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Informal Definition

e Aslicing criterion is a list of pairs of program points and memory locations (e.g.
variables).

— Or equivalently, it is a function from program points to memory location
sets.

e Aslice of a program P w.r.ta criterion -y is a subset of P consisting of precisisely
those statements which are relevant to .

e Program slicing is an action with the aim of finding slices.
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Three-dimensional classification

e Executable or not?

— In executable slicing, a subset of a program is required to be executable.

— If we are not speaking of executable slicing, finding a subset means just

giving a rule saying which elementary code units (whatever they are...) are
thrown out.

e Backward or forward?
— In backward slicing, we are interested in the statements of the program
which can influence the values at points of the criterion.

— Inforward slicing, we are interested in the statements of the program which
can be influenced by the values at points of the criterion.

e Static or dynamic?
— Static slicing is performed using no run-time information.

— Dynamic slicing uses information about user inputs etc.
* Using run-time information keeps the slices smaller.
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Kinds of slicing
e So we have 8 different kinds of slicing.

e Executable backward static slicing occurred first in research history.
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Applications of slicing
o Parallelizing a sequential program.
e Debugging.

— Slicing some parts away helps us to localize bugs in a large program.

— Finding the forward slice of an erroneous command can give ideas how to
correct the program.

— Finding dead code (probably come into being due to a bug).
e Testing, maintenance.

— Only parts of the software affected by new modifications have to be tested.
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The first approach
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More rigorous specification

A subset @) of a program P is a slice of P w.r.t. criterion ~ if, for any initial state,
programs P and () compute the same values at the points of +.
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Example program

Consider the following toy program:

b = 1;
c = 2;
d = 3;
a = d;
a=>b+c;
d =b + d;
b++;
a=>b+c;

printf(a);
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A slicing criterion

We can take the following to be its control flow graph:

OO — OB
U808

Consider the slicing criterion

{(9,a)}.
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The slice

b =1, = b = 1;

c = 2; c = 2;

d = 3;

a = d;

a=>b+c;

d =b + d;

b++; b++
a=>b+c; a=>b+c;

printf(a);
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Relevant Sets analysis 1

d=p+a—" A=b+C
%] %] %] %] %} %] %} %} (%}
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Relevant Sets analysis 2

OO0 D@0
W80y S isS)
1] 1) 1) 1] 1] & 1] 1] {a} {a}
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Relevant Sets analysis 3

OO — OB
W0 8
%) %) %) 1% 1] %) g {b,c} {a} {a}
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Relevant Sets analysis 4

OO D) — G
U808
%) %) %) 1% 1] g {b,c} {b,c} {a} {a}
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Relevant Sets analysis 5

OO D) — G
U808
a %} a a @ {b,c} {b,c} {b,c} {a} {a}
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OO D) — G
U808
a %} a @ {b,c} {b,c} {b,c} {b,c} {a} {a}
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OO D) — G
U——8—@ or ) on®)
a %} @ {b,c} {b,c} {b,c} {b,c} {b,c} {a} {a}
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OO D) — G
U——8—@ or ) on®)
@ @ {b,c} {b,c} {b,c} {b,c} {b,c} {b,c} {a} {a}
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Relevant Sets analysis 9

OO D) — G
U808

g {b} {b,c} {b,c} {b,c} {b,c} {b,c} {b,c} {a} {a}
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OO D) — G
U808

g {b} {b,c} {b,c} {b,c} {b,c} {b,c} {b,c} {a} {a}
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Obtaining the slice: the first approximation

e Take the set of edges where a location relevant at its end vertex is updated. The
desired slice corresponds to this set.
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Next example

Consider the following program:

b 1;

c 2;

d 3;

a d;

if (a) {
d =b + d;
c=b+d

} else {
b++;
d=b + 1;

}
a=>b+c;
printf(a);
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Specifying the task

Take the control flow graph as follows:

Consider the slicing criterion

{(11,a)}.
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Relevant Sets analysis 1
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Relevant Sets analysis 2
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Relevant Sets analysis 3
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Relevant Sets analysis 4
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Relevant Sets analysis 5

{b,c} {b,c}
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Relevant Sets analysis 7

{b,c} {b,c}
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Relevant Sets analysis 8

{b,c,d}

{b,c} {b,c}
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Relevant Sets analysis 9

Q
{b,c,d}

{b,c} {b,c}
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Relevant Sets analysis 10

Q
{b,c,d}

{b,c} {b,c}
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Relevant Sets analysis 11

@b 1/‘\0 2md=3®a:d
W23

o {b} {b,c}{b,c,d} 5
{b,c,d}

{b,c} {b,c}
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Relevant Sets analysis 12

@b 1/‘\0 2md=3®a:d
W23

o {b} {b,c}{b,c,d} 5
{b,c,d}

{b,c} {b,c}
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Slice?

o If a control statement contains a line of the slice, it is also taken into the slice.

b =1 L b=1

c = 2; c = 2;

d = 3; d = 3;

a = d;

if (a) { if (a) {
d =b + d; d=b + d;
c =b+d c =b + d;

} else { } else {
b++; b++;
d=b + 1;

} }

a=>b+c; a=>bh+c;

printf(a);
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Control statements are specific

If a control statement is in the slice, all the variables of its test expression must be
declared relevant at that point!
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Relevant Sets analysis continued 1

%] {b} {b,c}{b,c,d} A
{b,c,d}

{b,c} {b,c}
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Relevant Sets analysis continued 2

] {b} {b,c}{b,c,d}

Q
{a,b,c,d}{b’c} boc)
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Relevant Sets analysis continued 3

] {b} {b,c}{b,c,d}

Q
{a,b,c,d}{b’c} boc)
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The right slice

b = 1; = b = 1;

c = 2; c = 2;

d = 3; d = 3;

a = d; a = d;

if (a) { if (a) {
d =b + d; d =b + d;
c =b + d; c=b+d

} else { } else {
b++; b++;
d=b + 1;

} }

a=>b +c; a=>b+c;

printf(a);
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Control dependence

Let G be a directed graph with marked end-vertices and u, v any vertices.
e Call v post-dominating v iff any path from v to any end-vertex uses v.
e Call v control dependent on w iff both of the following hold:

a. v does not post-dominate wu;

b. there exists a successor w of u such that v post-dominates w.




2 More closely on backward static slicing 25.1
2.1  The first approach

Post-dominance analysis 1
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Post-dominance analysis 2
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Post-dominance analysis 3
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Post-dominance analysis 4

{9,10,11}

1)
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Post-dominance analysis 5

{8,9, {9,10,11}
10,11}
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Post-dominance analysis 6

{8,9, {9,10,11}
10,11}
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Post-dominance analysis 7
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Post-dominance analysis 8
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Post-dominance analysis 9

@b=lfi\c=2r2\d—3 3 a=d
o\ N\
%) %) %3 {4,9,
10,11}
{9,10,11} b++
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b=1 c=2 d=3 a=d
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Immediate post-dominators
e The post-dominance relation is an order.

e The least w.rt. the post-dominance order element among the strict post-
dominators of u is called the immediate post-dominator of w.

e Every vertex except the end vertices has the immediate post-dominator.
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Immediate post-dominators and control dependence 1
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Immediate post-dominators and control dependence 2
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Relevant Sets analysis on CFG + CD 9

o o I} {b,c,d}
no no no Yes  fa,b,c,d
yes

{b,c}  {b,c}
no
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Relevant Sets analysis on CFG + CD 10

@bzlq\C:Z@d:s@a:d
NG AN/
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Relevant Sets analysis on CFG + CD 11

@b=lfi\c=2r2\d=3®a=d
NN AN
o {}  {oc} {bcdp P,
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no

yes
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Relevant Sets analysis on CFG + CD 12

b=1 c=2 d=3 a=d
N Y

P b}  {b,c} {b,c,d} “o,

yes yes yes yes {a,b,c,d?
yes

{b,c}  {b,c}
no

yes
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Another approach
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New concepts

e Reaching Definitions analysis computes for every program point, at which pro-
gram points the initialized variables can be last updated.

e A vertex v of control flow graph is said to be data dependent on a vertex u iff v
can read a location which can be last updated at w.




2
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Plan

Perform Reaching Definitions.

Compute control dependences.

Compute data dependences of the program.
Compute criterion-specific data dependences.

— Any pair (p,z) € +y is treated as using variable z at p. This generally adds
some new dependences.

The slice can be obtained as the set of vertices reachable from points mentioned

by the criterion in the graph whose edges are the reversed data and control depen-
dence ones.
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Reaching Definitions analysis on the last example 3

b — {0} b~ {0}
c— {1}
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Reaching Definitions analysis on the last example 4

b— {0} b~ {0} b+~ {0}
c— {1} c+— {1}
d— {2}
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Reaching Definitions analysis on the last example 5

b— {0} b~ {0} b+~ {0}
c— {1} c+— {1}
d— {2}
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Reaching Definitions analysis on the last example 6

b— {0} b~ {0} b+~ {0}
c— {1} c+— {1}
d— {2}
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Reaching Definitions analysis on the last example 7

a— {3} a— {3
b — {0} b+~ {0}
c— {1} c— {1}
d— {2} d— {5}

b — {0} b~ {0} b~ {0}
c— {1} c+— {1}

d=>1{2F o, 10} b++
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Reaching Definitions analysis on the last example 8

a— {3} a— {3
b — {0} b+~ {0}
c— {1} c— {1}
d— {2} d— {5}

b — {0} b~ {0} b~ {0}
c— {1} c+— {1}
d=>1{2F o, 10} b++
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Reaching Definitions analysis on the last example 9

a— {3} a— {3
b — {0} b+~ {0}
c— {1} c— {1}
d— {2} d— {5}

b — {0} b~ {0} b~ {0}
c— {1} c+— {1}

d— {2} b++

3 3

Heg R iYee i et
c— {1} cw— {1}

d— {2} dw— {2}
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Reaching Definitions analysis on the last example 10

a— {3} a— {3
b — {0} b+~ {0}
c— {1} c— {1}
d— {2} d— {5}

b— {0} b~ {0} b+~ {0}
c— {1} c+— {1}
d— {2}

b++ b {0,7}
¢ {1} a3 a {3ko | 176y
am 23 2D CD e )
d— {2} dw— {2}
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Reaching Definitions analysis on the last example 11

a— {3} a— {3
b — {0} b+~ {0}
c— {1} c— {1}
d— {2} d— {5}

NN AN
b— {0} b~ {0} b+~ {0}
c— {1} c+— {1}

dw— {2}

b++
¢ {1} @~ {3} aH{g}Cl—){l,G} ’
o (2 2 o a o tsls)

d— {2} dw— {2}
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Reaching Definitions analysis on the last example 12

a— {3} a— {3
b — {0} b+~ {0}
c— {1} c— {1}
d— {2} d— {5}

@b=lq\c=2r2\d=3®a=d
o\ N\
b — {0} b~ {0} b~ {0}

«
¢ {1} ;jg{ ars (319

O

a— {9} a~— {9}
% b 0,7 0,7
b+t O {3} c:he]]g:he%
ar {3} arm {3122 10TH o (5,80 (5.8}
¢ {1 bH{{ZO% b’_)%7{c»—>{1,6}
4 {2} c— {1} CH{l}dH{S’S}
d— {2} dw— {2}
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Data and control dependences

Thin arrows denote data dependences, bold arrows denote control dependences.
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Data and control dependences

Thin arrows denote data dependences, bold arrows denote control dependences.
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Data and control dependences

Thin arrows denote data dependences, bold arrows denote control dependences.
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Comparision
e Slicing via Relevant Sets analysis depends wholly on the criterion.

e Reaching Definitions does not depend on the criterion. Using the second ap-
proach, only the last cheap steps use the criterion.

— So if one has to slice a program w.r.t. many criterions, the second approach
is better!
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Further

e This was intraprocedural slicing only. ..




