

Linear (Hull) and Algebraic Cryptanalysis of the Block Cipher PRESENT

Jorge Nakahara Jr¹, Pouyan Sepehrdad¹, Bingsheng Zhang², Meiqin Wang³

¹EPFL, Lausanne, Switzerland ²Cybernetica AS, Estonia and University of Tartu, Estonia ³Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, China

Estonian Theory Days, 2-4.10.2009

<ロト (四) (三) (三) (三) (三)

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Why cryptanalysis?!

・ロト・日本・ キョン・ ヨン・ ヨ

- Contributions
- The PRESENT Block Cipher
- Revisited Algebraic Cryptanalysis of PRESENT
- Linear Cryptanalysis of PRESENT
- Linear Hulls of PRESENT
- Conclusions
- Acknowledgements

• we performed linear analysis of reduced-round PRESENT

- exploiting fixed-points (and other symmetries) of pLayer
- exploiting low Hamming Weight bitmasks
- using iterative linear relations
- first linear hull analysis of PRESENT: 1st and 2nd best trails
- known-plaintext and ciphertext-only attack settings
- revisited algebraic analysis of 5-round PRESENT in less than 3 min
- best attacks on up to 26-round PRESENT (out of 31 rounds)

- block cipher designed by Bogdanov et al. at CHES'07
- aimed at RFID tags, sensor networks (hardware environments)
- SPN structure
- 64-bit block size, 80- or 128-bit key size, 31 rounds
- one full round: xor with round subkey, S-box layer, bit permutation (pLayer)
- key schedule: 61-bit left rotation, S-box application, and xor with counter

Computational graph of one full round of PRESENT

#Rounds	Time	Data	Memory	Key Size	Comments
5	1.82 h	64 KP	—	80	KR, AC
7	2 ^{100.1}	2 ^{24.3} CP	2 ⁷⁷	128	IC
15	2 ^{35.6}	2 ^{35.6} CP	2 ³²	all	KR, SSC
16	2 ⁶²	2 ⁶² CP	1Gb	all	KR, AC + DC
16	2 ⁶⁴	2 ⁶⁴ CP	2 ³²	all	KR, DC
17	2 ¹⁰⁴	2 ⁶³ CP	2 ⁵³	128	KR, RKR
17	2 ⁹³	2 ⁶² CP	1Gb	128	KR, AC + DC
18	2 ⁹⁸	2 ⁶² CP	1Gb	128	KR, AC + DC
19	2 ¹¹³	2 ⁶² CP	1Gb	128	KR, AC + DC
24	2 ⁵⁷	2 ⁵⁷ CP	2 ³²	all	KR, SSC

KR: Key Recovery attack; LC: Linear Cryptanalysis; AC: Algebraic Crypt; DC: Differential Cryptanalysis; RKR: Related-Key Rectangle; SSC: Statistical Saturation analysis; IC: Integral Cryptanalysis; CP: Chosen Plaintext; KP: Known Plaintext; Outline

Our attacks on reduced-round PRESENT

#Rounds	Time	Data	Memory	Key Size	Comments
5	2.5 min	5 KP		80	KR†, AC
5	2.5 min	5 KP		128	KR†, AC
14	2 ⁶¹	2 ⁶¹ CO	_	all	DR* + KR, LC
17	2 ^{69.50}	2 ⁶⁴ KP	2 ¹²	80	KR, LC
17	2 ^{73.91}	2 ⁶⁴ KP	2 ¹⁶	80	KR, LC
24	2 ^{63.42}	2 ⁶⁴ KP	2 ⁸	all	KR, LH
25	2 ^{98.68}	2 ⁶⁴ KP	2 ⁴⁰	128	KR, LH
26	2 ^{98.62}	2 ⁶⁴ KP	2 ⁴⁰	128	KR, LH

*: time complexity is number of parity computations; †: recover half of the user key; KR: Key Recovery attack; LC: Linear Cryptanalysis; AC: Algebraic Crypt; DC: Differential Cryptanalysis; LH: Linear Hull; CP: Chosen Plaintext; KP: Known Plaintext; CO: Ciphertext Only

Algebraic Cryptanalysis

- Attributed to C. Shannon: breaking a good cipher should require "as much work as solving a system of simultaneous equations in a large number of unknowns of a complex type".
- Small number of plaintext / ciphertext pairs.
- Realistic compare to traditional statistical attacks like linear and differential cryptanalysis.
- Not simple to predict the complexity of the attack priori to provoking the experiments.

イロト イボト イヨト イヨト 二日

Distinct Stages

- Writing the cipher as a polynomial system of equations of low degree (often over GF(2) or GF(2^k)).
- Solve the corresponding system of equations.
 - Gröbner basis (Buchberger, F4 or F5), ElimLin, XL and its family, Raddum-Semaev algorithm or SAT solvers.

Focus: ElimLin and Gröbner basis algorithms (F4 under PolyBori framework)

ElimLin Algorithm

Proposed by N. Courtois to attack DES (breaks 5-round DES)

- Gaussian Elimination: all the linear equations in the span of initial equations are found.
- Substitution: one of the variables nominated in each linear equation and is substituted in the whole system.
- Iteration: repeat up to the time no new linear equation is found.

ElimLin recovers half of the bits of the key of 5-round PRESENT in less than 3 mins using a 2Ghz CPU with 1GB RAM. (both key sizes) [First attack by N. Courtois against PRESENT-80.] Our Goal: comparison between ElimLin and F4 algorithm under PolyBori framework.

PolyBori

- The most efficient implementation of F4 known to us.
- A C++ library designed to compute Gröbner basis applied to Boolean polynomials.
- A Python interface surrounding the C++ core.
- Zero-suppressed binary decision diagrams (ZDD) as a high level data structure to store Boolean polynomials.
 - Less memory and speculated to be faster!

We used polybori-0.4 in our attacks.

Algebraic expression of the S-box

$$y_0 = x_1 x_2 + x_0 + x_2 + x_3$$

$$y_1 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_0 x_1 x_2 + x_1 x_3 + x_2 x_3 + x_1 + x_3$$

$$y_2 = x_0 x_1 x_3 + x_0 x_2 x_3 + x_0 x_1 + x_0 x_3 + x_1 x_3 + x_2 + x_3 + 1$$

$$y_3 = x_0 x_1 x_2 + x_0 x_1 x_3 + x_0 x_2 x_3 + x_1 x_2 + x_0 + x_1 + x_3 + 1$$

$$\begin{aligned} x_0 &= y_1 y_3 + y_0 + y_2 + 1 \\ x_1 &= y_0 y_1 y_2 + y_0 y_1 y_3 + y_0 y_2 y_3 + y_0 y_2 + y_1 y_3 + y_2 y_3 + y_0 + y_1 + y_3 \\ x_2 &= y_0 y_1 y_2 + y_0 y_1 y_3 + y_0 y_2 y_3 + y_0 y_1 + y_0 y_2 + y_1 y_2 + y_0 y_3 + y_1 y_3 \\ &+ y_3 + 1 \\ x_3 &= y_0 y_1 y_2 + y_0 y_2 y_3 + y_0 y_1 + y_0 + y_1 + y_2 + y_3 \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回 ろんの

Comparison						
# R	#key bits	s #key bits full key # p		# plaintexts	notes	
		fixed	(hours)			
5	80	40	0.04	5 KP	ElimLin	
5	80	40	0.07	5 KP	PolyBori	
5	80	37	0.61	10 KP	ElimLin	
5	80	37	0.52	10 KP	PolyBori	
5	80	36	3.53	16 KP	ElimLin	
5	80	36	Crashed!	16 KP	PolyBori	
5	80	35	4.47	16 KP	ElimLin	
5	80	35	Crashed!	16 KP	PolyBori	
5	128	88	0.05	5 KP	ElimLin	
5	128	88	0.07	5 KP	PolyBori	

Results specifically for PRESENT

- nothing better to use PolyBori compared to ElimLin.
- still PolyBori uses a large amount of memory (Gröbner basis approach of increasing the polynomial degree in intermediate stages), where the one of ElimLin is negligible.
- time complexity is closely comparable to ElimLin.
- faced multiple instances in which PolyBori crashed! (probably due to running out of memory) but ElimLin outputs the result.

Why not to use a simple algorithm like ElimLin, comparing to a complex one such as Gröbner basis approach!

- ideas related to LC dates back to A. Shamir (1985) observations on DES S-boxes
- LC technique was developed by M. Matsui against FEAL (1992)
- later Matsui applied LC to DES (1993, 1994)
- known-plaintext and ciphertext-only (ASCII plaintext) attack settings
- main concept: linear relation

$$P \cdot \Gamma_P \oplus C \cdot \Gamma_c = K \cdot \Gamma_k$$

with probability p

• bias:
$$\epsilon = |p - \frac{1}{2}|$$
, with $0 \le \epsilon \le \frac{1}{2}$

Analysis Strategy for PRESENT

- exploit poor diffusion in pLayer (branch number: 2)
- exploit single-bit trails (low HW bitmasks)
- look for iterative linear relations
- minimize number of active S-boxes per round
- study linear hull effect (multiple trails sharing the same fixed plaintext/ciphertext masks)

Example of linear relation with high bias

 $80000000000000_x \xrightarrow{1r} 8000000000000_x$

- translates into $p_0 \oplus c_0 = k_0^1 \oplus k_0^2$ for one round
- 1-round iterative linear relation
- bias: 2⁻³ (one active S-box)
- based on fix-point of pLayer
- ASCII plaintext: ciphertext-only (CO) distinguish-from-random attack
- on 14 rounds: 2⁶¹ CO and equivalent parity computations, negligible memory

- concept due to K. Nyberg (1994)
- linear hull is the collection of all linear relations sharing the same plaintext and ciphertext masks (across a certain number of rounds of a cipher)
- bias of linear hull: $\epsilon^2 = \sum_{i=1}^t \epsilon_i^2$, where ϵ_i^2 are the bias of individual linear trails
- the **linear hull effect** accounts for a clustering of linear trails, ie. several distinct paths across the linear distinguisher
- in PRESENT, this effect was observed in practice (even for a small number of rounds)
- linear hulls ≠ multiple linear relations

Outline Linear Hulls of PRESENT

Outline

Example of branching and merging back to one S-box

Software Tools

- We have developed software tools to search for linear trails inside a hull
- recursive depth-first search with optimization strategies:
 - minimize number of active S-boxes
 - single-bit trails
 - 1st and 2nd best trails: *r* or *r*+2 active S-boxes across *r* rounds
 - upper bound the bias of individual trails
 - trails are probably not 'linearly independent' (not a problem c.f. Kaliski-Robshaw)

ALH vs. Piling-up lemma

Table: Computed bias (cb) and expected bias (eb) of linear hulls in PRESENT for input/output mask 000000000200000_x

# rounds	1	2	3	4	5	6	7
# trails	1	1	1	9	9	27	72
(cb)	2 ⁻³	2 ⁻⁵	2-7	2-8.20	2 ^{-9.40}	2 ^{-10.61}	2-11.90
(eb)	2 ⁻³	2 ⁻⁵	2-7	2 ⁻⁹	2 ⁻¹¹	2 ⁻¹³	2 ⁻¹⁵
# rounds	8	9	10	11	12	13	14
# trails	192	512	1344	3528	9261	24255	63525
(cb)	2-13.19	2-14.48	2 ^{-15.78}	$2^{-17.08}$	2-18.38	2-19.71	2-21.02
(eb)	2-17	2 ⁻¹⁹	2-21	2-23	2-25	2 ⁻²⁷	2 ⁻²⁹
# rounds	15	16	17	18	19	20	21
# trails	166375	435600	1140480	2985984	7817472	20466576	53582633
(cb)	2-22.33	$2^{-23.63}$	2 ^{-24.94}	2-26.25	$2^{-27.55}$	2 ^{-28.85}	2 ^{-30.16}
(eb)	2 ⁻³¹	2 ⁻³³	2 ⁻³⁵	2 ⁻³⁷	2 ⁻³⁹	2 ⁻⁴¹	2 ⁻⁴³
# rounds	22	23					
# trails	140281323	367261713					
(cb)	2-31.47	2-32.77					
(eb)	2 ⁻⁴⁵	2 ⁻⁴⁷					

Outline Linear Hulls of PRESENT

ALH vs. Piling-up lemma

This graph shows that the linear hull effect (clustering of linear trails) for *r*-round PRESENT ($1 \le r \le 23$).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○ ○

Number of second best trails

Table: Input/Output bitmask 000000000200000x

# rounds	# best trails	# 2nd best trail	bias of 2nd best trails
5	9	18	2 ^{-12.915}
6	27	81	2 ^{-13.830}
7	72	288	2 ^{-14.915}
8	192	960	2 ^{-16.046}
9	512	3072	2 ^{-17.207}
10	1344	9536	2 ^{-18.376}
11	3528	28896	2 ^{-19.565}
12	9261	85995	2 ^{-20.771}
13	24255	252021	2 ^{-21.990}
14	63525	730235	2 ^{-23.219}

・ロト・日本・山田・山田・山下・

21 and 22-round linear hull

- 25-round key-recovery attack: complexity 2^{98.68} 25-round computations, memory 2⁴⁰ and success rate 0.61.
- ALH (000000000200000_x,000000000000000_x) for 22 rounds is 2^{-62.83}.
- 26-round key-recovery attack: complexity 2^{98.62} 26-round computations, memory 2⁴⁰ (128 key bit only).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Highlights

- Revisited algebraic analysis of 5-round PRESENT
- Linear analysis with ciphertext-only attacks (14 rounds)
- First linear hull analysis of up to 26-round PRESENT (but small success rate)

Thanks

- Bingsheng Zhang is supported by Estonian Science Foundation, grant #8058, the European Regional Development Fund through the Estonian Center of Excellence in Computer Science (EXCS), and the 6th Framework Programme project AEOLUS (FP6-IST-15964).
- Meiqin Wang is supported by 973 Program of China (Grant No.2007CB807902) and National Outstanding Young Scientist fund of China (Grant No. 60525201).