On Diophantine Complexity and Statistical Zero-Knowledge Arguments

Helger Lipmaa
Helsinki University of Technology
http://www.tcs.hut.fi/~helger

Overview of This Talk

- Cryptographic protocols, limitations
- Outsourcing model
- Polynomials and integer commitment schemes
- Efficient solutions by using diophantine complexity

Reminder: Multi-Party Computation

- All efficiently computable functions can also be computed securely
- Assume there are n participants, and the i th participant has input x_{i}. Assume f is a function $f\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$.
- There is a way (multi-party computation) to compute f so that at the end of the protocol, the i th participant will get the know value of y_{i} and nothing else, except what she could compute from (x_{i}, y_{i}) herself.

We Gotta Have Some Pictures

Assume f is any function. Karl's can compute f so that (a) Security: Karl i obtains the output he wanted to obtain, (b) Privacy: Karl i will not obtain any new information that cannot be computed from his input and output alone.

Applications: Voting

- n voters, one tallier.
- Voter i has input v_{i}, her vote.
- Security: Tallier gets to know $y_{T}:=\sum_{i=1}^{n} v_{i}$.
- Privacy: Tallier will not get any information that cannot be computed from y_{T} alone. Voters will not get any new information at all.

Limitations

- MPC: To get total privacy and security, a majority of the parties must be honest (in some settings, $2 / 3$!)
- "Threshold trust" in voting: assume that a majority of talliers and/or voters is honest?
- Two-party computation: privacy possible, but security is possible only for one of the two parties (since he can halt as soon as he recovers his output)
- Fortunately, often one can design protocols, where halting is not a problem — but not always

Outsourcing model

- n individuals, 1 interested third party S, one established authority A.
- Individual i has input v_{i}, her financial or social choice (vote, bid, \ldots).
- Security: S gets to know $y_{T}:=f\left(v_{1}, \ldots, v_{n}\right)$ for some destination function f.
- Privacy: S will not get any information that cannot be computed from y_{T} alone. Individuals will not get any new information at all. A can get to know the vector (v_{1}, \ldots, v_{n}).

Why makes sense?

- In voting, it is better to have one tallier: in real life, very hard to have a multiple of completely independent talliers.
- Same in auctions: there is a single seller, all servers are operated by him; why should we trust m machines controlled by the same person more than just one machine, controlled by him?
- OTOH: A can be an established authority who has a reputation to take care off; often S is an occassional party.
- It is also possible to design the system so that we can avoid the limitations of the two-party and multi-party computations, efficiently

Example: Vickrey Auctions

Security requirements:

- Correctness
\star Highest bidder Y_{1} should win
\star He should pay the second highest bid X_{2}
- Privacy: S should not get any information about the bids but $\left(Y_{1}, X_{2}\right)$
- Scheme should be secure unless both A and S are malicious

Simple scheme

S will not get any extra information, but S can increase X_{2}
$A \rightarrow S$ interaction is quite large

Simple scheme \rightarrow complex scheme

Proofs of correctness

1. Complex: use bulletin board, argue that bid belongs to some set
2. Complex: combine bids, argue correctness of combination
3. Complex: extract X_{2}, argue it
4. Simple: $\left(Y_{1}, X_{2}\right)$ signed by S

Efficient Proofs of Knowledge

1. Bidders encode their bids by using some function enc(\cdot), and then encrypt the result by using A 's key. They send the result, $E_{K}\left(\operatorname{enc}\left(b_{i}\right) ; r_{i}\right)$ to S
2. S multiplies the results, gets $E_{K}\left(\sum \operatorname{enc}\left(b_{i}\right) ; \sum r_{i}\right)$; sends the result to A
3. A decrypts the result, obtains $\sum \mathrm{enc}\left(b_{i}\right)$, applies a decoding function to it and obtains (b_{1}, \ldots, b_{n})
4. A computes $o=f\left(b_{1}, \ldots, b_{n}\right)$, sends this to S and argues that o was correctly computed

Details!

1. E is homomorphic: $E_{K}\left(m_{1} ; r_{1}\right) E\left(m_{2} ; r_{2}\right)=E_{K}\left(m_{1}+m_{2} ; r_{1}+r_{2}\right)$ - such E are well-known (Paillier, ...)
2. There exists enc (\cdot) and $\operatorname{dec}(\cdot)$, such that $\operatorname{dec}\left(\sum \operatorname{enc}\left(b_{i}\right)\right)=\left(b_{1}, \ldots, b_{n}\right)$ for all b_{1} from [0, $\left.V-1\right]$ - for example, take enc $\left(b_{i}\right)=V^{b_{i}}$; then $\operatorname{dec}(b)$ returns the vector of V-radix positions of b
3. Thus a bidder must argue that c_{i} is an encryption of $V^{b_{i}}$ for $b_{i} \in[0, V-1]$, and A must argue that $o=f\left(\operatorname{dec}\left(\sum \operatorname{enc}\left(b_{i}\right)\right)\right.$

Problems!

1. Known arguments that $c_{i}=E_{K}\left(V^{\mu} ; \rho\right) \wedge \mu \in[0, V-1]$ are long [DJ01,LAN02]
2. Efficient arguments for $o=f\left(\operatorname{dec}\left(\sum \operatorname{enc}\left(b_{i}\right)\right)\right.$ are known only for a very limited set of f-s
3. For example, in Vickrey auctions one needs to argue that $c=E_{K}(\mu ; \rho) \wedge \mu \in[0, V-1]$; even for this range argument, conventional arguments are too long.

Integer commitment schemes

- Commitment scheme: $c=C_{K}(\mu ; \rho)$. Hiding: c does not give any information about μ. Binding: hard to find $\mu^{\prime} \neq \mu$ such that $C_{K}(\mu ; \rho)=C_{K}\left(\mu^{\prime} ; \rho^{\prime}\right)$.
- Integer: usually $\mu^{\prime} \neq \mu$ means $\mu^{\prime} \neq \mu \bmod n$ for some finite n. In an integer commitment scheme, $\mu^{\prime} \neq \mu$ is taken over integers.

Integer commitment schemes

- Homomorphic:

$$
C_{K}\left(\mu_{1}+\mu_{2} ; \rho_{1}+\rho_{2}\right)=C_{K}\left(\mu_{1}+\mu_{2} ; \rho_{1}\right) C_{K}\left(\mu_{1}+\mu_{2} ; \rho_{2}\right)
$$

- Easy to argue that

$$
c_{1}=C_{K}\left(\mu_{1} ; \cdot\right) \wedge c_{2}=C_{K}\left(\mu_{2} ; \cdot\right) \wedge c_{3}=C_{K}\left(\mu_{1} \mu_{2} ; \cdot\right)
$$

this generalizes to an argument

$$
c_{1}=C_{K}\left(\mu_{1} ; \cdot\right) \wedge c_{2}=C_{K}\left(\mu_{2} ; \cdot\right) \wedge c_{3}=C_{K}\left(f\left(\mu_{1}, \mu_{2}\right) ; \cdot\right)
$$

for for every $f \in \mathbb{Z}[X]$

Diophantine Arguments

- Example: how to prove that $c=C_{K}(\mu ; \cdot) \wedge \mu \geq 0$: by Lagrange, $\mu \geq 0 \Longleftrightarrow\left(\exists_{b} \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right)\left[\mu=\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}+\omega_{4}^{2}\right]$
- Generally: demonstrate that you know ω, such that $f(\mu ; \omega)=0$

Diophantine Arguments

1. Given μ, find such ω_{i} (Algorithm: Rabin-Shallit, slightly improved by us)
2. Commit to all $\omega_{i}, c_{i}=C_{K}\left(\omega_{i} ; \rho_{i}\right)$
3. Argue in ZK that

$$
\begin{aligned}
& \quad c=C_{K}(\mu ; \rho) \wedge\left(\wedge c_{i}=C_{K}\left(\omega_{i} ; \rho_{i}\right)\right) \wedge f(\mu ; \omega)=0 \\
& \text { where } f(\mu ; \omega)=\mu-\sum \omega_{i}^{2}
\end{aligned}
$$

Diophantine Sets

- We want to prove that $\mu \in S$ for some language S. By results of Matiyasevich etc, there exists an $R_{S} \in \mathbb{Z}[X]$, s.t. $(\exists \omega)\left[R_{S}(\mu ; \omega)=0\right] \Longleftrightarrow \mu \in S$
+ We need that one can compute ω efficiently if it exists
$+\omega$ must be polynomially short (in $|\mu|$) when $\mu \in S$
- On the other hand, ω may exist even if $\mu \notin S$, but in this case it must be very long (nonpolynomially long)
- If such R_{S} exists we say $S \in \mathrm{PD}$

Main results

- For all languages S in bounded arithmetic, these requirements are satisfied. In particular, if $\mu \in S$ then $|\omega| \leq|\mu|^{2}$ while if $\mu \notin S$ then $|\omega| \geq 2^{|\mu|}$
- Bounded arithmetic includes most of the languages that are necessary in our application domain (auctions, voting etc)
- Our proof hinges on the efficient argument for exponential relationship, presented in the paper
- Finally, we show that if one takes enc $\left(b_{i}\right)=Z_{V}\left(b_{i}\right)$ for certain Lucas sequence $Z_{a}(b)$, one can build more efficient arguments than in the case of exponentiation

Theorem Assume $\mu_{1}>1, \mu_{3}>0$ and $\mu_{2}>2$. The exponential relation [$\mu_{3}=\mu_{1}^{\mu_{2}}$] belongs to PD. More precisely, let $E\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ be the next equation:

$$
\begin{array}{lr}
{\left[\left(\exists \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}, \omega_{6}\right)\left(\exists_{b} \omega_{7}, \omega_{8}\right)\right]} \\
{\left[\left(\omega_{2}=\omega_{1} \mu_{1}-\mu_{1}^{2}-1\right) \wedge\left(\omega_{2}-\mu_{3}-1 \geq 0\right) \wedge\right.} & (E 1-E 2) \\
\left.\left(\mu_{3}-\left(\mu_{1}-\omega_{1}\right) \omega_{7}-\omega_{8}=\omega_{2} \omega_{3}\right)\right) \wedge\left(\omega_{1}-2 \geq 0\right) \wedge & (E 3-E 4) \\
\left(\left(\omega_{1}-2\right)^{2}-\left(\mu_{1}+2\right)\left(\omega_{1}-2\right) \omega_{5}-\omega_{5}^{2}=1\right) \wedge & (E 5) \\
\left(\omega_{1}-2=\mu_{2}+\omega_{6}\left(\mu_{1}+2\right)\right) \wedge\left(\omega_{7} \geq 0\right) \wedge\left(\omega_{7}<\omega_{8}\right) \wedge & (E 6-E 8) \\
\left(\omega_{7}^{2}-\omega_{1} \omega_{7} \omega_{8}-\omega_{8}^{2}=1\right) \wedge\left(\omega_{7}=\mu_{2}+\omega_{4}\left(\omega_{1}-2\right)\right], & (E 9-E 10)
\end{array}
$$

where ' \exists_{b} " signifies a bounded quantifier in the following sense: if $\mu_{3}=\mu_{1}^{\mu_{2}}$ then $E\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is true with $|\omega|=\Theta\left(\mu_{2}^{2} \log \mu_{1}\right)=o\left(|\mu|^{2}\right)$. On the other hand, if $\mu_{3} \neq \mu_{1}^{\mu_{2}}$ then either $E\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is false, or it is true but the intermediate witnesses ω_{7} and ω_{8} have length $\Omega\left(\mu_{3} \log \mu_{3}\right)$, which is equal to $\Omega\left(2^{\mid} \mu|\cdot| \mu \mid\right)$ in the worst case.

Conclusions

- Argued for the outsourcing model for cryptographic protocols
- No threshold trust, efficient arguments of knowledge
- Showed that most of the necessary arguements in this model can be obtained efficiently by using integer commitment schemes
- New algorithm for Lagrange representation, new polynomial for the exponential relationship
- Idea of using Lucas sequences in the zero-knowlege arguments

Questions?

$?$

