Analysis

3 Medium-grained (per-bucket locking)
JAVA: Disjoint Reachability Analysis
C: Region Analysis

4 Unified ApproachTM to Race Detection
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The Lockset Analysis

For each program point
Compute set of locks that must be held.
lock(l) adds the lock that l must point to.
unlock(l) removes locks that l may point to.

For each expression e in the program
Check if e may point to a shared variable.
Write down the access with set of mutexes held.

Shared var has no common lock⇒ race!
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Simple Example (no race)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l1);

v = v+ 1;

unlock(&l1);

List of accesses:
⟨v, {l1}, write, file.c : 2⟩
⟨v, {l1}, write, file.c : 5⟩

v is protected by {l1}.
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Simple Example (race!)

T1 : lock(&l1);

v = v+ 1;

unlock(&l1);

T2 : lock(&l2);

v = v+ 1;

unlock(&l2);

List of accesses:
⟨v, {l1}, write, file.c : 2⟩
⟨v, {l2}, write, file.c : 5⟩

No common lock!
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Complications

Context-Sensitivity
Path-Sensitivity
Synchronization-Sensitivity

Dynamic Memory Allocation
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Dynamic Data, Static Locks

p = malloc();

lock(&l);

p→d = 5;

unlock(&l);

List of accesses:
⟨alloc@1.d, {l}, . . .⟩
Blob all elements
allocated at that point.
Can be handled as
before.
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Dynamic Data, Dynamic Locks

p = q = malloc();

lock(&p→ l);
q→d = 7;

unlock(&p→ l);

List of accesses:
⟨alloc@1.d, {alloc@1.l}, . . .⟩
Is it the same element in
the blob?
Must-equality analysis!
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Finding Races in the Heap

Keep a symbolic lockset

{p.l}

Use address must-equalities to match
symbolic locksets with accesses.

|= p = q

Use may points-to analysis to associate
inferred invariant with memory locations.

p 7→ {alloc@1}
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Per-element locking

typedef struct {
int datum;
char filename[80];
pthread_mutex_t mutex;

} node;

node cache[100];
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Traverse cache

1

main

2

3

4

5

x1 := 0

a1 := c.(x1)

x1 := x1 + 1

update node()

6

update node

7

8

9

lock(a1.m)

access(a1.d)

unlock(a1.m)
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Valid Must-Equalities

1

2

3

4

x1 := 0

a1 := c.(x1)

x1 := x1 + 1

1 No equalities hold!
2 No equalities hold!
3 a1 =̇ c.(x1).
4 a1 =̇ c.(−1+ x1).
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Abstract domain

false

(4− 2x1 =̇ 0)∧ (a1 =̇ c.(x1))⋅ ⋅ ⋅ ⋅ ⋅ ⋅

8− 4x1 =̇ 0 ⋅ ⋅ ⋅ a1 =̇ c.(2)

true

How do we compute E1 ⇒ E2?
Is this a complete lattice?
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Back to Race detection

6

update

7

8

9

lock(a1.m)

access(a1.d)

unlock(a1.m)

We obtain the lockset:
{c.(−1+ x1).m, a1.m}

Lockset must equal held
locks at the access!
Correlate a1.d to a1.m.
Associate invariant with
array c.

Why integer equalities?
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Synchronized Hashtable

locks slots pos
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What do we need?

Infer the locked addresses
locks[i]

Information about pointers
pos ∈ slot[i]

Disjointness information
slot[i] ∩ slot[j] = ∅
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Region Analysis

Heap Abstraction:

Π× R

What are the disjoint regions?
What region does each pointer belong to?
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Region Analysis

Heap Abstraction:

Π× R

lattice of partitions on A (owners)
region mapping R : V → P(A ∪ {∙})
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Abstraction

A

B

C

p

q
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Abstraction

A

B

C

p

q
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Abstraction

A

B

C

p

q
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Abstraction

Partitions: {A,B}, {C}
Mapping:
p 7→ {A,B}
q 7→ {C}
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Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ ∅
q 7→ ∅
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Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ {∙}
q 7→ ∅
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Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ {∙}
q 7→ {A}
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Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A}, {B}, {C}

Mapping:
p 7→ {A}
q 7→ {A}
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Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A,B}, {C}

Mapping:
p 7→ {A,B}
q 7→ {A,B}
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Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A,B}, {C}

Mapping:
p 7→ {A,B}
q 7→ {C}



Introduction Lockset Algorithm Must-Equality Analysis Region Analysis Unified Approach

Analysis

p = malloc();

q = &A;

p→n = q→n;
q→n = &B;

if (★) q = &C;

Partitions:
{A,B}, {C}

Mapping:
p 7→ {A,B}
q 7→ {A,B,C}
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Dealing with the arrays

Allow symbolic index expressions.
If we need to join two regions with owners
A[e1] and A[e2]

If we |= e1 = e2, just keep one of them.
Otherwise, collapse the array.

Partition lattice Π tracks collapsed arrays.
If an array A has not collapsed in Π,
the regions of A[i] and A[j] are disjoint (i ∕= j).
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Back to the example

The symbolic lockset will be
{locks.(i)}

As we access pos, we have
Points-to analysis: pos 7→ {alloc@55}.
Region analysis: pos ∈ slots.(i).

Associate the invariant with the array. Why?
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Unified Approach to Race Detection

Want to deal with dynamic regions.
List (instead of array) of regions.
Type-based regions for, e.g., per-device
structures.

Where to associate invariants?
Static names.
Allocation sites.
Types.

Regions.
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Solution

Under construction . . .
All the ingredients are there.
Implementation is making good progress.
Where are the theorems?
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