
Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

NP-completeness of Lambek calculus and
multiplicative noncommutative linear logic

Mati Pentus

http://markov.math.msu.ru/~pentus/

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Formal languages

Lambek calculus

Lambek calculus L with sequents

Grammars

Language models

The calculus L*

Cyclic linear logic MCLL

Complexity

Proof nets

Equivalence

Noncommutative linear logic PNCL

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

A formal language is a set of finite words over a finite alphabet.

Example. Consider the alphabet Σ = {a, e, v}. The set
{ve, veave, veaveave, veaveaveave, . . .} is a formal language.

Two important approaches to formal language specification:

I Noam Chomsky (recursion-theoretic approach)

I Jim Lambek (logico-algebraic approach)
J. Lambek, The mathematics of sentence structure,
American Mathematical Monthly 65 (1958), no. 3, 154–170.

By ◦ we denote the concatenation operator.
Σ∗ is the set of all words over the alphabet Σ.
Σ+ is the set of all non-empty words over the alphabet Σ.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

J. Lambek considers three basic operations on languages:

A·B
 {x ◦ y | x ∈ A, y ∈ B},
A\B
 {y ∈ Σ+ | A · {y} ⊆ B},
B/A
 {x ∈ Σ+ | {x} ·A ⊆ B}.

Example. Let A = {j ,m} and B = {je, jrj , jrm,me,mrj ,mrm}.
Then A\B = {e, rj , rm}.

Definition. Types are the elements of the minimal set Tp such
that

I {p0, p1, p2, . . .} ⊂ Tp

I If A ∈ Tp and B ∈ Tp, then (A · B) ∈ Tp, (A\B) ∈ Tp, and
(A/B) ∈ Tp.

Derivable objects of LH are A → B, where A ∈ Tp and B ∈ Tp.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Axioms and rules of LH

A → A (A · B) · C → A · (B · C) A · (B · C) → (A · B) · C

A → B B → C
A → C

A · B → C
A → C/B

A · B → C
B → A\C

A → C/B

A · B → C

B → A\C
A · B → C

We write LH ` Γ → A for “Γ → A is derivable in the calculus LH”.

Example. Let A,B ∈ Tp. Then LH ` A · (A\B) → B.

A\B → A\B
A · (A\B) → B

Remark. There exist A,B ∈ Tp such that LH 0 B → A · (A\B).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. A · (B/C) → (A · B)/C is derivable in LH.

(A · (B/C)) · C → A · ((B/C) · C)

B/C → B/C

(B/C) · C → B
A · B → A · B
B → A\(A · B)

(B/C) · C → A\(A · B)

A · ((B/C) · C) → A · B

(A · (B/C)) · C → A · B

A · (B/C) → (A · B)/C

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. A ↔
LH

B iff LH ` A → B and LH ` B → A.

Example.

(A\B)/C ↔
LH

A\(B/C),

A/(B · C) ↔
LH

(A/C)/B,

A · (A\(A · B)) ↔
LH

A · B.

Example.

LH ` ((B/A)\C)\D → (B\C)\(A\D),

LH 0 ((A\B)\C)\D → C\((B\A)\D).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Derivable objects of the calculus L are sequents Γ → A, where
A ∈ Tp and Γ ∈ Tp+.
Axioms and rules of L

A → A
Φ → B ΓB ∆ → A

ΓΦ ∆ → A
(cut)

AΠ → B
Π → A\B (→ \), where Π 6= Λ Φ → A ΓB ∆ → C

ΓΦ (A\B) ∆ → C
(\ →)

Π A → B
Π → B/A

(→ /), where Π 6= Λ Φ → A ΓB ∆ → C
Γ (B/A) Φ∆ → C

(/ →)

Γ → A ∆ → B
Γ∆ → A · B

(→ ·) ΓAB ∆ → C
Γ (A · B) ∆ → C

(· →)

Here Λ is the empty sequence, A,B,C ∈ Tp, and Γ,∆,Φ,Π ∈ Tp∗.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Theorem 1 (J. Lambek, 1958). L ` A1 . . . An → B if and only
if LH ` A1 · . . . · An → B.

Cut-elimination theorem (J. Lambek, 1958). A sequent is
derivable in L if and only if it is derivable in L without (cut).

Example. L ` A · (B/C) → (A · B)/C

A → A
C → C B → B
(B/C) C → B

(/ →)

A (B/C) C → (A · B)
(→ ·)

A (B/C) → (A · B)/C
(→ /)

A · (B/C) → (A · B)/C
(· →)

Remark. L 0 (A · B)/C → A · (B/C).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. A Lambek categorial grammar is a triple 〈Σ,D, f 〉
such that |Σ| < ∞, D ∈ Tp, f : Σ → P(Tp), and |f (t)| < ∞ for
each t ∈ Σ.
The grammar recognizes the language

LL(Σ,D, f)
 {t1 . . . tn ∈ Σ+ | ∃B1 ∈ f (t1) . . .∃Bn ∈ f (tn)
L ` B1 . . .Bn → D}

Example.

np = p1 s = p2 D = s Σ = {John,Mary,works, recommends}
f (John) = f (Mary) = {np}

f (works) = {(np\s)}
f (recommends) = {((np\s)/np)}

np → np

np → np s → s

np (np\s) → s
(\ →)

np ((np\s)/np) np
John recommends Mary

→ s
(/ →)

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

B. Carpenter, Type-Logical Semantics, MIT Press,
Cambridge, MA, 1997.
http://www.colloquial.com/tlg/parser.html

Example.

Σ = {Val, recommends, he, she, him, her}

f (Val) = {np}
f (recommends) = {((np\s)/np)}
f (he) = f (she) = {(s/(np\s))}

f (him) = f (her) = {((s/np)\s)}

np → np

(np\s) → (np\s) s → s

(s/(np\s)) (np\s) → s
(/ →)

(s/(np\s)) ((np\s)/np) np → s
(/ →)

(s/(np\s)) ((np\s)/np) → (s/np)
(→ /)

s → s

(s/(np\s)) ((np\s)/np) ((s/np)\s)
She recommends him

→ s
(\ →)

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example.

Σ = {John,Val, succeeds, exists, helps, recommends,
student, professor, club, a, the, every, this, strange,
whenever,whom, relatively, everywhere, or}

John succeeds whenever Val recommends a club or helps
the student whom this relatively strange professor recommends.

f (Val) = {np}
f (succeeds) = f (exists) = {(np\s)}

f (helps) = f (recommends) = {((np\s)/np)}
f (student) = f (professor) = f (club) = {n}

f (a) = f (the) = f (every) = {(np/n)}
f (this) = {(np/n), np}

f (strange) = {(n/n)}
f (whenever) = {((s\s)/s)}

f (whom) = {((n\n)/(s/np))}
f (relatively) = {((n/n)/(n/n))}

f (everywhere) = {((np\s)\(np\s))}
f (or) = {((np\np)/np), ((s\s)/s),(((np\s)\(np\s))/(np\s))}

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. A context-free grammar is a 4-tuple 〈Σ,W,S ,R〉 such
that |Σ| < ∞, |W| < ∞, Σ ∩W = ∅, S ∈ W,
R ⊂ {A 7→ u | A ∈ W and u ∈ (Σ ∪W)+}, and |R| < ∞.
The grammar recognizes the language

G(Σ,W,S ,R)
 Ḡ(Σ,W,S ,R) ∩ Σ+.

Here Ḡ(Σ,W,S ,R) is defined inductively.

I S ∈ Ḡ(Σ,W,S ,R)

I If u1, u2, u3 ∈ (Σ ∪W)∗, A ∈ W, u1Au3 ∈ Ḡ(Σ,W,S ,R), and
A 7→ u2 ∈ R, then u1u2u3 ∈ Ḡ(Σ,W,S ,R).

Example.

Σ = {John,Mary,works, recommends} W = {S ,NP,VP,Vt}

R = {S 7→ NP VP, VP 7→ Vt NP, NP 7→ John,

NP 7→ Mary, VP 7→ works, Vt 7→ recommends}

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Theorem 2 (J. M. Cohen, 1967).

∀〈Σ,W,S ,R〉 ∃D ∃f such that LL(Σ,D, f) = G(Σ,W,S ,R)

Theorem 3 (1992).

∀〈Σ,D, f 〉 ∃W ∃S ∃R such that G(Σ,W,S ,R) = LL(Σ,D, f)

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition.

‖pi‖
 1,

‖A · B‖ = ‖A\B‖ = ‖A/B‖
 ‖A‖+ ‖B‖.

Proof of Theorem 3.

m
 max(‖D‖, max
t ∈ Σ

max
B ∈ f (t)

‖B‖)

W
 {A ∈ Tp | ‖A‖ ≤ m}
S
 D

R
 {B 7→ t | t ∈ Σ and B ∈ f (t)}∪
∪ {C 7→ AB | A,B,C ∈ W and L ` AB → C}∪
∪ {D 7→ A | A ∈ W and L ` A → D}

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example.
Σ = {John,Mary, recommends}

np 7→ John ∈ R
np 7→ Mary ∈ R

((np\s)/np) 7→ recommends ∈ R
s 7→ np (np\s) ∈ R

(np\s) 7→ ((np\s)/np) np ∈ R
etc.

Theorem 3 follows from Lemma 1.

Lemma 1. If L ` B1 . . .Bn → D, where n ≥ 2, ‖D‖ ≤ m,
and ‖Bi‖ ≤ m for each i , then B1 . . .Bn → D follows by means of
the cut rule from n − 1 derivable sequents of the form A1A2 → A3,
where ‖Aj‖ ≤ m for each j.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

We construct links between primitive type occurrences in a sequent
if a derivation of this sequent is given.

I Axiom: The two occurrences of the same primitive type are
linked to each other.

I Rule: Two primitive type occurrences in the conclusion of a
rule are connected with a link if and only if they come from
the same premise and their ancestors are connected with a
link.

Lemma 2. If ΓΦ∆ → C has a derivation in L, then ∃B ∈ Tp
such that

(i) ‖B‖ is equal to the number of links leading from Φ to Γ∆C,

(ii) L ` Φ → B,

(iii) L ` ΓB∆ → C.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Lemma 3. If ΓΦ∆ → C has a derivation in L(\, /),
then ∃n ∃B1 ∈ Tp(\, /) . . . ∃Bn ∈ Tp(\, /) ∃Φ1 . . .∃Φn such
that

(i) Φ = Φ1 . . .Φn,

(ii) there are no links between Φi and Φk if i 6= k,

(iii) ‖Bi‖ is equal to the number of links leading from Φi to Γ∆C,

(iv) L(\, /) ` Φi → Bi for each i ≤ n,

(v) L(\, /) ` ΓB1 . . .Bn∆ → C.

Example.

L(\, /) ` p1 (p1\p2) p3︸ ︷︷ ︸
Φ

(p3\(p2\p4))︸ ︷︷ ︸
∆

→ p4

L(\, /) ` p1 (p1\p2)︸ ︷︷ ︸
Φ1

p3︸︷︷︸
Φ2

(p3\(p2\p4))︸ ︷︷ ︸
∆

→ p4

B1 = p2 B2 = p3

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Lemma 4.

(i) If L ` ΓΦ∆ → C and there is a link between Φ and C, then
there is no link between Γ and ∆.

(ii) If L ` ΓΦ∆Ψ → C and there is a link between Φ and Ψ, then
there is no link between Γ and ∆.

Lemma 5. If n ≥ 2 and A1 . . .An → An+1 has a derivation in the
Lambek calculus, then there exists a number k such that
2 ≤ k ≤ n and Ak is connected by links only with Ak−1, Ak , and
Ak+1.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Proof of Lemma 1. Apply Lemma 5 to B1 . . .Bn → D.

l
 the total number of links between Bk−1 and Bk

r
 the total number of links between Bk and Bk+1

‖Bk‖ ≥ l + r

Case 1: l ≥ r

B1 . . .Bk−2︸ ︷︷ ︸
Γ

Bk−1Bk︸ ︷︷ ︸
Φ

Bk+1Bk+2 . . .Bn︸ ︷︷ ︸
∆

→ D

The number of links from Φ to Γ∆D does not exceed
(‖Bk−1‖ − l) + r ≤ ‖Bk−1‖ ≤ m.

Case 2: l < r , k < n

B1 . . .Bk−2Bk−1︸ ︷︷ ︸
Γ

BkBk+1︸ ︷︷ ︸
Φ

Bk+2 . . .Bn︸ ︷︷ ︸
∆

→ D

The number of links from Φ to Γ∆D does not exceed
(‖Bk+1‖ − r) + l ≤ ‖Bk+1‖ ≤ m.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Case 3: l < r , k = n

B1 . . .Bn−1︸ ︷︷ ︸
Φ

Bn︸︷︷︸
∆

→ D

The number of links from Φ to ∆D does not exceed
(‖D‖ − r) + l ≤ ‖D‖ ≤ m.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. A language model (free semigroup model) is a pair
〈Σ+, v〉 such that Σ is a finite or countable alphabet and

I v(pi) ⊆ Σ+,

I v(A · B) = v(A) ◦ v(B),

I v(A\B) = v(A)\v(B) = {y ∈ Σ+ | v(A) ◦ {y} ⊆ v(B)},
I v(B/A) = v(B)/v(A) = {x ∈ Σ+ | {x} ◦ v(A) ⊆ v(B)}.

Remark. L is sound with respect to language models.

Definition. L(\, /) is the elementary fragment of L without ·.
Remark. L is conservative over L(\, /).

Remark (W. Buszkowski, 1982). L(\, /) is complete with
respect to language models.

Proof.

Σ
 Tp

v(A)
 {Γ ∈ Tp+ | L ` Γ → A}

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Theorem 4 (1993). A sequent is derivable in L if and only if it is
true in every language model.

Example. Let p, q ∈ Pr. Then L 0 p → p · (q\q).

Σ = {a1, a2} v(p) = {a1}
v(q) = {a2}

v(q\q) = ∅
v(p · (q\q)) = ∅

v(p) = {a1} 6⊆ ∅ = v(p · (q\q))

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. Let p, q, r ∈ Pr. Then L 0 (p · q)/r → p · (q/r).

Σ = {a1, a2, a3} v(p) = {a1a2}
v(q) = {a3}
v(r) = {a2a3}

v(p · q) = {a1a2a3}
v((p · q)/r) = {a1}

v(q/r) = ∅
v(p · (q/r)) = ∅

v((p · q)/r) = {a1} 6⊆ ∅ = v(p · (q/r))

Example.

Σ′ = {b, c} v ′(p) = {bcbbccb}
v ′(q) = {bcccb}
v ′(r) = {bccbbcccb}

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Corollary 1. A sequent is derivable in L if and only if it is true in
every language model over a two-symbol alphabet.

Proof. Let Σ = {a1, a2, . . .}. Put Σ′ = {b, c}.
Map ai to b cc . . . c︸ ︷︷ ︸

i

b.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Derivable objects of the calculus L∗ are sequents Γ → A, where
A ∈ Tp and Γ ∈ Tp∗.
Axioms and rules of L∗

A → A
Φ → B ΓB ∆ → A

ΓΦ ∆ → A
(cut)

AΠ → B
Π → A\B (→ \) Φ → A ΓB ∆ → C

ΓΦ (A\B) ∆ → C
(\ →)

Π A → B
Π → B/A

(→ /) Φ → A ΓB ∆ → C
Γ (B/A) Φ∆ → C

(/ →)

Γ → A ∆ → B
Γ∆ → A · B

(→ ·) ΓAB ∆ → C
Γ (A · B) ∆ → C

(· →)

Example.

A → A
B → B
→ B\B (→ \)

A → A · (B\B)
(→ ·)

Remark. L∗ ` A → A · (B\B), but L 0 A → A · (B\B).

Cut-elimination theorem. We may drop (cut).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. A free monoid model is a pair 〈Σ∗, v〉 such that Σ is a
finite or countable alphabet and

I v(pi) ⊆ Σ∗,

I v(A · B) = v(A) ◦ v(B),

I v(A\B) = {y ∈ Σ∗ | v(A) ◦ {y} ⊆ v(B)},
I v(B/A) = {x ∈ Σ∗ | {x} ◦ v(A) ⊆ v(B)}.

Theorem 5 (1996). A sequent is derivable in L∗ if and only if it is
true in every free monoid model.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

We consider only multiplicative fragments of linear logic calculi.

D. N. Yetter, Quantales and noncommutative linear logic, Journal
of Symbolic Logic, 55 (1990), no. 1, pp. 41–64.

Definition. Let At
 {p0, p1, p2, . . .} ∪ {p0, p1, p2, . . .}. Linear
formulas are the elements of the minimal set Fm such that

I At ⊂ Fm,

I if A∈Fm and B∈Fm, then (A⊗B)∈Fm and (AOB)∈Fm.

(pi)
⊥
 pi (pi)

⊥
 pi

(A⊗ B)⊥
 (B)⊥ O (A)⊥ (A O B)⊥
 (B)⊥ ⊗ (A)⊥

Example.
((p O ((r O (r ⊗ r))⊗ r))⊗ q)⊥ = (q O ((r O ((r O r)⊗ r))⊗ p)).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. The following function τ : Tp → Fm embeds L∗ into
cyclic linear logic.

τ(pi)
 pi

τ(A · B)
 τ(A)⊗ τ(B)

τ(A\B)
 τ(A)⊥ O τ(B)

τ(A/B)
 τ(A) O τ(B)⊥

Example. τ(p1/(p2 · p3)) = p1 O (p3 O p2)

Derivable objects of cyclic linear logic are sequents → A1 . . . An,
where Ai ∈ Tp.
The intended meaning of → A1 . . . An, is A1 O . . . O An.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Axioms and rules

→ A⊥ A
→ ΓAB ∆

→ Γ (A O B) ∆
(O) → ΓA → B ∆

→ Γ (A⊗ B) ∆
(⊗)

→ Γ∆
→ ∆ Γ

(rotate) → ΓA → A⊥ ∆
→ Γ∆

(cut)

Cut-elimination theorem. We may drop (cut).

Another calculus for the same logic.
Axioms and rules of MCLL

→ pi pi → pi pi

→ ΓAB ∆
→ Γ (A O B) ∆

→ ΓA → Φ B ∆
→ Φ Γ (A⊗ B) ∆

→ ΓAΠ → B ∆
→ Γ (A⊗ B) ∆ Π

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. MCLL ` → (p ⊗ q) (q ⊗ r) (r O p).

→ p p → q q

→ (p ⊗ q) q p → r r

→ (p ⊗ q) (q ⊗ r) r p

→ (p ⊗ q) (q ⊗ r) (r O p)

Example. MCLL ` → (r ⊗ r) (r ⊗ r) (r O r)

Remark. L∗ ` A1 . . . An → B if and only if
MCLL ` → τ(An)

⊥ . . . τ(A1)
⊥ τ(B).

Example. L∗ ` ((q\r) · s) → (q\(r · s)) and
MCLL ` → (s O (r ⊗ q)) (q O (r ⊗ s)).

→ r r → s s
→ s r (r ⊗ s) → q q

→ s (r ⊗ q) q (r ⊗ s)

→ s (r ⊗ q) (q O (r ⊗ s))

→ (s O (r ⊗ q)) (q O (r ⊗ s))

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

M. Pentus, Lambek calculus is NP-complete, CUNY
Ph.D. Program in Computer Science Technical Report
TR-2003005, CUNY Graduate Center, New York, May 2003.
http://www.cs.gc.cuny.edu/tr/techreport.php?id=79

Remark. The derivability problem for MCLL is in NP.

Theorem 6 (2003). The derivability problem for MCLL is
NP-complete.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

We shall reformulate the well-known NP-complete problem SAT
(satisfiability in the classical propositional logic) in terms of
electrical circuits.
Let c1 ∧ . . . ∧ cm be a Boolean formula in conjunctive normal form
with clauses c1, . . . , cm and variables x1, . . . , xn.
We construct a frame (with m lamps and n sockets) and a set of
2n blocks (each of which fits into one socket only) so that the
formula c1 ∧ . . . ∧ cm is satisfiable if and only if there is a way to
plug n blocks into the sockets so that no lamp will be switched on.
Each block (and each socket) has 2m contacts.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. (x1 ∨ x2) ∧ (¬x1 ∨ x3).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

To model the circuits in MCLL we shall construct (in polynomial
time) formulas G , Ei (0), Ei (1), Fi (where 1 ≤ i ≤ n) such that

I c1 ∧ . . . ∧ cm is satisfiable if and only if
MCLL ` → E1(t1) . . . En(tn) G for some t1, . . . , tn ∈ {0, 1},

I MCLL ` → F1 . . . Fn G is satisfiable if and only if
MCLL ` → E1(t1) . . . En(tn) G for some t1, . . . , tn ∈ {0, 1}.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

We shall denote pn+1 by r .
In the following definitions 1 ≤ j < m, 1 ≤ i ≤ n and t ∈ {0, 1}.

G 0
 (r O r),

G j
 ((r O G j−1)⊗ r),

G
 ((pn O Gm−1)⊗ p0),

H0
 (r ⊗ r),

H j
 ((r O H j−1)⊗ r),

Hi
 ((pi−1 O Hm−1)⊗ pi),

E 0
i (t)
 (r ⊗ r),

E j
i (t)

{
(r O (E j−1

i (t)⊗ r)) if [[xi]] = t → [[cj]] = 1,

((r O E j−1
i (t))⊗ r) otherwise,

Ei (t)

{
(pi−1 O (Em−1

i (t)⊗ pi)) if [[xi]] = t → [[cm]] = 1,

((pi−1 O Em−1
i (t))⊗ pi) otherwise,

Fi
 ((Ei (0)⊗ H⊥
i) O Hi O (H⊥

i ⊗ Ei (1))).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Lemma 6. MCLL ` → Ei (t) H⊥
i for each 1 ≤ i ≤ n and

t ∈ {0, 1}.

Lemma 7. MCLL ` → Fi Ei (t)
⊥ for each 1 ≤ i ≤ n and

t ∈ {0, 1}.

Lemma 8. If MCLL ` → ΓA⊥ and MCLL ` → Φ A∆, then
MCLL ` → Φ Γ∆.

Theorem 7 (2003). The derivability problems for L∗ and L are
NP-complete.

Remark. It is unknown whether the same holds for L(\, /)∗ and
L(\, /).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. The derivation

→ p p

→ r r → q q

→ q r (r ⊗ q)

→ p (p ⊗ (q O r)) (r ⊗ q)

corresponds to the following proof net.

� p � p ⊗
EDGF

��
q Ogg r � r ⊗

EDGF
��

q

A proof net for Γ must satisfy the following conditions.

I |Γ|O + |Γ|� = |Γ|⊗ + 2.

I No intersections.

I Acyclic.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. Let

Γ = ((p0 O (r ⊗ r))⊗ p1) (p1 O ((r ⊗ r)⊗ p2)) ((p2 O (r O r))⊗ p0).

The following figure shows a proof net for Γ.

� p0 O @@r ⊗bb

GF ED
��

r ⊗
GF ED

��
p1 � p1 O r ⊗ ::

GF ED
��

r ⊗^^

GF ED
��

p2 � p2 O @@r Obb r ⊗

EDGF

��
p0

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Example. Let

Γ = (p0 O (((r O (r ⊗ r))⊗ r)⊗p1)) ((p1 O ((r O (r O r))⊗ r))⊗p0).

The following is not a valid proof net for → Γ (it contains a cycle).

� p0 O r O @@r ⊗cc

GF ED

��
r ⊗ ;;

GF ED
��

r ⊗WW

GF ED
��

p1 � p1 O GGr O @@r Occ r ⊗\\

EDGF

��
r ⊗

EDGF

��
p0

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. ||| · ||| : Fm → Z

|||pi ||| = |||pi |||
 2,

|||A⊗ B||| = |||A O B|||
 |||A|||+ |||B|||,
|||A1 . . .An|||
 |||A1|||+ . . . + |||An|||.

Definition. Occ
 Fm× Z.

Definition. c : Occ → Z

c(pi) = c(pi)
 1,

c(A⊗ B) = c(A O B)
 |||A|||.

Definition. ≺ is the following binary relation on Occ.

〈A, k − |||A|||+ c(A)〉 ≺ 〈(A λ B), k〉,
〈B, k + c(B)〉 ≺ 〈(A λ B), k〉,
if 〈A, i〉 ≺ 〈B, j〉 and 〈B, j〉 ≺ 〈C , k〉, then 〈A, i〉 ≺ 〈C , k〉.

Here λ ∈ {⊗,O}.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. Let � /∈ Fm. Let Γ = A1 . . .An. Then
ΩΓ
 〈ΩΓ,≺Γ, <Γ〉, where

ΩΓ
 {〈B, k + |||A1 . . .Ai−1|||〉 | 1 ≤ i ≤ n and 〈B, k〉 � 〈Ai , c(Ai)〉}
∪ {〈�, |||A1 . . .Ai−1|||〉 | 1 ≤ i ≤ n},

〈A, k〉 ≺Γ 〈B, l〉 iff A 6= �, B 6= �, and 〈A, k〉 ≺Γ 〈B, l〉,
〈A, k〉 <Γ 〈B, l〉 iff k < l .

Definition.

Ω�
Γ
 {〈C , k〉 ∈ ΩΓ | C = �},

ΩAt
Γ
 {〈C , k〉 ∈ ΩΓ | C ∈ At},

Ω⊗
Γ
 {〈C , k〉 ∈ ΩΓ | C = A⊗ B for some A and B},

ΩO
Γ
 {〈C , k〉 ∈ ΩΓ | C = A O B for some A and B}.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. A proof net for Γ is a relational structure 〈ΩΓ,A, E〉,
where

I [(ΩO
Γ) + [(Ω�

Γ)− [(Ω⊗
Γ) = 2,

I A is a map from Ω⊗
Γ to ΩO

Γ ∪ Ω�
Γ,

I E is a map from ΩAt
Γ to ΩAt

Γ ,

I if 〈α, β〉 ∈ E , then 〈β, α〉 ∈ E ,

I if 〈〈A, i〉, 〈B, j〉〉 ∈ E , then A = B⊥,

I the edges of the graph 〈ΩΓ,A ∪ E〉 can be drawn without
intersections on a semiplane while the vertices of the graph
are ordered according to <Γ on the border of the semiplane,

I the graph 〈ΩΓ,≺Γ ∪ A〉 is acyclic.

Theorem 8 (1998). MCLL ` → Γ if and only if there exists a
proof net for Γ.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition. MCLL ` A → B iff MCLL ` → A⊥ B.

Definition. A ↔
MCLL

B iff MCLL ` A → B and MCLL ` B → A.

Lemma 9. I A ↔
MCLL

A.

I If A ↔
MCLL

B, then B ↔
MCLL

A.

I If A ↔
MCLL

B and B ↔
MCLL

C, then A ↔
MCLL

C.

I If A ↔
MCLL

B and C ↔
MCLL

D, then A⊗ C ↔
MCLL

B ⊗ D.

I If A ↔
MCLL

B and C ↔
MCLL

D, then A O C ↔
MCLL

B O D.

I If A ↔
MCLL

B, then A⊥ ↔
MCLL

B⊥.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Definition.] : Fm → Z

](pi) =](pi)
 0,

](A O B)
]A +]B + 1,

](A⊗ B)
]A +]B − 1.

Lemma 10. If MCLL ` A → B, then]A =]B.

Definition. at0 : Fm → P(At) and at1 : Fm → P(At):

at0(C)
 {C} if C ∈ At,

at1(C)
 {C⊥} if C ∈ At,

atk(A O B) = atk(A⊗ B)
 atk(A) ∪ at(k+1+]A mod 2)(B).

Lemma 11. If A ↔
MCLL

B, then at0(A) = at0(B).

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Theorem 9 (2002). A ↔
MCLL

pi if and only if at0(A) = {pi},
]A = 0, and]C ∈ {−1, 0, 1} whenever C is a subformula of A.

Corollary 2. There is a deterministic polynomial time algorithm
for the special equivalence problem: given A ∈ Tp and pi , to
decide whether A ↔

MCLL
pi .

Remark. It is unknown whether the same holds for the problem
A ↔

MCLL
B.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

V. M. Abrusci. Phase semantics and sequent calculus for pure
noncommutative classical linear propositional logic, Journal of
Symbolic Logic 56 (1991), no. 4, pp. 1403–1451.

Definition. Formulas of PNCL are the elements of the minimal
set FmPNCL such that

I 1 ∈ FmPNCL and ⊥ ∈ FmPNCL

I {pi | i > 0} ⊂ FmPNCL

I {p
n︷︸︸︷

⊥...⊥
i | i > 0 and n > 0} ⊂ FmPNCL

I {
n︷︸︸︷

⊥...⊥pi | i > 0 and n > 0} ⊂ FmPNCL

I If A ∈ FmPNCL and B ∈ FmPNCL, then (A⊗ B) ∈ FmPNCL

and (A O B) ∈ FmPNCL.

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

(A⊗ B)⊥
 B⊥ O A⊥ ⊥(A⊗ B)
 ⊥B O ⊥A

(A O B)⊥
 B⊥ ⊗ A⊥ ⊥(A O B)
 ⊥B ⊗ ⊥A

1⊥
 ⊥ ⊥1
 ⊥
⊥⊥
 1 ⊥⊥
 1

(p

n︷︸︸︷
⊥...⊥
i)⊥
 p

n+1︷︸︸︷
⊥...⊥
i

⊥(p

n︷︸︸︷
⊥...⊥
i)
 p

n−1︷︸︸︷
⊥...⊥
i

(

n︷︸︸︷
⊥...⊥pi)

⊥

n−1︷︸︸︷
⊥...⊥pi

⊥(

n︷︸︸︷
⊥...⊥pi)

n+1︷︸︸︷
⊥...⊥pi

τ(pi)
 pi

τ(A · B)
 τ(A)⊗ τ(B)

τ(A\B)
 τ(A)⊥ O τ(B)

τ(A/B)
 τ(A) O ⊥τ(B)

Languages LH L Grammars Models L∗ MCLL Complexity Proof nets Equivalence PNCL

Axioms and rules of PNCL

→ (A⊥) A → 1
→ Γ∆
→ Γ⊥∆

(⊥)

→ ΓAB ∆
→ Γ (A O B) ∆

(O) → ΓA → B ∆
→ Γ (A⊗ B) ∆

(⊗)

→ Γ∆

→ (∆⊥⊥) Γ
(rotate) → ΓA → A⊥ ∆

→ Γ∆
(cut)

Cut-elimination theorem. A sequent is derivable in PNCL if and
only if it is derivable in PNCL without (cut).

Remark. L∗ ` A1 . . . An → B if and only if
PNCL ` → τ(An)

⊥ . . . τ(A1)
⊥ τ(B).

	
	Formal languages
	Lambek calculus
	Lambek calculus L with sequents
	Grammars
	Language models
	The calculus L*
	Cyclic linear logic MCLL
	Complexity
	Proof nets
	Equivalence
	Noncommutative linear logic PNCL

