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Overview of This Talk

• Cryptographic protocols, limitations

• Outsourcing model

• Polynomials and integer commitment schemes

• Efficient solutions by using diophantine complexity
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Reminder: Multi-Party Computation

• All efficiently computable functions can also be computed securely

• Assume there are n participants, and the ith participant has input xi.
Assume f is a function f(x1, . . . , xn) = (y1, . . . , yn).

• There is a way (multi-party computation) to compute f so that at the
end of the protocol, the ith participant will get the know value of yi and
nothing else, except what she could compute from (xi, yi) herself.
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We Gotta Have Some Pictures

Karl n

Karl n− 1

Karl III
Karl II
Karl I

f

Assume f is any function. Karl’s can compute f so that (a) Security: Karl
i obtains the output he wanted to obtain, (b) Privacy: Karl i will not obtain
any new information that cannot be computed from his input and output
alone.
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Applications: Voting

• n voters, one tallier.

• Voter i has input vi, her vote.

• Security: Tallier gets to know yT :=
∑n

i=1 vi.

• Privacy: Tallier will not get any information that cannot be computed
from yT alone. Voters will not get any new information at all.
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Limitations

• MPC: To get total privacy and security, a majority of the parties must
be honest (in some settings, 2/3!)

• “Threshold trust” in voting: assume that a majority of talliers and/or
voters is honest?

• Two-party computation: privacy possible, but security is possible only
for one of the two parties (since he can halt as soon as he recovers
his output)

• Fortunately, often one can design protocols, where halting is not a
problem — but not always
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Outsourcing model

• n individuals, 1 interested third party S, one established authority A.

• Individual i has input vi, her financial or social choice (vote, bid, . . . ).

• Security: S gets to know yT := f(v1, . . . , vn) for some destination
function f .

• Privacy: S will not get any information that cannot be computed from
yT alone. Individuals will not get any new information at all. A can get
to know the vector (v1, . . . , vn).
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Why makes sense?

• In voting, it is better to have one tallier: in real life, very hard to have a
multiple of completely independent talliers.

• Same in auctions: there is a single seller, all servers are operated by
him; why should we trust m machines controlled by the same person
more than just one machine, controlled by him?

• OTOH: A can be an established authority who has a reputation to take
care off; often S is an occassional party.

• It is also possible to design the system so that we can avoid the limita-
tions of the two-party and multi-party computations, efficiently
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Example: Vickrey Auctions

Security requirements:

• Correctness

? Highest bidder Y1 should win

? He should pay the second highest bid X2

• Privacy: S should not get any information about the bids but (Y1, X2)

• Scheme should be secure unless both A and S are malicious
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Simple scheme
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2 Send bids in shuffled order

3 Decrypt bids, sendY1, X2 to S4 Send acknowledgment

1 Bid bi encrypted withA-s key

S will not get any extra information, but S can increase X2

A → S interaction is quite large
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Simple scheme → complex scheme

Add correctness proofs
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2 Send bids in shuffled order

3 Decrypt bids, sendY1, X2 to S4 Send acknowledgment

1 Bid bi encrypted withA-s key
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Proofs of correctness

1. Complex: use bulletin board, argue that bid belongs to some set

2. Complex: combine bids, argue correctness of combination

3. Complex: extract X2, argue it

4. Simple: (Y1, X2) signed by S
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Efficient Proofs of Knowledge

1. Bidders encode their bids by using some function enc(·), and then en-
crypt the result by using A’s key. They send the result, EK(enc(bi); ri)
to S

2. S multiplies the results, gets EK(
∑

enc(bi);
∑

ri); sends the result to
A

3. A decrypts the result, obtains
∑

enc(bi), applies a decoding function
to it and obtains (b1, . . . , bn)

4. A computes o = f(b1, . . . , bn), sends this to S and argues that o was
correctly computed
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Details!

1. E is homomorphic: EK(m1; r1)E(m2; r2) = EK(m1 + m2; r1 + r2)

— such E are well-known (Paillier, . . . )

2. There exists enc(·) and dec(·), such that
dec(

∑
enc(bi)) = (b1, . . . , bn) for all b1 from [0, V − 1] — for

example, take enc(bi) = V bi; then dec(b) returns the vector of V -radix
positions of b

3. Thus a bidder must argue that ci is an encryption of V bi for
bi ∈ [0, V − 1], and A must argue that o = f(dec(

∑
enc(bi))
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Problems!

1. Known arguments that ci = EK(V µ; ρ) ∧ µ ∈ [0, V − 1] are long
[DJ01,LAN02]

2. Efficient arguments for o = f(dec(
∑

enc(bi)) are known only for a
very limited set of f -s

3. For example, in Vickrey auctions one needs to argue that
c = EK(µ; ρ) ∧ µ ∈ [0, V − 1]; even for this range argument, con-
ventional arguments are too long.
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Integer commitment schemes

• Commitment scheme: c = CK(µ; ρ). Hiding: c does not give
any information about µ. Binding: hard to find µ′ 6= µ such that
CK(µ; ρ) = CK(µ′; ρ′).

• Integer: usually µ′ 6= µ means µ′ 6= µ mod n for some finite n. In
an integer commitment scheme, µ′ 6= µ is taken over integers.
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Integer commitment schemes

• Homomorphic:

CK(µ1 + µ2; ρ1 + ρ2) = CK(µ1 + µ2; ρ1)CK(µ1 + µ2; ρ2)

• Easy to argue that

c1 = CK(µ1; ·) ∧ c2 = CK(µ2; ·) ∧ c3 = CK(µ1µ2; ·)

this generalizes to an argument

c1 = CK(µ1; ·) ∧ c2 = CK(µ2; ·) ∧ c3 = CK(f(µ1, µ2); ·)

for for every f ∈ Z[X]
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Diophantine Arguments

• Example: how to prove that c = CK(µ; ·) ∧ µ ≥ 0: by Lagrange,
µ ≥ 0 ⇐⇒ (∃bω1, ω2, ω3, ω4)[µ = ω2

1 + ω2
2 + ω2

3 + ω2
4]

• Generally: demonstrate that you know ω, such that f(µ;ω) = 0
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Diophantine Arguments

1. Given µ, find such ωi (Algorithm: Rabin-Shallit, slightly improved by
us)

2. Commit to all ωi, ci = CK(ωi; ρi)

3. Argue in ZK that

c = CK(µ; ρ) ∧ (∧ci = CK(ωi; ρi)) ∧ f(µ;ω) = 0

where f(µ;ω) = µ−
∑

ω2
i
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Diophantine Sets

• We want to prove that µ ∈ S for some language S. By
results of Matiyasevich etc, there exists an RS ∈ Z[X],
s.t. (∃ω)[RS(µ;ω) = 0] ⇐⇒ µ ∈ S

+ We need that one can compute ω efficiently if it exists

+ ω must be polynomially short (in |µ|) when µ ∈ S

- On the other hand, ω may exist even if µ 6∈ S, but in this case it must
be very long (nonpolynomially long)

• If such RS exists we say S ∈ PD
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Main results

• For all languages S in bounded arithmetic, these requirements are
satisfied. In particular, if µ ∈ S then |ω| ≤ |µ|2 while if µ 6∈ S then
|ω| ≥ 2|µ|

• Bounded arithmetic includes most of the languages that are necessary
in our application domain (auctions, voting etc)

• Our proof hinges on the efficient argument for exponential relationship,
presented in the paper

• Finally, we show that if one takes enc(bi) = ZV (bi) for certain Lucas
sequence Za(b), one can build more efficient arguments than in the
case of exponentiation
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Theorem Assume µ1 > 1, µ3 > 0 and µ2 > 2. The exponential relation
[µ3 = µ

µ2
1 ] belongs to PD. More precisely, let E(µ1, µ2, µ3) be the next

equation:

[(∃ω1, ω2, ω3, ω4, ω5, ω6)(∃bω7, ω8)]

[(ω2 = ω1µ1 − µ2
1 − 1) ∧ (ω2 − µ3 − 1 ≥ 0)∧ (E1− E2)

(µ3 − (µ1 − ω1)ω7 − ω8 = ω2ω3)) ∧ (ω1 − 2 ≥ 0)∧ (E3− E4)

((ω1 − 2)2 − (µ1 + 2)(ω1 − 2)ω5 − ω2
5 = 1)∧ (E5)

(ω1 − 2 = µ2 + ω6(µ1 + 2)) ∧ (ω7 ≥ 0) ∧ (ω7 < ω8)∧ (E6− E8)

(ω2
7 − ω1ω7ω8 − ω2

8 = 1) ∧ (ω7 = µ2 + ω4(ω1 − 2)] , (E9− E10)

where ‘∃b” signifies a bounded quantifier in the following sense: if
µ3 = µ

µ2
1 then E(µ1, µ2, µ3) is true with |ω| = Θ(µ2

2 logµ1) = o(|µ|2).
On the other hand, if µ3 6= µ

µ2
1 then either E(µ1, µ2, µ3) is false, or it is

true but the intermediate witnesses ω7 and ω8 have length Ω(µ3 logµ3),
which is equal to Ω(2|µ| · |µ|) in the worst case.
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Conclusions

• Argued for the outsourcing model for cryptographic protocols

• No threshold trust, efficient arguments of knowledge

• Showed that most of the necessary arguements in this model can be
obtained efficiently by using integer commitment schemes

• New algorithm for Lagrange representation, new polynomial for the
exponential relationship

• Idea of using Lucas sequences in the zero-knowlege arguments
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Questions?

?
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