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Abstract

We prove that for both the Lambek calculus L and the Lambek calculus allowing
empty premises L∗ the derivability problem is NP-complete. It follows that also for
the multiplicative fragments of cyclic linear logic and noncommutative linear logic
the derivability problem is NP-complete.

Introduction

The Lambek syntactic calculus L (introduced in [12]) is one of the logical calculi used in
the paradigm of categorial grammar for deriving reduction laws of syntactic types (also
called “categories”) in natural and formal languages. In categorial grammars based on
the Lambek calculus (or its variants) an expression is assigned to category B / A (resp.
A \ B) if and only if the expression produces an expression of category B whenever it
is followed (resp. preceded) by an expression of category A. An expression is assigned
to category A · B if and only if the expression can be obtained by concatenation of an
expression of category A and an expression of category B. The reduction laws derivable
in this calculus are of the form A→ B (meaning “every expression of category A is also
assigned to category B”). A survey of proof-theoretical properties of Lambek calculus
can be found in [4].

There is a natural modification of the original Lambek calculus, which we call the
Lambek calculus allowing empty premises and denote L∗ (see [22, p. 44]). Intuitively, the
modified calculus allows the empty expression to be assigned to some categories. This
calculus is in fact a fragment of noncommutative linear logic (introduced by V. M. Abrusci
in [3]). Essentially the same logic has been called BL2 by J. Lambek [13] (it has also been
studied by several other authors). Also the cyclic linear logic (defined by D. N. Yetter
in [23]) is conservative over L∗. In the propositional multiplicative fragments of all these
logics cut-free proofs are of polynomial size. Thus the derivability problem for these
fragments is in NP.

It is known that the derivability problem for the multiplicative commutative linear
logic is NP-complete (see [10, 11, 14]). The same question for L, L∗, and multiplicative
noncommutative linear logics was an open problem (see e. g. [5, 15, 16, 17, 18]).

We show that the classical satisfiability problem SAT is polynomial time reducible to
the L-derivability problem and thus L is NP-complete. This yields NP-completeness of the
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following parsing problem: given a string and a Lambek categorial grammar, to decide
whether the string is accepted by the grammar (even in the case where each terminal
symbol is assigned to only one category).

The same reduction from SAT works also for the calculus L∗ and consequently for
the multiplicative fragment of noncommutative linear logic (and for the multiplicative
fragment of cyclic linear logic).

This paper is organized as follows. The first section contains definitions of the cal-
culi L and L∗. In Section 2 we give the main construction that reduces SAT to the
L-derivability problem (and also to the L∗-derivability problem). Correctness of this con-
struction is proved in Section 3, but the proof of one lemma is deferred until Section 6,
where we use the technique of proof nets provided by Sections 4 and 5 (these proof
nets are slightly different from those introduced by D. Roorda [21] and those studied by
Ph. de Groote [7, 8]).

1 Lambek calculus

First we define the Lambek calculus allowing empty premises (denoted by L∗).
Assume that an enumerable set of variables Var is given. The types of L∗ are built

of variables (also called primitive types in the context of the Lambek calculus) and three
binary connectives ·, /, and \. The set of all types is denoted by Tp. The letters p,
q, . . . range over the set Var, capital letters A, B, . . . range over types, and capital Greek
letters range over finite (possibly empty) sequences of types. For notational convenience,
we assume that · associates to the left.

The sequents of L∗ are of the form Γ → A (Γ can be the empty sequence). The
calculus L∗ has the following axioms and rules of inference:

A→ A,
Φ→B ΓB∆→ A

ΓΦ∆→ A
(CUT),

ΠA→B
Π→B / A

(→/), Φ→ A ΓB∆→ C
Γ(B / A)Φ∆→ C

(/→),

AΠ→B
Π→ A \B

(→\), Φ→ A ΓB∆→ C
ΓΦ(A \B)∆→ C

(\→),

Γ→ A ∆→B
Γ∆→ A · B

(→·), ΓAB∆→ C
Γ(A · B)∆→ C

(·→).

As usual, we shall write L∗ ` Γ→A to indicate that the sequent Γ→A is derivable in L∗.
The calculus L has the same axioms and rules with the only exception that in the rules

(→\) and (→/) we require Π to be nonempty. The calculus L is the original syntactic
calculus introduced in [12]. Evidently, if L ` Γ→ A, then L∗ ` Γ→ A.

It is known that the cut-elimination theorem holds for both L and L∗.
The rules (→\), (→/) and (·→) are reversible in both L and L∗ (the converse rules

are easy to derive with the help of the cut rule).
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For every p ∈ Var we define a function #p that maps types to integers as follows:

#p(q) ­
{

1 if p = q,

0 if q ∈ Var and p 6= q,

#p(A · B) ­ #p(A) + #p(B),

#p(A \B) ­ #p(B)−#p(A),

#p(B / A) ­ #p(B)−#p(A).

This definition is extended to sequences of types as follows:

#p(A1 . . . An) ­ #p(A1) + . . . + #p(An).

Straightforward induction on derivations shows that if L∗ ` Γ → A, then #p(Γ) =
#p(A) for every p ∈ Var.

2 Reduction from SAT

Let c1∧ . . .∧ cm be a Boolean formula in conjunctive normal form with clauses c1, . . . , cm

and variables x1, . . . , xn. The reduction maps the formula to a sequent, which is derivable
in L∗ (and in L) if and only if the formula c1 ∧ . . . ∧ cm is satisfiable.

For any Boolean variable xi let ¬0xi stand for the literal ¬xi and ¬1xi stand for the
literal xi. Note that 〈t1, . . . , tn〉 ∈ {0, 1}n is a satisfying assignment for the Boolean
formula c1 ∧ . . .∧ cm if and only if for every index j ≤ m there exists an index i ≤ n such
that the literal ¬tixi appears in the clause cj (as usual, 1 stands for “true” and 0 stands
for “false”).

Let pj
i (0 ≤ i ≤ n, 0 ≤ j ≤ m) be distinct primitive types from Var.

We define three families of types:

G0
i ­ p0

0 \ p0
i if 1 ≤ i ≤ n,

Gj
i ­ (pj

0 \Gj−1
i ) · pj

i if 1 ≤ i ≤ n and 1 ≤ j ≤ m,

H0
i ­ p0

i−1 \ p0
i if 1 ≤ i ≤ n,

Hj
i ­ pj

i−1 \ (Hj−1
i · pj

i ) if 1 ≤ i ≤ n and 1 ≤ j ≤ m,

E0
i (t) ­ p0

i−1 \ p0
i if 1 ≤ i ≤ n and t ∈ {0, 1},

Ej
i (t) ­

{
(pj

i−1 \ Ej−1
i (t)) · pj

i if the literal ¬txi appears in the clause cj,

pj
i−1 \ (Ej−1

i (t) · pj
i ) otherwise

if 1 ≤ i ≤ n, 1 ≤ j ≤ m, t ∈ {0, 1}.
For convenience we introduce the following abbreviations:

G ­ Gm
n ,

Hi ­ Hm
i if 1 ≤ i ≤ n,

Fi ­ (Em
i (1) / Hi) · Hi · (Hi \ Em

i (0)) if 1 ≤ i ≤ n.

The aim of the rest of this paper is to demonstrate that L∗ ` F1 . . . Fn→G if and only
if L ` F1 . . . Fn →G if and only if the formula c1 ∧ . . . ∧ cm is satisfiable.
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Example. Consider the Boolean formula (x1∨x2)∧(¬x2)∧(¬x1∨x2). Here c1 = x1∨x2,
c2 = ¬x2, c3 = ¬x1 ∨ x2. By construction

G = ((p3
0 \ ((p2

0 \ ((p1
0 \ (p0

0 \ p0
2)) · p1

2)) · p2
2)) · p3

2),

H1 = (p3
0 \ ((p2

0 \ ((p1
0 \ ((p0

0 \ p0
1) · p1

1)) · p2
1)) · p3

1)),

H2 = (p3
1 \ ((p2

1 \ ((p1
1 \ ((p0

1 \ p0
2) · p1

2)) · p2
2)) · p3

2)),

E3
1(1) = (p3

0 \ ((p2
0 \ (((p1

0 \ (p0
0 \ p0

1)) · p1
1) · p2

1)) · p3
1)),

E3
1(0) = ((p3

0 \ (p2
0 \ ((p1

0 \ ((p0
0 \ p0

1) · p1
1)) · p2

1))) · p3
1),

E3
2(1) = ((p3

1 \ (p2
1 \ (((p1

1 \ (p0
1 \ p0

2)) · p1
2) · p2

2))) · p3
2),

E3
2(0) = (p3

1 \ (((p2
1 \ (p1

1 \ ((p0
1 \ p0

2) · p1
2))) · p2

2) · p3
2)).

The sequent

((E3
1(1) / H1) · H1 · (H1 \ E3

1(0))) ((E3
2(1) / H2) · H2 · (H2 \ E3

2(0)))→G

is not derivable in L∗.

3 Correctness of the reduction

First we prove the easy part: L ` F1 . . . Fn → G whenever the formula c1 ∧ . . . ∧ cm is
satisfiable.

Lemma 3.1. If L ` B1 →B2, then L ` (A \B1) · C → A \ (B2 · C).

Proof.

A→ A
B1 →B2 C → C

B1 C →B2 · C
(→·)

A (A \B1) C →B2 · C
(\→)

(A \B1) C → A \ (B2 · C)
(→\)

(A \B1) · C → A \ (B2 · C)
(·→)

Lemma 3.2. If 1 ≤ i ≤ n, 0 ≤ j ≤ m, and t ∈ {0, 1}, then L ` Ej
i (t)→Hj

i .

Proof. Induction on j. The induction step follows from Lemma 3.1 and from the obser-
vation that L ` A \ (B1 · C)→ A \ (B2 · C) whenever L ` B1 →B2.

Lemma 3.3. If 1 ≤ i ≤ n and t ∈ {0, 1}, then L ` Fi → Em
i (t).

Proof. In view of Lemma 3.2, L ` Em
i (1)→Hi. From this we derive L ` Fi → Em

i (0) as
follows.

Hi →Hi

Em
i (1)→Hi Em

i (0)→ Em
i (0)

Em
i (1) (Hi \ Em

i (0))→ Em
i (0)

(\→)

(Em
i (1) / Hi) Hi (Hi \ Em

i (0))→ Em
i (0)

(/→)

((Em
i (1) / Hi) · Hi) (Hi \ Em

i (0))→ Em
i (0)

(·→)

((Em
i (1) / Hi) · Hi · (Hi \ Em

i (0)))→ Em
i (0)

(·→)

Similarly L ` Fi → Em
i (1) follows from L ` Em

i (0)→Hi.
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Lemma 3.4. L ` (p0
0 \ p0

1) . . . (p0
n−1 \ p0

n)→ p0
0 \ p0

n.

Proof. By induction on i one can prove that L ` (p0
0 \ p0

1) . . . (p0
i−1 \ p0

i )→ p0
0 \ p0

i whenever
1 ≤ i ≤ n. The induction step involves the cut rule.

Lemma 3.5. If 1 ≤ i ≤ n, 1 ≤ j ≤ m, t ∈ {0, 1}, and L ` Γ Ej−1
i (t) pj

i ∆ → C, then
L ` Γ pj

i−1 Ej
i (t) ∆→ C.

Proof. According to Lemma 3.1, L ` Ej
i (t)→ pj

i−1 \ (Ej−1
i (t) · pj

i ) regardless of whether
the literal ¬txi appears in the clause cj. Thus we can use the following derivation.

Ej
i (t)→ pj

i−1 \ (Ej−1
i (t) · pj

i )

pj
i−1 → pj

i−1

Γ Ej−1
i (t) pj

i ∆→ C

Γ (Ej−1
i (t) · pj

i ) ∆→ C
(·→)

Γ pj
i−1 (pj

i−1 \ (Ej−1
i (t) · pj

i )) ∆→ C
(\→)

Γ pj
i−1 Ej

i (t) ∆→ C
(CUT)

Lemma 3.6. Let 0 ≤ j ≤ m. Suppose 〈t1, . . . , tn〉 is a satisfying assignment for the
Boolean formula c1 ∧ . . . ∧ cj. Then L ` Ej

1(t1) . . . Ej
n(tn)→Gj

n.

Proof. Induction on j. The induction base is provided by Lemma 3.4. To prove the
induction step, assume that j ≥ 1 and L ` Ej−1

1 (t1) . . . Ej−1
n (tn)→Gj−1

n . Since 〈t1, . . . , tn〉
is a satisfying assignment for the clause cj, there exists an index k such that the literal
¬tkxk appears in the clause cj. Thus Ej

k(t) = (pj
k−1\Ej−1

k (t))·pj
k. The induction hypothesis

yields

L ` Ej−1
1 (t1) . . . Ej−1

k−1(tk−1) pj
k−1 (pj

k−1 \ Ej−1
k (tk)) Ej−1

k+1(tk+1) . . . Ej−1
n (tn)→Gj−1

n .

Applying Lemma 3.5 k − 1 times we obtain

L ` pj
0 Ej

1(t1) . . . Ej
k−1(tk−1) (pj

k−1 \ Ej−1
k (tk)) Ej−1

k+1(tk+1) . . . Ej−1
n (tn)→Gj−1

n .

Application of the rules (→\) and (→·) yields

L ` Ej
1(t1) . . . Ej

k−1(tk−1) (pj
k−1 \ Ej−1

k (tk)) Ej−1
k+1(tk+1) . . . Ej−1

n (tn) pj
n →Gj

n.

Applying Lemma 3.5 n− k times we obtain

L ` Ej
1(t1) . . . Ej

k−1(tk−1) (pj
k−1 \ Ej−1

k (tk)) pj
k Ej

k+1(tk+1) . . . Ej
n(tn)→Gj

n.

Application of the rule (·→) yields L ` Ej
1(t1) . . . Ej

n(tn)→Gj
n.

Lemma 3.7. If the formula c1 ∧ . . . ∧ cm is satisfiable, then L ` F1 . . . Fn →G.

Proof. Suppose 〈t1, . . . , tn〉 is a satisfying assignment for the formula c1 ∧ . . . ∧ cm. Ac-
cording to Lemma 3.6 L ` Em

1 (t1) . . . Em
n (tn)→ G. It remains to apply Lemma 3.3 and

the cut rule n times.

Now our aim is to prove that if L∗ ` F1 . . . Fn → G, then the formula c1 ∧ . . . ∧ cm is
satisfiable.
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Lemma 3.8. If 1 ≤ i ≤ n, 1 ≤ j ≤ m, t ∈ {0, 1}, and L∗ ` Γ Ej
i (t) ∆ → C, then

L∗ ` Γ (pj
i−1 \ Ej−1

i (t)) pj
i ∆→ C.

Proof. Following the derivation in the proof of Lemma 3.1 (dropping the last step) one
can easily verify that L ` (pj

i−1 \Ej−1
i (t)) pj

i →Ej
i (t) regardless of whether the literal ¬txi

appears in the clause cj. It remains to apply the cut rule.

Lemma 3.9. If p ∈ Var, L∗ ` Υ p→ p, and p does not occur in Υ, then Υ is empty.

Proof. We take a cut-free derivation of Υ p→ p and proceed by induction on derivation
length. The induction step involves three simple cases, which correspond to the rules
(/→), (\→), and (·→).

We consider the case (/→). Let

Φ→ A ΓB∆→ p

Γ(B / A)Φ∆→ p
(/→),

where Γ(B / A)Φ∆ = Υp. From #p(A) = 0 we conclude that #p(Φ) = 0. Therefore
∆ = ∆′p for some ∆′, whence we can apply the induction hypothesis for the sequent
ΓB∆→ p and obtain contradiction.

The other two cases are straightforward.

Lemma 3.10. If p ∈ Var, L∗ ` Υ p→D · p, and p does not occur in the sequent Υ→D,
then L∗ ` Υ→D.

Proof. Induction on the length of a cut-free derivation of Υ p→ D · p. In the induction
step we consider the last rule of the derivation.
Case 1: (→·).
Then Υ = Γ∆′ and

Γ→D ∆′p→ p

Γ∆′p→D · p
(→·).

In view of (i), ∆′ is empty. Thus Υ = Γ and L∗ ` Υ→D.
Case 2: (/→).
Let

Φ→ A ΓB∆→D · p

Γ(B / A)Φ∆→D · p
(/→),

where Υp = Γ(B / A)Φ∆. From #p(A) = 0 we conclude that #p(Φ) = 0. Therefore
∆ = ∆′p and Υ = Γ(B / A)Φ∆′. Applying the induction hypothesis for the sequent
ΓB∆′p→D · p we obtain ΓB∆′→D. It remains to derive in L∗:

Φ→ A ΓB∆′→D
Γ(B / A)Φ∆′→D

(/→),

The cases (·→) and (\→) are similar.

Lemma 3.11. If p ∈ Var, L∗ ` Υ p (p \D) Ψ→ E, and p does not occur in the sequent
Υ D Ψ→ E, then L∗ ` Υ D Ψ→ E.
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Proof. Induction on the length of a cut-free derivation of Υ p (p \ D) Ψ→ E. Again we
consider the last rule of the derivation. We shall investigate in detail only the rule (→·)
(other rules can be treated similarly).

Let
Γ→ A ∆→B

Γ∆→ A · B
(→·),

where Γ∆ = Υ p (p \D) Ψ. We consider three cases.
Case 1: Γ = Υ p and ∆ = (p \D) Ψ.
This is impossible, since #p(Υ p) = 1 and #p(A) = 0.
Case 2: Υ = Υ′ Υ′′, Γ = Υ′, and ∆ = Υ′′ p (p \D) Ψ.
The induction hypothesis for Υ′′ p (p \D) Ψ→B gives Υ′′ D Ψ→B. It remains to derive
in L∗:

Υ′→ A Υ′′ D Ψ→B
Υ′ Υ′′ D Ψ→ A · B

(→·).

Case 3: Ψ = Ψ′ Ψ′′, Γ = Υ p (p \D) Ψ′, and ∆ = Ψ′′.
The induction hypothesis for Υ p (p \D) Ψ′→ A gives Υ D Ψ′→ A. It remains to derive
in L∗:

Υ D Ψ′→ A Ψ′′→B
Υ D Ψ′ Ψ′′→ A · B

(→·).

Lemma 3.12. Let 1 ≤ j ≤ m and 〈t1, . . . , tn〉 ∈ {0, 1}n. If L∗ ` Ej
1(t1) . . . Ej

n(tn)→Gj
n,

then L∗ ` Ej−1
1 (t1) . . . Ej−1

n (tn)→Gj−1
n .

Proof. First we apply Lemma 3.8 n times. Next we apply Lemma 3.10 and the converse
of the rule (→\). Finally we apply Lemma 3.11 n times.

Lemma 3.13. Let 1 ≤ j ≤ m and 〈t1, . . . , tn〉 ∈ {0, 1}n. If L∗ ` Ej
1(t1) . . . Ej

n(tn)→Gj
n,

then 〈t1, . . . , tn〉 is a satisfying assignment for the clause cj.

Proof. Assume for the contrary that 〈t1, . . . , tn〉 is not a satisfying assignment for the
clause cj. This means that none of the literals ¬tixi appears in the clause cj. Thus the
sequent Ej

1(t1) . . . Ej
n(tn)→Gj

n is of the form

(pj
0 \ (A1 · pj

1)) . . . (pj
n−1 \ (An · pj

n))→ (pj
0 \B) · pj

n

for some types A1, . . . , An, and B that contain none of the variables pj
0, . . . , pj

n. It is
easy to see that the last rule in a derivation of such a sequent can only be the cut rule
(a variable pj

i can not occur in a derivable sequent exactly once). Thus the sequent has
no cut-free derivation. Hence it is not derivable in L∗.

Lemma 3.14. If 〈t1, . . . , tn〉 ∈ {0, 1}n and L∗ ` Em
1 (t1) . . . Em

n (tn)→G, then 〈t1, . . . , tn〉
is a satisfying assignment for the Boolean formula c1 ∧ . . . ∧ cm.

Proof. Immediate from Lemma 3.12 and Lemma 3.13.
In fact this lemma can also be proved by means of an argument concerning proof nets,

which are defined in Section 5 (then Lemmas 3.8–3.13 are not needed).

The following key lemma provides a “switch”, which guarantees that the value of a
Boolean variable xk (which is modelled in L∗ by the type Fk) can only be changed in all
clauses simultaneously.
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Lemma 3.15. Let k ≥ 1, B ∈ Tp, and L∗ ` F1 . . . Fk−1Fk → B. Let the variables pm
0

and pm
k occur only once in B and none of the variables pm

1 , . . . , pm
k−1 occur in B. Then

L∗ ` F1 . . . Fk−1E
m
k (t)→B for some t ∈ {0, 1}.

Lemma 3.15 will be proved in Section 6.

Lemma 3.16. If L∗ ` F1 . . . Fn → G, then L∗ ` Em
1 (t1) . . . Em

n (tn) → G for some
〈t1, . . . , tn〉 ∈ {0, 1}n.

Proof. By induction on n − k we show that for every k ≤ n there is an assignment
〈tk+1, . . . , tn〉 ∈ {0, 1}n−k such that L∗ ` F1 . . . FkE

m
k+1(tk+1) . . . Em

n (tn)→G.
To prove the induction step, assume that

L∗ ` F1 . . . FkE
m
k+1(tk+1) . . . Em

n (tn)→G.

We apply Lemma 3.15 to the derivable sequent

F1 . . . Fk → (. . . (G / Em
n (tn)) . . . / Em

k+1(tk+1)).

Now the converse of the rule (→/) can be applied n− k times. We obtain

L∗ ` F1 . . . Fk−1E
m
k (tk) . . . Em

n (tn)→G

for some tk ∈ {0, 1}.
Lemma 3.17. If L∗ ` F1 . . . Fn →G, then the formula c1 ∧ . . . ∧ cm is satisfiable.

Proof. Immediate from Lemma 3.16 and Lemma 3.14.

Theorem 1. The L-derivability problem is NP-complete.

Proof. Due to cut-elimination the L-derivability problem is in NP (the size of a cut-free
derivation in L can not exceed the square of the length of the final sequent).

According to Lemma 3.7 and Lemma 3.17 the construction in Section 2 provides
a mapping reduction from the classical satisfiability problem SAT to the L-derivability
problem. The problem SAT is NP-hard (see [6]). Thus the L-derivability problem is
NP-hard.

Theorem 2. The L∗-derivability problem is NP-complete.

Proof. Like the previous theorem, also this one follows immediately from Lemma 3.7 and
Lemma 3.17.

4 Noncommutative linear logic

Several equivalent to each other sequent calculi for the pure noncommutative classical
linear propositional logic were introduced in [3]. Here we consider only the minimal
multiplicative fragment SPNCL′O⊗ of that logic (without the constants ⊥ and 1). For
shortness we shall denote that fragment by NCL in this paper. The calculus NCL may
also be considered as a fragment of Lambek’s bilinear logic BL2 from [13] (but we use O
instead of ⊕).
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In the definition of formulas of NCL we shall employ the same enumerable set Var
that was used in the definition of Lambek calculus types. First, we introduce the set At
of formal symbols called atoms

At ­ {p⊥n | p ∈ Var, n ∈ Z}

(as usual, Z stands for the set of all integers). Intuitively, if n ≥ 0, then p⊥n means
“p with n right negations” and p⊥−n means “p with n left negations”.

The set of normal formulas (or just formulas for shortness) is defined to be the smallest
set NF satisfying the following conditions:

• At ⊂ NF,

• if A ∈ NF and B ∈ NF, then (A⊗B) ∈ NF and (AOB) ∈ NF.

Here ⊗ is the multiplicative conjunction, called tensor, and O is the multiplicative dis-
junction, called par. For notational convenience, it is assumed that ⊗ and O associate to
the left. The set of all finite sequences of formulas is denoted by NF∗.

The right negation (A⊥) and the left negation (⊥A) of a formula A are defined as
follows:

(p⊥n)⊥ ­ p⊥(n+1), ⊥(p⊥n) ­ p⊥(n−1),

(A⊗B)⊥ ­ (B⊥)O (A⊥), ⊥(A⊗B) ­ (⊥B)O (⊥A),

(AOB)⊥ ­ (B⊥)⊗ (A⊥), ⊥(AOB) ­ (⊥B)⊗ (⊥A).

Example. If

A = ((p2
0)
⊥1 O (((p1

0)
⊥1 O (((p0

0)
⊥1 O (p0

1)
⊥0)⊗ (p1

1)
⊥0))⊗ (p2

1)
⊥0)),

then
A⊥ = (((p2

1)
⊥1 O (((p1

1)
⊥1 O ((p0

1)
⊥1 ⊗ (p0

0)
⊥2))⊗ (p1

0)
⊥2))⊗ (p2

0)
⊥2).

The sequents of NCL are of the form →Γ, where Γ ∈ NF∗.
The calculus NCL has the following axioms and rules of inference:

→p⊥(n+1) p⊥n,

→ΓAB∆
→Γ(AOB)∆

, →ΓA →B∆
→Γ(A⊗B)∆

,

→AΓ
→Γ(⊥(⊥A))

, →ΓA
→((A⊥)⊥)Γ

.

Here capital letters A, B, . . . stand for formulas, capital Greek letters denote finite
(possibly empty) sequences of formulas, p ranges over Var, and n ranges over Z. As
usual, NCL ` →Γ means that the sequent →Γ is derivable in NCL.

The set of all subformulas of a formula is defined as follows:

SubNF(p⊥n) ­ {p⊥n},
SubNF(AOB) ­ {AOB} ∪ SubNF(A) ∪ SubNF(B),

SubNF(A⊗B) ­ {A⊗B} ∪ SubNF(A) ∪ SubNF(B).
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To embed L∗ into NCL, we shall map each type A ∈ Tp to a formula Â ∈ NF:

p̂ ­ p,

Â / B ­ ÂO (⊥B̂),

Â \B ­ (Â⊥)O B̂,

Â · B ­ Â⊗ B̂.

Example. Consider the type

G2
5 = ((p2

0 \ ((p1
0 \ (p0

0 \ p0
5)) · p1

5)) · p2
5).

Then
Ĝ2

5 = (((p2
0)
⊥1 O (((p1

0)
⊥1 O ((p0

0)
⊥1 O (p0

5)
⊥0))⊗ (p1

5)
⊥0))⊗ (p2

5)
⊥0).

The following lemma is proved in [20].

Lemma 4.1. Let A1, . . . , An, B ∈ Tp. The sequent A1 . . . An → B is derivable in L∗ if

and only if the sequent →(Ân

⊥
) . . . (Â1

⊥
)B̂ is derivable in NCL.

5 Proof nets

We shall repeat the definition of proof net from [20] (but without the multiplicative
constants ⊥ and 1).

Definition. For the purposes of proof nets it is convenient to measure the length of a
formula using the following function:

|||p⊥n||| ­ 2,

|||A⊗B||| ­ |||A|||+ |||B|||,
|||AOB||| ­ |||A|||+ |||B|||.

The notion of length is extended to finite sequences of formulas in the natural way:
|||A1 . . . An||| ­ |||A1|||+ . . . + |||An|||, the length of the empty sequence is 0.

Evidently |||A⊥||| = |||A||| for every A ∈ NF.

Definition. To formalize the notion of occurrences of subformulas, we introduce the set
Occ ­ NF× Z. Let c be the map from NF to Z defined by

c(p⊥n) ­ 1,

c(A⊗B) ­ |||A|||,
c(AOB) ­ |||A|||.

The binary relation ≺ on the set Occ is defined as the least transitive binary relation
satisfying 〈A, k − |||A|||+ c(A)〉 ≺ 〈(A λ B), k〉 and 〈B, k + c(B)〉 ≺ 〈(A λ B), k〉 for every
λ ∈ {⊗,O}, A ∈ NF, B ∈ NF, and k ∈ Z. The symbol ¹ is introduced in the usual
manner.
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Given a formula A, one can associate occurrences of its subformulas with elements
of Occ. Each subformula occurrence B corresponds to a pair 〈B, k〉 ∈ Occ such that
〈B, k〉 ¹ 〈A, c(A)〉 and k is the “|||·|||-distance” of the main connective of B from the left
end of A.

Example. Let p ∈ Var, q ∈ Var, and A = (p⊥2 O (p⊥2 ⊗ q⊥1))⊗ q⊥1. Then |||A||| = 8 and
c(A) = 6. There are seven elements α ∈ Occ such that α ¹ 〈A, 6〉. These elements are

α1 = 〈p⊥2, 1〉,
α2 = 〈p⊥2 O (p⊥2 ⊗ q⊥1), 2〉,
α3 = 〈p⊥2, 3〉,
α4 = 〈p⊥2 ⊗ q⊥1, 4〉,
α5 = 〈q⊥1, 5〉,
α6 = 〈(p⊥2 O (p⊥2 ⊗ q⊥1))⊗ q⊥1, 6〉,
α7 = 〈q⊥1, 7〉.

Definition. For any sequence of formulas Γ = A1 . . . An we construct a relational struc-
ture ΩΓ = 〈ΩΓ,≺Γ, <Γ〉 as follows. By definition, put

ΩΓ ­ {〈B, k + |||A1 . . . Ai−1|||〉 | 1 ≤ i ≤ n and 〈B, k〉 ¹ 〈Ai, c(Ai)〉}
∪ {〈¦, |||A1 . . . Ai−1|||〉 | 1 ≤ i ≤ n},

where ¦ is a new symbol that does not belong to NF. The set ΩΓ can be considered as
consisting of four disjoint parts

Ω¦
Γ ­ {〈C, k〉 ∈ ΩΓ | C = ¦},

ΩAt
Γ ­ {〈C, k〉 ∈ ΩΓ | C ∈ At},

Ω⊗
Γ ­ {〈C, k〉 ∈ ΩΓ | C = A⊗B for some A and B},

ΩO
Γ ­ {〈C, k〉 ∈ ΩΓ | C = AOB for some A and B}.

We shall abbreviate ΩO
Γ ∪Ω¦

Γ as ΩO¦
Γ . The relation ≺Γ is the irreflexive partial order on ΩΓ

such that α ≺Γ β iff α /∈ Ω¦
Γ, β /∈ Ω¦

Γ, and α ≺ β. The relation <Γ is the irreflexive linear
order on ΩΓ such that 〈A, k〉 <Γ 〈B, l〉 iff k < l. The symbols ¹Γ and ≤Γ are introduced
in the usual manner.

Let us remark that the binary relation ≺Γ specifies a forest of ordered binary trees,
where vertices are the elements of ΩΓ − Ω¦

Γ and <Γ corresponds to the infix order.
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Example. Let A1 = p⊥1, A2 = p⊥4, A3 = p⊥3 ⊗ p⊥0, and Γ = A1A2A3. Then Ω¦
Γ =

{α0, α2, α4}, ΩAt
Γ = {α1, α3, α5, α7}, Ω⊗

Γ = {α6}, and ΩO
Γ = ∅, where

α0 = 〈¦, 0〉,
α1 = 〈p⊥1, 1〉,
α2 = 〈¦, 2〉,
α3 = 〈p⊥4, 3〉,
α4 = 〈¦, 4〉,
α5 = 〈p⊥3, 5〉,
α6 = 〈p⊥3 ⊗ p⊥0, 6〉,
α7 = 〈p⊥0, 7〉.

Obviously, α0 <Γ α1 <Γ . . . <Γ α7, α5 ≺Γ α6, and α7 ≺Γ α6.

Definition. For every Θ ⊆ ΩΓ we put [(Θ) ­ |ΩO¦
Γ ∩Θ| − |Ω⊗

Γ ∩Θ|.
Definition. For any α ∈ ΩΓ and β ∈ ΩΓ we denote by Bt(α, β) the set

{γ ∈ ΩΓ | α <Γ γ <Γ β or β <Γ γ <Γ α}.

Example. Let A1 = p⊥1⊗((p⊥2⊗(p⊥3Op⊥2))Op⊥1), A2 = p⊥0, and Γ = A1A2. Consider
the elements α = 〈(p⊥2 ⊗ (p⊥3 O p⊥2)) O p⊥1, 8〉 and β = 〈p⊥2 ⊗ (p⊥3 O p⊥2), 4〉. Then
Bt(α, β) = {〈p⊥3, 5〉, 〈p⊥3 O p⊥2, 6〉, 〈p⊥2, 7〉}.
Definition. Let C ⊆ ΩΓ × ΩΓ. We say that the directed graph 〈ΩΓ, C〉 is <Γ-planar if
for every edge 〈α, β〉 ∈ C and every edge 〈γ, δ〉 ∈ C the statements γ ∈ Bt(α, β) and
δ ∈ Bt(α, β) are either both true or both false, provided that {α, β} ∩ {γ, δ} = ∅.

In intuitive language, a graph is <Γ-planar if and only if its edges can be drawn without
intersections on a semiplane while the vertices of the graph are ordered according to <Γ

on the border of the semiplane.

Definition. Let Γ ∈ NF∗. A proof net for Γ is a relational structure 〈ΩΓ,A, E〉, where

• [(ΩΓ) = 2,

• A is the graph of a function from Ω⊗
Γ to ΩO¦

Γ ,

• E is the graph of a function from ΩAt
Γ to ΩAt

Γ ,

• if 〈α, β〉 ∈ E , then 〈β, α〉 ∈ E ,

• if 〈α, β〉 ∈ E and α ≤Γ β, then there are p ∈ Var and n, i, j ∈ Z such that α =
〈p⊥(n+1), i〉 and β = 〈p⊥n, j〉,

• the graph 〈ΩΓ,A ∪ E〉 is <Γ-planar, and

• the graph 〈ΩΓ,≺Γ ∪A〉 is acyclic (i. e., the transitive closure of the binary relation
≺Γ ∪ A is irreflexive).
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Example. Let A1 = p⊥1, A2 = p⊥0 ⊗ (q⊥1 O r⊥1), A3 = r⊥0 ⊗ q⊥0, and Γ = A1A2A3.
There is a proof net for Γ. We illustrate it with the following picture, where the elements
of Ω⊗

Γ and ΩO
Γ are depicted by ⊗ and O respectively, the linear order <Γ goes from left

to right, the relation ≺Γ is shown by dotted arrows, and the relations A and E are drawn
on the upper semiplane.

¦ p⊥1 ¦ p⊥0 ⊗
EDGF

²²
q⊥1 Ohh r⊥1 ¦ r⊥0 ⊗

EDGF
²²

q⊥0

Lemma 5.1. A sequent →Γ is derivable in NCL if and only if there exists a proof net
for Γ.

Proof. This lemma is simply the constant-free case of Theorem 7.12 from [20].

Intuitively, if 〈α, β〉 ∈ E , then α and β come from the same axiom. If 〈〈A⊗B, k〉, β〉 ∈ A,
then β designates the point where a sequent should be divided into two premises when
A⊗B is introduced by an instance of the ⊗-introduction rule. Evidently, if β = 〈COD, l〉,
then the rule that introduces C OD must be lower than the rule that introduces A⊗B.
Similarly, if 〈E, k〉 ≺Γ 〈F, l〉, then the rule that introduces F must be lower than the rule
that introduces E. This explains the acyclicity condition in the definition of proof net.

Example. Consider the proof net from the previous example. It corresponds to the
derivation

→p⊥1 p⊥0

→r⊥1 r⊥0 →q⊥1 q⊥0

→q⊥1 r⊥1 (r⊥0 ⊗ q⊥0)

→(q⊥1 O r⊥1) (r⊥0 ⊗ q⊥0)

→p⊥1 (p⊥0 ⊗ (q⊥1 O r⊥1)) (r⊥0 ⊗ q⊥0)
.

In this derivation we use one of the following two generalized ⊗-introduction rules

→Γ A →Φ B ∆
→Φ Γ (A⊗B) ∆

, →Γ A Π →B ∆
→Γ (A⊗B) ∆ Π

.

These rules are admissible in NCL. If we include them in the calculus, then the two rules
concerning cyclic permutation with double negation are no longer needed.

Example. Let

Γ = ((p⊥1
2 O (r⊥1 ⊗ r⊥2))⊗ p⊥2

1 ) (p⊥1
1 O ((r⊥1 ⊗ r⊥2)⊗ p⊥2

0 )) ((p⊥1
0 O (r⊥1 O r⊥0))⊗ p⊥0

2 ).

The following figure shows a proof net for Γ.

¦ p⊥1
2 O <<r⊥1 ⊗ff

GF ED

²²
r⊥2 ⊗

GF ED
²²

p⊥2
1 ¦ p⊥1

1 O r⊥1 ⊗ 88

GF ED
²²

r⊥2 ⊗bb

GF ED
²²

p⊥2
0 ¦ p⊥1

0 O <<r⊥1 Off r⊥0 ⊗

EDGF

²²
p⊥0

2

According to Lemma 5.1, NCL ` →Γ. In view of Lemma 4.1,

L∗ ` ((p0 \ (r \ r)) · p1) (p1 \ ((r \ r) · p2))→ ((p0 \ (r \ r)) · p2).

13



Example. Let

Γ = (p⊥1
1 O (((r⊥1O (r⊥1⊗ r⊥2))⊗ r⊥2)⊗ p⊥2

0 )) ((p⊥1
0 O ((r⊥1O (r⊥1O r⊥0))⊗ r⊥0))⊗ p⊥0

1 ).

The following figure illustrates the only way to construct a relational structure 〈ΩΓ,A, E〉
that satisfies the first six conditions from the definition of proof net.

¦ p⊥1
1 O r⊥1 O <<r⊥1 ⊗ff

GF ED

²²
r⊥2 ⊗ 88

GF ED
²²

r⊥2 ⊗YY

GF ED
²²

p⊥2
0 ¦ p⊥1

0 O EEr⊥1 O <<r⊥1 Off r⊥0 ⊗__

EDGF

²²
r⊥0 ⊗

EDGF

²²
p⊥0

1

The graph 〈ΩΓ,≺Γ ∪ A〉 contains a cycle. In view of Lemma 5.1 and Lemma 4.1,

L∗ 0 ((p0 \ (r \ ((r \ r) · r))) · p1)→ ((p0 \ ((r \ (r \ r)) · r)) · p1).

6 Proof of the key lemma

In this section we prove Lemma 3.15. Recall that m is the number of clauses, used as a
parameter in construction of the types Hi and Fi.

Let k ≥ 1, B ∈ Tp, and L∗ ` F1 . . . Fk−1Fk → B. Let pm
0 and pm

k occur only
once in B and none of the variables pm

1 , . . . , pm
k−1 occur in B. We must prove that

L∗ ` F1 . . . Fk−1E
m
k (0)→B or L∗ ` F1 . . . Fk−1E

m
k (1)→B.

In view of Lemma 4.1 and Lemma 5.1, there exists a proof net 〈ΩΓ,A, E〉 for Γ =

(F̂k

⊥
)(F̂k−1

⊥
) . . . (F̂1

⊥
)B̂. By definitions,

F̂i

⊥
= (Êm

i (0)
⊥ ⊗ Ĥi

⊥⊥
)O (Ĥi

⊥ O (Ĥi ⊗ Êm
i (1)

⊥
))

for every i. Note that |||Ĥi||| = |||Êm
i (0)||| = |||Êm

i (1)||| = 4(m + 1) and |||F̂i||| = 20(m + 1) for
every i.

Evidently ΩAt
cFk
⊥ ⊂ ΩAt

Γ . According to definitions,

ΩAt
cFk
⊥ = {〈(pj

k)
⊥1, 2(m− j) + 1〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k−1)

⊥2, 4(m + 1)− (2(m− j) + 1)〉 | 0 ≤ j ≤ m}
∪ {〈(pj

k−1)
⊥3, 4(m + 1) + (2(m− j) + 1)〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k)
⊥2, 8(m + 1)− (2(m− j) + 1)〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k)
⊥1, 8(m + 1) + (2(m− j) + 1)〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k−1)

⊥2, 12(m + 1)− (2(m− j) + 1)〉 | 0 ≤ j ≤ m}
∪ {〈(pj

k−1)
⊥1, 12(m + 1) + (2(m− j) + 1)〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k)
⊥0, 16(m + 1)− (2(m− j) + 1)〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k)
⊥1, 16(m + 1) + (2(m− j) + 1)〉 | 0 ≤ j ≤ m}

∪ {〈(pj
k−1)

⊥2, 20(m + 1)− (2(m− j) + 1)〉 | 0 ≤ j ≤ m}.
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We shall use the following abbreviations

α1 = 〈(pm
k )⊥1, 1〉,

β2 = 〈(pm
k−1)

⊥2, 4(m + 1)− 1〉,
β3 = 〈(pm

k−1)
⊥3, 4(m + 1) + 1〉,

α4 = 〈(pm
k )⊥2, 8(m + 1)− 1〉,

α5 = 〈(pm
k )⊥1, 8(m + 1) + 1〉,

β6 = 〈(pm
k−1)

⊥2, 12(m + 1)− 1〉,
β7 = 〈(pm

k−1)
⊥1, 12(m + 1) + 1〉,

α8 = 〈(pm
k )⊥0, 16(m + 1)− 1〉,

α9 = 〈(pm
k )⊥1, 16(m + 1) + 1〉,

β10 = 〈(pm
k−1)

⊥2, 20(m + 1)− 1〉.
Our nearest task is to prove that either

〈α1, α8〉 ∈ E (1)

or
〈β3, β10〉 ∈ E . (2)

Note that #pm
0
(B) = #pm

0
(F1 . . . Fk−1Fk) = −1 and #pm

k
(B) = #pm

k
(F1 . . . Fk−1Fk) = 1.

Thus the only occurrence of pm
k in B is a “positive occurrence” and the corresponding

element of ΩΓ is of the form 〈(pm
k )⊥n′ , l′〉, where n′ is even, and consequently

〈α8, 〈(pm
k )⊥n′ , l′〉〉 /∈ E .

According to the definition of proof net, there are only two possible values for the
E-image of α8. If 〈α8, α1〉 ∈ E , then we have (1). Let 〈α8, α5〉 ∈ E . Then we consider the
E-image of β3. It can not come from the type B (if k ≥ 2, then there are no occurrences
of pm

k−1 in B; if k = 1, then the only occurrence of pm
0 in B is a “negative occurrence” and

the corresponding element of ΩΓ is of the form 〈(pm
0 )⊥n′′ , l′′〉, where n′′ is odd).

Evidently, if k ≥ 2, then the occurrences of pm
k−1 and pm

k−2 in Fk−1 contribute the
following elements to ΩAt

Γ :

β11 = 〈(pm
k−1)

⊥1, 20(m + 1) + 1〉,
γ12 = 〈(pm

k−2)
⊥2, 24(m + 1)− 1〉,

γ13 = 〈(pm
k−2)

⊥3, 24(m + 1) + 1〉,
β14 = 〈(pm

k−1)
⊥2, 28(m + 1)− 1〉,

β15 = 〈(pm
k−1)

⊥1, 28(m + 1) + 1〉,
γ16 = 〈(pm

k−2)
⊥2, 32(m + 1)− 1〉,

γ17 = 〈(pm
k−2)

⊥1, 32(m + 1) + 1〉,
β18 = 〈(pm

k−1)
⊥0, 36(m + 1)− 1〉,

β19 = 〈(pm
k−1)

⊥1, 36(m + 1) + 1〉,
γ20 = 〈(pm

k−2)
⊥2, 40(m + 1)− 1〉.
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We consider three cases depending on the value of the E-image of β3.
Case 1: k ≥ 1 and 〈β3, β6〉 ∈ E .
Together with 〈α8, α5〉 ∈ E this contradicts <Γ-planarity of E .
Case 2: k ≥ 1 and 〈β3, β10〉 ∈ E .
In this case we have (2).
Case 3: k ≥ 2 and 〈β3, β14〉 ∈ E .
But then γ12 can have no E-image without contradicting <Γ-planarity of E .

Thus we have proved that either (1) or (2) holds.

Suppose (1) holds. We denote Γ′ = (Êm
k (1)

⊥
)(F̂k−1

⊥
) . . . (F̂1

⊥
)B̂. Consider the func-

tion g : ΩΓ′ → ΩΓ such that for every 〈C, l〉 ∈ ΩΓ′

g(〈C, l〉) =

{
〈C, l〉 if l = 0,

〈C, l + 16(m + 1)〉 if l > 0.

This function is defined correctly (note that |||F̂k

⊥||| − |||Êm
k (1)

⊥||| = 16(m + 1)). Evidently
g maps ΩAt

Γ′ to ΩAt
Γ , Ω⊗

Γ′ to Ω⊗
Γ , and ΩO¦

Γ′ to ΩO¦
Γ . We put A′ = {〈η, θ〉 | 〈g(η), g(θ)〉 ∈ A}

and E ′ = {〈η, θ〉 | 〈g(η), g(θ)〉 ∈ E}. Note that if 〈µ, ν〉 ∈ A ∪ E and µ is in the range
of g, then ν is in the range of g (since 〈α1, α8〉 ∈ E and A ∪ E is <Γ-planar). Now it is
easy to verify that 〈ΩΓ′ ,A′, E ′〉 is a proof net. According to Lemma 5.1 and Lemma 4.1,
L∗ ` F1 . . . Fk−1E

m
k (1)→B.

Now suppose (2) holds. In this case we put Γ′ = (Êm
k (0)

⊥
)(F̂k−1

⊥
) . . . (F̂1

⊥
)B̂ and

define the function g : ΩΓ′ → ΩΓ as follows:

g(〈C, l〉) =

{
〈C, l〉 if l < 4(m + 1),

〈C, l + 16(m + 1)〉 if l ≥ 4(m + 1).

We put A′ = {〈η, θ〉 | 〈g(η), g(θ)〉 ∈ A} and E ′ = {〈η, θ〉 | 〈g(η), g(θ)〉 ∈ E}. Again it
can be verified that 〈ΩΓ′ ,A′, E ′〉 is a proof net. According to Lemma 5.1 and Lemma 4.1,
L∗ ` F1 . . . Fk−1E

m
k (0)→B.

This completes the proof of Lemma 3.15.

In the construction of Section 2 all the variables pj
i for j < m may be replaced by

one variable r (then the construction involves only n + 2 different variables). It can be
verified that then Lemma 3.14 and Lemma 3.15 remain provable (in this case it is more
convenient to use proof nets for both lemmas). Thus also such simplified reduction is
correct.
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Example. Consider the Boolean formula x1 ∨ ¬x1. If we write pi instead of pm
i , then

the simplified construction yields H1 = (p0 \ ((r \ r) · p1)), E1
1(1) = E1

1(0) = G =
((p0 \ (r \ r)) · p1), and F1 = ((E1

1(1) / H1) · H1) · (H1 \ E1
1(0)). Evidently,

F̂1

⊥
=

((
(p⊥1

1 O((r⊥1⊗r⊥2)⊗p⊥2
0 ))⊗ (p⊥3

0 O((r⊥3Or⊥2)⊗p⊥2
1 ))

)

O
(
((p⊥1

1 O(r⊥1⊗r⊥2))⊗p⊥2
0 )O

(
(p⊥1

0 O((r⊥1Or⊥0)⊗p⊥0
1 ))⊗ (p⊥1

1 O((r⊥1⊗r⊥2)⊗p⊥2
0 ))

)))
,

Ĝ = ((p⊥1
0 O(r⊥1Or⊥0))⊗p⊥0

1 ).

There are two proof nets for (F̂1

⊥
)Ĝ.

¦α1O
DD

r⊥1⊗ 77

GF ED

²²
r⊥2⊗``

GF ED

²²
β2⊗

GG

GF ED
²²

β3Ohh r⊥3O 77r⊥2⊗``

GF ED²²
α4Oα5O >>r⊥1⊗hh

EDGF
²²

r⊥2⊗ 77

EDGF
²²

β6O
WW

β7O BBr⊥1O 77r⊥0⊗``

EDGF

²²
α8⊗

WW

EDGF

²²
α9Ohh r⊥1⊗ 77

GF ED
²²

r⊥2⊗``

GF ED²²
β10¦p⊥1

0
O >>r⊥1Ohh r⊥0⊗

EDGF
²²

p⊥0
1

¦α1O
DD

r⊥1⊗ 77

GF ED

²²
r⊥2⊗``

GF ED

²²
β2⊗

GG

GF ED

²²
β3Ohh r⊥3O 77r⊥2⊗``

GF ED

²²
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Here we have omitted the binary relation E . The symbols α1, . . . , β10 are taken from the
proof of Lemma 3.15. The first proof net corresponds to the satisfying assignment x1 = 1,
the second one corresponds to x1 = 0.

Fragments

F. Métayer [15] has proved that the decision problems for propositional multiplicative
cyclic linear logic, its single-variable fragment, and its constant-only fragment are poly-
nomially equivalent. Thus both these fragments are NP-complete. F. Métayer’s method
applies also to Abrusci’s noncommutative linear logic (a simple translation between mul-
tiplicative noncommutative linear logic and multiplicative cyclic linear logic can be found
in [19]). Moreover, the construction from [15] can be easily adapted to prove NP-
completeness of the single-variable fragments of L and L∗ (variables qi, where 0 < i < k,
are replaced by the types r \ . . . \ r \︸ ︷︷ ︸

i times

r / r / . . . / r︸ ︷︷ ︸
k−i times

, where r ∈ Var).

Some natural fragments of Lambek calculus are known to be decidable in polynomial
time (see e. g. [1]).

It should be mentioned that another closely related system, the non-associative variant
of Lambek calculus, is decidable in polynomial time (see [2, 9]).
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Conclusion

We have proved that the decision problem for the calculus L (and for L∗) is NP-complete.
It is well-known that the multiplicative fragment of noncommutative linear logic is in NP
and that it is conservative over L∗. Thus also the multiplicative fragment of noncom-
mutative linear logic is NP-complete. The same holds for the multiplicative fragment of
cyclic linear logic.
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