The meanings of knowing, believing and ability of checking in protocols for e-commerce

Peeter Laud

peeter_l@ut.ee

Tartu Ülikool

Cybernetica AS

Non-repudiation

If Alice said M to Bob, then

- Bob can convince himself that it really was Alice who said M.
- Bob is able to convince other people (for example, the judge) that Alice said M.

Integrity and Checkability

Integrity:

- A party wants to be sure the the other party cannot do anything bad.
- More generally, the party wants to be sure that no unacceptable set of circumstances can occur.

Checkability:

- The party wants to be sure, that if an unacceptable set of circumstances occurs, then
 - he is able to recognize that it occurred;
 - he can convince others that it occurred;
 - he can show that there was someone else who did not fulfill his obligations.

State of the art

The existing protocol logics allow to express,

- what the parties see, say, recieve, generate, know;
- which keys are good keys;
- what one party can prove to another party.

They do not allow to express

- the beliefs of parties;
- the checkability of arbitrary formulae and the convincing communicability of the results of these checks.

Structure of the talk

- Messages and formulae.
- The set of protocol runs.
- Semantics of some constructs.
- Expressing some nice protocol properties.
- Some axioms.
- Conclusions and future work.

Protocols — the necessary sets

We have

- The set of parties Agent.
- The set of symmetric keys Key.
- The set of asymmetric keys (for both encryption and signing) PSK.
 - We denote the key pair by K, public and secret parts by K^+ and K^- , respectively.
- The set of messages \mathcal{M} .
- The set of formulae Φ .
- The set of actions \mathcal{A} .
- The set of protocol runs \mathcal{R} .

The messages

The messages M are one of

- atomic messages;
- keys (from Key or PSK), nonces (from the set Nonce);
- **•** pairs (M_1, M_2) ;
- encryptions $\{M\}_K$ or $\{M\}_{K^+}$;
- signed messages $[M]_{K^-}$;
 - we assume that M can be found from $[M]_{K^-}$
- message digests H(M);
- **•** formulae $\varphi \in \Phi$.

The formulae (1/3)

The formulae φ, ψ are one of

- the atomic formulae;
- ¬ φ , $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi → \psi$, false, true;
- said(P, M) agent P has sent a message containing M and P was aware that it contained M;
- sees(P, M) agent P can construct the message M from the messages it has generated or received;
- received (P, M) agent P has received the message M or some supermessage of it;
 - $sees(P, M) \land \neg received(P, M)$ means that P has generated M himself.

The formulae (2/3)

- $e \xrightarrow{K^+} P$, $s \xrightarrow{K^+} P$, $P \xleftarrow{K} Q$ the key K^+ is the public encryption/signature key of P or K is a symmetric key known only by P and Q;
- $M_1 = M_2$, Vfy (M_{sig}, K^+, M_{txt}) equality of messages and the correctness of a signature;
- $\varphi S \psi$ and $\varphi U \psi$ the temporal connectives "since" and "until";
 - $\Diamond \varphi$ and $\Box \varphi$ are defined in terms of \mathcal{U} .
 - $\mathbf{\Phi}\varphi$ and $\mathbf{\Pi}\varphi$ are defined in terms of \mathcal{S} .
- A φ and E φ φ holds in all possible futures / in at least one of them;
- $right_P$ whenever the agent P has said φ , the formula φ has been correct;

The formulae (3/3)

- $\mathcal{K}_P \varphi$ agent *P* knows that φ holds in all worlds that *P* may consider himself to be (according to his knowledge), φ holds;
- $\mathfrak{B}_P \varphi$ agent *P* believes that φ holds φ holds in all of the above worlds that *P* considers the most probable;
- $\mathcal{M}_P \varphi P$ can make sure that φ holds.

The actions

An action is one of

- $Send_P(M, Q)$, where $Q \subseteq Agent$. The agent *P* has sent out a message *M* meant for principals in Q.
 - M may not contain the statements $right_R$.
 - Otherwise the interpretation of formulae is not well-defined.
- $Recv_P(M)$. Denotes that P received the message M.
 - All sent messages are eventually received by their intended recipients.
- $Generate_P(M)$ denotes that P generated a new message M (either a key(pair) or a nonce).

The protocol runs

The protocol runs are mappings from time moments to (sets of) actions.

$$\mathcal{R} = \mathbf{T}
ightarrow \mathcal{A}_{\perp}$$

Here T is the set of time moments. We identify it with the set of positive real numbers. \perp means that no action occurs.

Moreover, for a run $r \in \mathbb{R}$:

- for all $t \in T$, the set of moments $t' \leq t$, where $r(t') \neq \bot$, is finite;
- if an agent P sends a message M at a certain moment, then he must see that message at that moment.

We define the relation

 $(r,t)\vDash\varphi$

where $r \in \mathcal{R}$, $t \in \mathbf{T}$, $\varphi \in \Phi$.

Semantics — **seeing**

- P can see the messages it has generated or received (or knows at the beginning of time).
- Generally, P can see the submessages of a message. But
 - to see the submessage M of $\{M\}_K$, P has to see K;
 - to see M in $\{M\}_{K^+}$, P has to see K^- ;
 - from just H(M), P cannot find M.
- P can construct new messages from the ones it sees.

This defines, whether $(r, t) \vDash sees(P, M)$ holds.

 $(r,t) \vDash received(P,M)$, if P can see M as a submessage of a message that it has received.

Semantics — saying and being right

- $(r,t) \vDash said(P,M)$ if P has sent out a message M' at a time moment t' ≤ t and P could see that M was a submessage of M' at that time.
- $(r,t) \vDash right_P$ if for all formulae φ that P has said at some time $t' \leq t$ (and has understood that he said that), $(r,t') \vDash \varphi$.

Semantics — **knowing**

- Suppose an agent P sees a set of messages M. For some M ∈ M, P does generally not see the structure of M "all the way through", because he does not have all the necessary decryption keys.
- ✓ For M and $M \in M$ corresponds a "message with holes" M'.
- P's view is the set of Sends, Recvs and Generates that P has done, together with their times, but the messages are replaced with corresponding messages with holes.
- *r* ∼^t_P *r'*, if the views of *P* in *r* and *r'* at time *t* are equal (up to α-conversion).
 - \sim_P^t is an equivalence relation.
- $(r,t) \vDash \mathcal{K}_P \varphi$ if $(r',t) \vDash \varphi_\alpha$ for all r' where $r \sim_P^t r'$.

Semantics — believing

Let $\mathbf{TTP} \subseteq \mathbf{Agent}$ be the set of trusted parties.

- \sim_P^t defines a partitioning of \mathcal{R} . Let $r \sim_P^t$ be the part containing r.
- $(r,t) \models \mathcal{B}_P \varphi$, if $(r',t) \models \varphi$ for the most likely elements r'of r/\sim_P^t .
- A partial order "more likely than" is defined on $r \sim_P^t$.
- This order must be some refinement of the order ⊇ on sets

$$\{T \in \mathbf{TTP} : (r', t) \vDash right_T\}$$

for $r' \in r/\!\!\sim_P^t$.

We could also let the set TTP be different for different agents, and let the agent change it over time.

What you know and what you believe

- An agent can know only statements that describe only his own circumstances or are derivable from them.
 - For example, what he sees.
 - If P has sent M to Q then P knows that Q sees or eventually will see M.
- If an agent uses statements said by others to infer something, then the agent can only believe that.
 - For example, everything derived from statements made by trusted third parties is only believed in, not known.
- Most statements that we are interested in can only be believed, not known.
- "P can prove φ to Q" is formalized as $\mathfrak{M}_P \Diamond \mathfrak{B}_Q \varphi$.

Semantics — being able to make sure

- $(r,t) \vDash \mathfrak{M}_P \varphi$ if there exists $R \subseteq \mathfrak{R}$, such that
- $\ \, \blacksquare \ \, R \neq \emptyset;$
- $r =_t r'$ for all $r' \in R$;
 - $r =_t r'$ means that r(t') = r'(t') for all $t' \le t$.
- $(r',t) \vDash \varphi \text{ for all } r' \in R;$
- If $\dot{r} =_t r$ and $\dot{r} \notin R$, then for all $r' \in R$:
 Let $t' \in T$ be minimal such, that $r' \neq_{t'} \dot{r}$. Then at least one of the following holds:
 - at least one of r'(t') and $\dot{r}(t')$ is an action of the agent *P* (i.e. a *Send* or a *Generate* by *P*);
 - there exists $r'' \in R$, such that $\dot{r} =_{t'+\varepsilon} r''$.

Semantics — S and U, A and E

- • (r,t) ⊨ $\varphi U \psi$ if (r,t') ⊨ ψ for some t' > t and for all t", where t < t" < t', (r,t") ⊨ φ .
 - $(r,t) \vDash \varphi \mathcal{S} \psi$ is defined similarly.
- $\Diamond \varphi \equiv \operatorname{true} \mathcal{U} \varphi$.
- $\ \, \bullet \varphi \equiv \operatorname{true} \mathcal{S} \varphi.$
- $(r,t) \vDash \mathsf{A} \varphi \text{ if } (r',t) \vDash \varphi \text{ for all } r', \text{ where } r =_t r'.$

Some desirable protocol properties

Fraud detection Any interested party can detect and prove (to another party), whether a trusted party has committed any frauds.

Anti-framing An honest trusted party can explicitly disavow any false accusations against her.

Source: [Buldas, Lipmaa, Schoenmakers. Optimally Efficient Accountable Time-Stamping. Proc. PKI'2000].

Duties of agents

- The previous slide contained phrases
 - ... party has committed any frauds ...
 - ...an honest ... party ...
- Generally, only parties that have done everything they have to do can expect to be covered by these statements on the previous slide.
- How to model "have done everything they have to do"?
- In general, we could just say that for each $P \in Agent$ there is a formula D_P that is true iff P "has done everything he has to do" so far.
- We assume that $\neg D_P \rightarrow A \Box \neg D_P$ holds for all agents *P*.

Formalizing fraud detection

Possible formalizations of "if Q has not fulfilled his duties, then P can find that out / prove that to R":

- $D_P \to \mathfrak{M}_P(\neg D_Q \to \Diamond \mathfrak{B}_P \neg D_Q)$
- $D_P \wedge D_R \to \mathcal{M}_P(\neg D_Q \to \Diamond \mathcal{B}_R \neg D_Q)$

Formalizing anti-framing

Possible formalizations of "if Q thinks P has not fulfilled his duties, but P has, then P can make Q change his mind":

• $D_P \wedge D_Q \wedge \mathfrak{B}_Q \neg D_P \to \mathfrak{M}_P \Diamond \neg \mathfrak{B}_Q \neg D_P$ • $D_P \wedge D_Q \wedge \mathfrak{B}_Q \neg D_P \to \mathfrak{M}_Q \Diamond \mathfrak{M}_P \Diamond \neg \mathfrak{B}_Q \neg D_P$ • $D_P \wedge D_Q \wedge \mathfrak{B}_Q \neg D_P \to \mathfrak{M}_P \mathfrak{M}_Q \Diamond \mathfrak{M}_P \Diamond \neg \mathfrak{B}_Q \neg D_P$ • $D_Q \wedge \mathfrak{B}_Q \neg D_P \to \mathfrak{M}_Q \Diamond (D_P \to \mathfrak{M}_P \Diamond \neg \mathfrak{B}_Q \neg D_P)$

Some axioms

 $\begin{array}{l} \mathsf{A}(\varphi \to \psi) \to (\mathfrak{M}_{P}\varphi \to \mathfrak{M}_{P}\psi) \\ \mathfrak{M}_{P}\varphi \to \mathfrak{M}_{P}\mathfrak{M}_{P}\varphi \\ \mathsf{A}\varphi \to \mathfrak{M}_{P}\varphi \\ \mathfrak{K}_{P}\Box \varphi \to \Box \mathfrak{K}_{P}\Box \varphi \\ sees(P,M) \to \mathfrak{M}_{P}\Diamond sees(Q,M) \\ said(P,\varphi) \wedge right_{P} \to \blacklozenge(said(P,\varphi) \wedge \varphi) \end{array}$

What axioms or inference rules are there for deriving $\mathfrak{B}_P right_T$?

Some axioms

$$\begin{array}{ll} \mathbf{\mathfrak{K}}_{P}(\varphi \rightarrow \psi) \rightarrow (\mathbf{\mathfrak{K}}_{P}\varphi \rightarrow \mathbf{\mathfrak{K}}_{P}\psi) & \mathbf{\mathfrak{K}}_{P}\varphi \rightarrow \mathsf{A}\varphi \\ \mathbf{\mathfrak{K}}_{P}\varphi \rightarrow \mathbf{\mathfrak{K}}_{P}\mathbf{\mathfrak{K}}_{P}\varphi & \mathsf{A}\varphi \rightarrow \varphi \\ \neg \mathbf{\mathfrak{K}}_{P}\varphi \rightarrow \mathbf{\mathfrak{K}}_{P}\neg \mathbf{\mathfrak{K}}_{P}\varphi & \mathbf{\mathfrak{K}}_{P}\varphi \rightarrow \mathbf{\mathfrak{B}}_{P}\varphi \\ \mathbf{\mathfrak{B}}_{P}(\varphi \rightarrow \psi) \rightarrow (\mathbf{\mathfrak{B}}_{P}\varphi \rightarrow \mathbf{\mathfrak{B}}_{P}\psi) & \mathbf{\mathfrak{B}}_{P}\varphi \rightarrow \mathbf{\mathfrak{K}}_{P}\mathbf{\mathfrak{B}}_{P}\varphi \\ \mathbf{\mathfrak{A}}(\varphi \rightarrow \psi) \rightarrow (\mathsf{A}\varphi \rightarrow \mathsf{A}\psi) & \neg \mathbf{\mathfrak{B}}_{P}\varphi \rightarrow \mathbf{\mathfrak{K}}_{P}\neg \mathbf{\mathfrak{B}}_{P}\varphi \\ \mathbf{\mathfrak{A}}\varphi \rightarrow \mathsf{A}\mathsf{A}\varphi & \neg \mathsf{A}\varphi \rightarrow \mathsf{A}\neg \mathsf{A}\varphi \end{array}$$

etc.

Conclusions

- We have defined some quite expressive notions.
- We should try to model some real protocols with them.
 - There are quite a lot of premises to be modelled.
 - Agents do not lose their secret keys.
 - Servers are responsive.
- This may give us an "intuitively complete" set of axioms.

Future work

The explicit checking of the formulae should be added.

- Currently, when an agent sees several messages, it is supposed to see right away, in what kind of relationship(s) they are.
- There are protocols where some agent does not have to determine these relationships, although he is able to.
- The "being able to make sure" should be extended to "knowing how to make sure".
- Tree-shaped semantical structures?
- Timings.