NP-completeness of Lambek calculus and multiplicative noncommutative linear logic

Mati Pentus

http://markov.math.msu.ru/~pentus/

Formal languages
Lambek calculus
Lambek calculus L with sequents
Grammars
Language models
The calculus L*
Cyclic linear logic MCLL
Complexity
Proof nets
Equivalence
Noncommutative linear logic PNCL

A formal language is a set of finite words over a finite alphabet.
Example. Consider the alphabet $\Sigma=\{a, e, v\}$. The set $\{$ ve, veave, veaveave, veaveaveave, $\ldots\}$ is a formal language.

Two important approaches to formal language specification:

- Noam Chomsky (recursion-theoretic approach)
- Jim Lambek (logico-algebraic approach)
J. Lambek, The mathematics of sentence structure, American Mathematical Monthly 65 (1958), no. 3, 154-170.
By o we denote the concatenation operator.
Σ^{*} is the set of all words over the alphabet Σ.
Σ^{+}is the set of all non-empty words over the alphabet Σ.
J. Lambek considers three basic operations on languages:

$$
\begin{aligned}
& \mathcal{A} \cdot \mathcal{B} \rightleftharpoons\{x \circ y \mid x \in \mathcal{A}, y \in \mathcal{B}\} \\
& \mathcal{A} \backslash \mathcal{B} \rightleftharpoons\left\{y \in \Sigma^{+} \mid \mathcal{A} \cdot\{y\} \subseteq \mathcal{B}\right\} \\
& \mathcal{B} / \mathcal{A} \rightleftharpoons\left\{x \in \Sigma^{+} \mid\{x\} \cdot \mathcal{A} \subseteq \mathcal{B}\right\}
\end{aligned}
$$

Example. Let $\mathcal{A}=\{j, m\}$ and $\mathcal{B}=\{j e, j r j, j r m, m e, m r j, m r m\}$. Then $\mathcal{A} \backslash \mathcal{B}=\{e, r j, r m\}$.

Definition. Types are the elements of the minimal set Tp such that

- $\left\{p_{0}, p_{1}, p_{2}, \ldots\right\} \subset \mathrm{Tp}$
- If $A \in \mathrm{Tp}$ and $B \in \mathrm{Tp}$, then $(A \cdot B) \in \mathrm{Tp},(A \backslash B) \in \mathrm{Tp}$, and $(A / B) \in \mathrm{Tp}$.

Derivable objects of L_{H} are $A \rightarrow B$, where $A \in \mathrm{Tp}$ and $B \in \mathrm{Tp}$.

Axioms and rules of L_{H}
$A \rightarrow A \quad(A \cdot B) \cdot C \rightarrow A \cdot(B \cdot C) \quad A \cdot(B \cdot C) \rightarrow(A \cdot B) \cdot C$

$$
\begin{array}{lll}
\frac{A \rightarrow B \rightarrow C}{A \rightarrow C} & \frac{A \cdot B \rightarrow C}{A \rightarrow C / B} & \frac{A \cdot B \rightarrow C}{B \rightarrow A \backslash C} \\
& \frac{A \rightarrow C / B}{A \cdot B \rightarrow C} & \frac{B \rightarrow A \backslash C}{A \cdot B \rightarrow C}
\end{array}
$$

We write $\mathrm{L}_{H} \vdash \Gamma \rightarrow A$ for " $\Gamma \rightarrow A$ is derivable in the calculus L_{H} ".
Example. Let $A, B \in \mathrm{Tp}$. Then $\mathrm{L}_{H} \vdash A \cdot(A \backslash B) \rightarrow B$.

$$
\frac{A \backslash B \rightarrow A \backslash B}{A \cdot(A \backslash B) \rightarrow B}
$$

Remark. There exist $A, B \in \mathrm{Tp}$ such that $\mathrm{L}_{\mathrm{H}} \nvdash B \rightarrow A \cdot(A \backslash B)$.

Example. $A \cdot(B / C) \rightarrow(A \cdot B) / C$ is derivable in L_{H}.

$\frac{(A \cdot(B / C)) \cdot C \rightarrow A \cdot((B / C) \cdot C)}{\frac{B / C \rightarrow B / C}{(B / C) \cdot C \rightarrow B} \quad \frac{A \cdot B \rightarrow A \cdot B}{B \rightarrow A \backslash(A \cdot B)}}$| $\frac{(B / C) \cdot C \rightarrow A \backslash(A \cdot B)}{A \cdot((B / C) \cdot C) \rightarrow A \cdot B}$ |
| :--- |
| $A \cdot(B / C) \rightarrow(A \cdot B) / C$ |

Definition. $A \underset{\mathrm{~L}_{H}}{\leftrightarrow} B$ iff $\mathrm{L}_{H} \vdash A \rightarrow B$ and $\mathrm{L}_{H} \vdash B \rightarrow A$.
Example.

$$
\begin{aligned}
& (A \backslash B) / C \underset{L_{H}}{\overleftrightarrow{L_{H}}} A \backslash(B / C), \\
& A /(B \cdot C) \underset{\mathrm{L}_{\mathrm{H}}}{\overleftrightarrow{ }}(A / C) / B, \\
& A \cdot(A \backslash(A \cdot B)) \underset{\mathrm{L}_{\mathrm{H}}}{\leftrightarrows} A \cdot B
\end{aligned}
$$

Example.

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{H}} \vdash((B / A) \backslash C) \backslash D \rightarrow(B \backslash C) \backslash(A \backslash D), \\
& \mathrm{L}_{\mathrm{H}} \nvdash((A \backslash B) \backslash C) \backslash D \rightarrow C \backslash((B \backslash A) \backslash D) .
\end{aligned}
$$

Derivable objects of the calculus L are sequents $\Gamma \rightarrow A$, where $A \in \mathrm{Tp}$ and $\Gamma \in \mathrm{Tp}^{+}$.
Axioms and rules of L
$A \rightarrow A$
$\frac{\Phi \rightarrow B \quad \Gamma B \Delta \rightarrow A}{\Gamma \Phi \Delta \rightarrow A}$ (cut)
$\frac{A \Pi \rightarrow B}{\Pi \rightarrow A \backslash B}(\rightarrow \backslash)$, where $\Pi \neq \Lambda$

$$
\frac{\Phi \rightarrow A\ulcorner B \Delta \rightarrow C}{\Gamma \Phi(A \backslash B) \Delta \rightarrow C}(\backslash \rightarrow)
$$

$\frac{\Pi A \rightarrow B}{\Pi \rightarrow B / A}(\rightarrow /)$, where $\Pi \neq \Lambda$
$\frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma \Delta \rightarrow A \cdot B}(\rightarrow \cdot)$

$$
\begin{aligned}
& \frac{\Phi \rightarrow A \quad \Gamma B \Delta \rightarrow C}{\Gamma(B / A) \Phi \Delta \rightarrow C}(/ \rightarrow) \\
& \frac{\Gamma A B \Delta \rightarrow C}{\Gamma(A \cdot B) \Delta \rightarrow C}(\cdot \rightarrow)
\end{aligned}
$$

Here Λ is the empty sequence, $A, B, C \in \mathrm{Tp}$, and $\Gamma, \Delta, \Phi, \Pi \in \mathrm{Tp}$.

Theorem 1 (J. Lambek, 1958). $\mathrm{L} \vdash A_{1} \ldots A_{n} \rightarrow B$ if and only if $\mathrm{L}_{H} \vdash A_{1} \cdot \ldots \cdot A_{n} \rightarrow B$.

Cut-elimination theorem (J. Lambek, 1958). A sequent is derivable in L if and only if it is derivable in L without (cut).

Example. $\mathrm{L} \vdash A \cdot(B / C) \rightarrow(A \cdot B) / C$

$$
\begin{gathered}
\frac{A \rightarrow A}{} \frac{C \rightarrow C \quad B \rightarrow B}{(B / C) C \rightarrow B}(/ \rightarrow) \\
\frac{A(B / C) C \rightarrow(A \cdot B)}{A(B / C) \rightarrow(A \cdot B) / C}(\rightarrow /) \\
\frac{A \cdot(B / C) \rightarrow(A \cdot B) / C}{}(\cdot \rightarrow)
\end{gathered}
$$

Remark. $\mathrm{L} \nvdash(A \cdot B) / C \rightarrow A \cdot(B / C)$.

Definition. A Lambek categorial grammar is a triple $\langle\Sigma, D, f\rangle$ such that $|\Sigma|<\infty, D \in \operatorname{Tp}, f: \Sigma \rightarrow \mathcal{P}(\mathrm{Tp})$, and $|f(t)|<\infty$ for each $t \in \Sigma$.
The grammar recognizes the language

$$
\begin{aligned}
\mathcal{L}_{L}(\Sigma, D, f) & \rightleftharpoons \\
& \left\{t_{1} \ldots t_{n} \in \Sigma^{+} \mid \exists B_{1} \in f\left(t_{1}\right) \ldots \exists B_{n} \in f\left(t_{n}\right)\right. \\
& \left.\vdash B_{1} \ldots B_{n} \rightarrow D\right\}
\end{aligned}
$$

Example.

$$
\left.\begin{array}{rl}
n p=p_{1} \quad s=p_{2} \quad D=s \quad \Sigma & =\{\text { John, Mary, works, recommends }\} \\
f(\text { John })=f(\text { Mary }) & =\{n p\} \\
f(\text { works }) & =\{(n p \backslash s)\} \\
f(\text { recommends }) & =\{((n p \backslash s) / n p)\} \\
n p & \rightarrow n p \quad s \rightarrow s \\
n p \rightarrow n p \quad(\backslash \rightarrow) \\
n p(n p \backslash s) \rightarrow s \\
n p \quad((n p \backslash s) / n p) \quad n p \rightarrow s
\end{array}\right)
$$

B. Carpenter, Type-Logical Semantics, MIT Press,

Cambridge, MA, 1997.
http://www.colloquial.com/tlg/parser.html

Example.

$$
\Sigma=\{\text { Val, recommends, he, she, him, her }\}
$$

$$
\begin{aligned}
& f(\text { Val })=\{n p\} \\
& f(\text { recommends })=\{((n p \backslash s) / n p)\} \\
& f(\text { he })=f(\text { she })=\{(s /(n p \backslash s))\} \\
& f(\text { him })=f(\text { her })=\{((s / n p) \backslash s)\} \\
& \frac{n p \rightarrow n p \frac{(n p \backslash s) \rightarrow(n p \backslash s) \quad s \rightarrow s}{(s /(n p \backslash s))(n p \backslash s) \rightarrow s}(/ \rightarrow)}{(s /(n p \backslash s))((n p \backslash s) / n p) n p \rightarrow s}(/ \rightarrow) \\
& \frac{(s /(n p \backslash s))((n p \backslash s) / n p) \rightarrow(s / n p)}{(\rightarrow /)} \\
& (s /(n p \backslash s)) \quad((n p \backslash s) / n p) \quad((s / n p) \backslash s) \rightarrow s \\
& \text { She recommends him }
\end{aligned}
$$

Example.

$\Sigma=\{$ John, Val, succeeds, exists, helps, recommends, student, professor, club, a, the, every, this, strange, whenever, whom, relatively, everywhere, or\}

John succeeds whenever Val recommends a club or helps the student whom this relatively strange professor recommends.

$$
\begin{aligned}
& f(\text { Val })=\{n p\} \\
& f(\text { succeeds })=f(\text { exists })=\{(n p \backslash s)\} \\
& f(\text { helps })=f(\text { recommends })=\{((n p \backslash s) / n p)\} \\
& f(\text { student })=f(\text { professor })=f(\text { club })=\{n\} \\
& f(\text { a })=f(\text { the })=f(\text { every })=\{(n p / n)\} \\
& f(\text { this })=\{(n p / n), n p\} \\
& f(\text { strange })=\{(n / n)\} \\
& f(\text { whenever })=\{((s \backslash s) / s)\} \\
& f(\text { whom })=\{((n \backslash n) /(s / n p))\} \\
& f(\text { relatively })=\{((n / n) /(n / n))\} \\
& f(\text { everywhere })=\{((n p \backslash s) \backslash(n p \backslash s))\} \\
& f(\text { or })=\{((n p \backslash n p) / n p),((s \backslash s) / s),(((n p \backslash s) \backslash(n p \backslash s)) /(n p \backslash s))\}
\end{aligned}
$$

Definition. A context-free grammar is a 4-tuple $\langle\Sigma, \mathcal{W}, S, \mathcal{R}\rangle$ such that $|\Sigma|<\infty,|\mathcal{W}|<\infty, \Sigma \cap \mathcal{W}=\varnothing, S \in \mathcal{W}$, $\mathcal{R} \subset\left\{A \mapsto u \mid A \in \mathcal{W}\right.$ and $\left.u \in(\Sigma \cup \mathcal{W})^{+}\right\}$, and $|\mathcal{R}|<\infty$.
The grammar recognizes the language

$$
\mathcal{G}(\Sigma, \mathcal{W}, S, \mathcal{R}) \rightleftharpoons \overline{\mathcal{G}}(\Sigma, \mathcal{W}, S, \mathcal{R}) \cap \Sigma^{+}
$$

Here $\overline{\mathcal{G}}(\Sigma, \mathcal{W}, S, \mathcal{R})$ is defined inductively.

- $S \in \overline{\mathcal{G}}(\Sigma, \mathcal{W}, S, \mathcal{R})$
- If $u_{1}, u_{2}, u_{3} \in(\Sigma \cup \mathcal{W})^{*}, A \in \mathcal{W}, u_{1} A u_{3} \in \overline{\mathcal{G}}(\Sigma, \mathcal{W}, S, \mathcal{R})$, and $A \mapsto u_{2} \in \mathcal{R}$, then $u_{1} u_{2} u_{3} \in \overline{\mathcal{G}}(\Sigma, \mathcal{W}, S, \mathcal{R})$.

Example.

$$
\Sigma=\{\text { John, Mary, works, recommends }\} \quad \mathcal{W}=\left\{S, N P, V P, V_{t}\right\}
$$

$$
\mathcal{R}=\left\{S \mapsto N P \quad V P, \quad V P \mapsto V_{t} N P, \quad N P \mapsto\right. \text { John }
$$ $N P \mapsto$ Mary, $\quad V P \mapsto$ works, $\quad V_{t} \mapsto$ recommends $\}$

Theorem 2 (J. M. Cohen, 1967).

$$
\forall\langle\Sigma, \mathcal{W}, S, \mathcal{R}\rangle \exists D \exists f \text { such that } \mathcal{L}_{L}(\Sigma, D, f)=\mathcal{G}(\Sigma, \mathcal{W}, S, \mathcal{R})
$$

Theorem 3 (1992).
$\forall\langle\Sigma, D, f\rangle \exists \mathcal{W} \exists S \exists \mathcal{R}$ such that $\mathcal{G}(\Sigma, \mathcal{W}, S, \mathcal{R})=\mathcal{L}_{L}(\Sigma, D, f)$

Definition.

$$
\begin{aligned}
& \left\|p_{i}\right\| \rightleftharpoons 1 \\
& \|A \cdot B\|=\|A \backslash B\|=\|A / B\| \rightleftharpoons\|A\|+\|B\| .
\end{aligned}
$$

Proof of Theorem 3.

$$
m \rightleftharpoons \max \left(\|D\|, \quad \max _{t \in \Sigma} \max \quad \| \in f(t)\right.
$$

$$
\begin{aligned}
\mathcal{W} & \rightleftharpoons\{A \in \mathrm{Tp} \mid \quad\|A\| \leq m\} \\
S & \rightleftharpoons D \\
\mathcal{R} & \rightleftharpoons\{B \mapsto t \mid t \in \Sigma \text { and } B \in f(t)\} \cup \\
& \cup\{C \mapsto A B \mid A, B, C \in \mathcal{W} \text { and } \mathrm{L} \vdash A B \rightarrow C\} \cup \\
& \cup\{D \mapsto A \mid A \in \mathcal{W} \text { and } \mathrm{L} \vdash A \rightarrow D\}
\end{aligned}
$$

Example.

$$
\begin{array}{r}
\Sigma=\{\text { John, Mary, recommends }\} \\
n p \mapsto \text { John } \in \mathcal{R} \\
n p \mapsto \text { Mary } \in \mathcal{R} \\
((n p \backslash s) / n p) \mapsto \text { recommends } \in \mathcal{R} \\
s \mapsto n p \quad(n p \backslash s) \in \mathcal{R} \\
(n p \backslash s) \mapsto((n p \backslash s) / n p) \quad n p \in \mathcal{R} \\
\text { etc. }
\end{array}
$$

Theorem 3 follows from Lemma 1.
Lemma 1. If $\mathrm{L} \vdash B_{1} \ldots B_{n} \rightarrow D$, where $n \geq 2,\|D\| \leq m$, and $\left\|B_{i}\right\| \leq m$ for each i, then $B_{1} \ldots B_{n} \rightarrow D$ follows by means of the cut rule from $n-1$ derivable sequents of the form $A_{1} A_{2} \rightarrow A_{3}$, where $\left\|A_{j}\right\| \leq m$ for each j.

We construct links between primitive type occurrences in a sequent if a derivation of this sequent is given.

- Axiom: The two occurrences of the same primitive type are linked to each other.
- Rule: Two primitive type occurrences in the conclusion of a rule are connected with a link if and only if they come from the same premise and their ancestors are connected with a link.

Lemma 2. If $\Gamma \Phi \Delta \rightarrow C$ has a derivation in L , then $\exists B \in \mathrm{Tp}$ such that
(i) $\|B\|$ is equal to the number of links leading from Φ to $\Gamma \Delta C$,
(ii) $\mathrm{L} \vdash \Phi \rightarrow B$,
(iii) $L \vdash \Gamma B \Delta \rightarrow C$.

Lemma 3. If $\Gamma \Phi \Delta \rightarrow C$ has a derivation in $L(\backslash, /)$, then $\exists n \exists B_{1} \in \operatorname{Tp}(\backslash, /) \ldots \exists B_{n} \in \operatorname{Tp}(\backslash, /) \quad \exists \Phi_{1} \ldots \exists \Phi_{n}$ such that
(i) $\Phi=\Phi_{1} \ldots \Phi_{n}$,
(ii) there are no links between Φ_{i} and Φ_{k} if $i \neq k$,
(iii) $\left\|B_{i}\right\|$ is equal to the number of links leading from Φ_{i} to $\Gamma \Delta C$,
(iv) $\mathrm{L}(\backslash, /) \vdash \Phi_{i} \rightarrow B_{i}$ for each $i \leq n$,
(v) $\mathrm{L}(\backslash, /) \vdash \Gamma B_{1} \ldots B_{n} \Delta \rightarrow C$.

Example.

$$
\begin{gathered}
\mathrm{L}(\backslash, /) \vdash \underbrace{p_{1} \quad\left(p_{1} \backslash p_{2}\right) \quad p_{3}}_{\Phi} \underbrace{\left(p_{3} \backslash\left(p_{2} \backslash p_{4}\right)\right)}_{\Delta} \rightarrow p_{4} \\
\mathrm{~L}(\backslash, /) \vdash \underbrace{p_{1} \quad\left(p_{1} \backslash p_{2}\right)}_{\Phi_{1}} \underbrace{p_{3}}_{\Phi_{2}} \underbrace{\left(p_{3} \backslash\left(p_{2} \backslash p_{4}\right)\right)}_{\Delta} \rightarrow p_{4} \\
B_{1}=p_{2} \quad B_{2}=p_{3}
\end{gathered}
$$

Lemma 4.
(i) If $\mathrm{L} \vdash \Gamma \Phi \Delta \rightarrow C$ and there is a link between Φ and C, then there is no link between Γ and Δ.
(ii) If $\mathrm{L} \vdash \Gamma \Phi \Delta \Psi \rightarrow C$ and there is a link between Φ and Ψ, then there is no link between Γ and Δ.

Lemma 5. If $n \geq 2$ and $A_{1} \ldots A_{n} \rightarrow A_{n+1}$ has a derivation in the Lambek calculus, then there exists a number k such that $2 \leq k \leq n$ and A_{k} is connected by links only with A_{k-1}, A_{k}, and A_{k+1}.

Proof of Lemma 1. Apply Lemma 5 to $B_{1} \ldots B_{n} \rightarrow D$.
$I \rightleftharpoons$ the total number of links between B_{k-1} and B_{k}
$r \rightleftharpoons$ the total number of links between B_{k} and B_{k+1}

$$
\left\|B_{k}\right\| \geq I+r
$$

CASE 1: $\quad l \geq r$

The number of links from Φ to $\Gamma \Delta D$ does not exceed $\left(\left\|B_{k-1}\right\|-l\right)+r \leq\left\|B_{k-1}\right\| \leq m$.
Case 2: $\quad l<r, \quad k<n$

The number of links from Φ to $\Gamma \Delta D$ does not exceed $\left(\left\|B_{k+1}\right\|-r\right)+I \leq\left\|B_{k+1}\right\| \leq m$.

CASE 3: $\quad l<r, \quad k=n$

The number of links from Φ to ΔD does not exceed $(\|D\|-r)+1 \leq\|D\| \leq m$.

Definition. A language model (free semigroup model) is a pair $\left\langle\Sigma^{+}, v\right\rangle$ such that Σ is a finite or countable alphabet and

- $v\left(p_{i}\right) \subseteq \Sigma^{+}$,
- $v(A \cdot B)=v(A) \circ v(B)$,
- $v(A \backslash B)=v(A) \backslash v(B)=\left\{y \in \Sigma^{+} \mid v(A) \circ\{y\} \subseteq v(B)\right\}$,
- $v(B / A)=v(B) / v(A)=\left\{x \in \Sigma^{+} \mid\{x\} \circ v(A) \subseteq v(B)\right\}$.

Remark. L is sound with respect to language models.
Definition. $L(\backslash, /)$ is the elementary fragment of L without \cdot.
Remark. L is conservative over $\mathrm{L}(\backslash, /)$.
Remark (W. Buszkowski, 1982). L($\backslash, /$) is complete with respect to language models.
Proof.

$$
\begin{aligned}
\Sigma & \rightleftharpoons T p \\
v(A) & \rightleftharpoons\left\{\Gamma \in T_{p}+\mid L \vdash \Gamma \rightarrow A\right\}
\end{aligned}
$$

Theorem 4 (1993). A sequent is derivable in L if and only if it is true in every language model.

Example. Let $p, q \in \operatorname{Pr}$. Then $L \nvdash p \rightarrow p \cdot(q \backslash q)$.

$$
\begin{gathered}
\Sigma=\left\{a_{1}, a_{2}\right\} \quad v(p)=\left\{a_{1}\right\} \\
v(q)=\left\{a_{2}\right\} \\
v(q \backslash q)=\varnothing \\
v(p \cdot(q \backslash q))=\varnothing \\
v(p)=\left\{a_{1}\right\} \nsubseteq \varnothing=v(p \cdot(q \backslash q))
\end{gathered}
$$

Example. Let $p, q, r \in \operatorname{Pr}$. Then $L \nvdash(p \cdot q) / r \rightarrow p \cdot(q / r)$.

$$
\begin{aligned}
\Sigma=\left\{a_{1}, a_{2}, a_{3}\right\} \quad v(p) & =\left\{a_{1} a_{2}\right\} \\
v(q) & =\left\{a_{3}\right\} \\
v(r) & =\left\{a_{2} a_{3}\right\} \\
v(p \cdot q) & =\left\{a_{1} a_{2} a_{3}\right\} \\
v((p \cdot q) / r) & =\left\{a_{1}\right\} \\
v(q / r) & =\varnothing \\
v(p \cdot(q / r)) & =\varnothing \\
v((p \cdot q) / r)=\left\{a_{1}\right\} \nsubseteq \varnothing & =v(p \cdot(q / r))
\end{aligned}
$$

Example.

$$
\begin{array}{ll}
\Sigma^{\prime}=\{b, c\} \quad v^{\prime}(p) & =\{b c b b c c b\} \\
v^{\prime}(q) & =\{b c c c b\} \\
v^{\prime}(r) & =\{b c c b b c c c b\}
\end{array}
$$

Corollary 1. A sequent is derivable in L if and only if it is true in every language model over a two-symbol alphabet.

Proof. Let $\Sigma=\left\{a_{1}, a_{2}, \ldots\right\}$. Put $\Sigma^{\prime}=\{b, c\}$. Map a_{i} to $b \underbrace{c c \ldots c}_{i} b$.

Derivable objects of the calculus L^{*} are sequents $\Gamma \rightarrow A$, where $A \in T p$ and $\Gamma \in T p^{*}$.
Axioms and rules of L^{*}
$A \rightarrow A$

$$
\frac{A \Pi \rightarrow B}{\Pi \rightarrow A \backslash B}(\rightarrow \backslash)
$$

$$
\frac{\Pi A \rightarrow B}{\Pi \rightarrow B / A}(\rightarrow /)
$$

$$
\frac{\Gamma \rightarrow A \Delta \rightarrow B}{\Gamma \Delta \rightarrow A \cdot B}(\rightarrow \cdot)
$$

$$
\begin{aligned}
& \frac{\Phi \rightarrow B \Gamma B \Delta \rightarrow A}{\Gamma \Phi \Delta \rightarrow A}(\mathrm{cut}) \\
& \frac{\Phi \rightarrow A \Gamma B \Delta \rightarrow C}{\Gamma \Phi(A \backslash B) \Delta \rightarrow C}(\backslash \rightarrow) \\
& \frac{\Phi \rightarrow A \Gamma B \Delta \rightarrow C}{\Gamma(B / A) \Phi \Delta \rightarrow C}(/ \rightarrow) \\
& \frac{\Gamma A B \Delta \rightarrow C}{\Gamma(A \cdot B) \Delta \rightarrow C}(\cdot \rightarrow)
\end{aligned}
$$

Example.

$$
\frac{A \rightarrow A \quad \frac{B \rightarrow B}{\rightarrow B \backslash B}(\rightarrow \backslash)}{A \rightarrow A \cdot(B \backslash B)}(\rightarrow \cdot)
$$

Remark. L* $\vdash A \rightarrow A \cdot(B \backslash B)$, but $\mathrm{L} \nvdash A \rightarrow A \cdot(B \backslash B)$.
Cut-elimination theorem. We may drop (cut).

Definition. A free monoid model is a pair $\left\langle\Sigma^{*}, v\right\rangle$ such that Σ is a finite or countable alphabet and

- $v\left(p_{i}\right) \subseteq \Sigma^{*}$,
- $v(A \cdot B)=v(A) \circ v(B)$,
- $v(A \backslash B)=\left\{y \in \Sigma^{*} \mid v(A) \circ\{y\} \subseteq v(B)\right\}$,
- $v(B / A)=\left\{x \in \Sigma^{*} \mid\{x\} \circ v(A) \subseteq v(B)\right\}$.

Theorem 5 (1996). A sequent is derivable in L^{*} if and only if it is true in every free monoid model.

We consider only multiplicative fragments of linear logic calculi.
D. N. Yetter, Quantales and noncommutative linear logic, Journal of Symbolic Logic, 55 (1990), no. 1, pp. 41-64.

Definition. Let $A t \rightleftharpoons\left\{p_{0}, p_{1}, p_{2}, \ldots\right\} \cup\left\{\overline{p_{0}}, \overline{p_{1}}, \overline{p_{2}}, \ldots\right\}$. Linear formulas are the elements of the minimal set Fm such that

- At \subset Fm,
- if $A \in \mathrm{Fm}$ and $B \in \mathrm{Fm}$, then $(A \otimes B) \in \mathrm{Fm}$ and $(A \gtrdot B) \in \mathrm{Fm}$.

$$
\begin{aligned}
\left(p_{i}\right)^{\perp} & \rightleftharpoons \overline{p_{i}} & \left(\overline{p_{i}}\right)^{\perp} & \rightleftharpoons p_{i} \\
(A \otimes B)^{\perp} & \rightleftharpoons(B)^{\perp} \gamma(A)^{\perp} & (A \gtrdot B)^{\perp} & \rightleftharpoons(B)^{\perp} \otimes(A)^{\perp}
\end{aligned}
$$

Example.
$((\bar{p} \ngtr((\bar{r}>(\bar{r} \otimes r)) \otimes r)) \otimes q)^{\perp}=(\bar{q} \ngtr((\bar{r} \ngtr((\bar{r} \ngtr r) \otimes r)) \otimes p))$.

Definition. The following function $\tau: \mathrm{Tp} \rightarrow \mathrm{Fm}$ embeds L^{*} into cyclic linear logic.

$$
\begin{aligned}
\tau\left(p_{i}\right) & \rightleftharpoons p_{i} \\
\tau(A \cdot B) & \rightleftharpoons \tau(A) \otimes \tau(B) \\
\tau(A \backslash B) & \rightleftharpoons \tau(A)^{\perp} \otimes \tau(B) \\
\tau(A / B) & \rightleftharpoons \tau(A) \otimes \tau(B)^{\perp}
\end{aligned}
$$

Example. $\tau\left(p_{1} /\left(p_{2} \cdot p_{3}\right)\right)=p_{1} \ngtr\left(\overline{p_{3}} \ngtr \overline{p_{2}}\right)$
Derivable objects of cyclic linear logic are sequents $\rightarrow A_{1} \ldots A_{n}$, where $A_{i} \in \mathrm{Tp}$.
The intended meaning of $\rightarrow A_{1} \ldots A_{n}$, is $A_{1} \varnothing \ldots \varnothing A_{n}$.

Axioms and rules

Cut-elimination theorem. We may drop (cut).
Another calculus for the same logic.
Axioms and rules of MCLL

$$
\rightarrow \overline{p_{i}} p_{i} \quad \rightarrow p_{i} \overline{p_{i}}
$$

$$
\begin{array}{lll}
\rightarrow \Gamma A B \Delta \\
\rightarrow \Gamma(A \& B) \Delta
\end{array} \quad \frac{\rightarrow \Gamma A \rightarrow \Phi B \Delta}{\rightarrow \Phi \Gamma(A \otimes B) \Delta} \quad \frac{\rightarrow \Gamma A \Pi \rightarrow B \Delta}{\rightarrow \Gamma(A \otimes B) \Delta \Pi}
$$

$$
\begin{aligned}
& \rightarrow A^{\perp} A \quad \frac{\rightarrow \Gamma A B \Delta}{\rightarrow \Gamma(A \& B) \Delta}(8) \quad \frac{\rightarrow \Gamma A \rightarrow B \Delta}{\rightarrow \Gamma(A \otimes B) \Delta}(\otimes) \\
& \underset{\rightarrow \Delta \Gamma}{\rightarrow \Gamma \Delta} \text { (rotate) } \quad \frac{\rightarrow \Gamma A \rightarrow A^{\perp} \Delta}{\rightarrow \Gamma \Delta} \text { (cut) }
\end{aligned}
$$

Example. MCLL $\vdash \rightarrow(\bar{p} \otimes q)(\bar{q} \otimes r)(\bar{r} \ngtr p)$.

$$
\begin{aligned}
& \frac{\rightarrow \bar{p} p \rightarrow q \bar{q}}{\rightarrow(\bar{p} \otimes q) \bar{q} p} \rightarrow r \bar{r} \\
& \frac{\rightarrow(\bar{p} \otimes q)(\bar{q} \otimes r) \bar{r} p}{\rightarrow(\bar{p} \otimes q)(\bar{q} \otimes r)(\bar{r} \ngtr p)}
\end{aligned}
$$

Example. MCLL $\vdash \rightarrow(\bar{r} \otimes r)(\bar{r} \otimes r)(\bar{r} \otimes r)$
Remark. $\mathrm{L}^{*} \vdash A_{1} \ldots A_{n} \rightarrow B$ if and only if MCLL $\vdash \rightarrow \tau\left(A_{n}\right)^{\perp} \ldots \tau\left(A_{1}\right)^{\perp} \tau(B)$.

Example. $L^{*} \vdash((q \backslash r) \cdot s) \rightarrow(q \backslash(r \cdot s))$ and MCLL $\vdash \rightarrow(\bar{s} \ngtr(\bar{r} \otimes q))(\bar{q} \ngtr(r \otimes s))$.
M. Pentus, Lambek calculus is NP-complete, CUNY Ph.D. Program in Computer Science Technical Report TR-2003005, CUNY Graduate Center, New York, May 2003. http://www.cs.gc.cuny.edu/tr/techreport.php?id=79

Remark. The derivability problem for MCLL is in NP.
Theorem 6 (2003). The derivability problem for MCLL is NP-complete.

We shall reformulate the well-known NP-complete problem SAT (satisfiability in the classical propositional logic) in terms of electrical circuits.
Let $c_{1} \wedge \ldots \wedge c_{m}$ be a Boolean formula in conjunctive normal form with clauses c_{1}, \ldots, c_{m} and variables x_{1}, \ldots, x_{n}.
We construct a frame (with m lamps and n sockets) and a set of $2 n$ blocks (each of which fits into one socket only) so that the formula $c_{1} \wedge \ldots \wedge c_{m}$ is satisfiable if and only if there is a way to plug n blocks into the sockets so that no lamp will be switched on. Each block (and each socket) has $2 m$ contacts.

Example. $\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right)$.

To model the circuits in MCLL we shall construct (in polynomial time) formulas $G, E_{i}(0), E_{i}(1), F_{i}$ (where $1 \leq i \leq n$) such that

- $c_{1} \wedge \ldots \wedge c_{m}$ is satisfiable if and only if

MCLL $\vdash \rightarrow E_{1}\left(t_{1}\right) \ldots E_{n}\left(t_{n}\right) G$ for some $t_{1}, \ldots, t_{n} \in\{0,1\}$,

- MCLL $\vdash \rightarrow F_{1} \ldots F_{n} G$ is satisfiable if and only if MCLL $\vdash \rightarrow E_{1}\left(t_{1}\right) \ldots E_{n}\left(t_{n}\right) G$ for some $t_{1}, \ldots, t_{n} \in\{0,1\}$.

We shall denote p_{n+1} by r.
In the following definitions $1 \leq j<m, 1 \leq i \leq n$ and $t \in\{0,1\}$.

$$
\begin{aligned}
& G^{0} \rightleftharpoons(\bar{r} \ngtr r), \\
& G^{j} \rightleftharpoons\left(\left(\bar{r} \ngtr G^{j-1}\right) \otimes r\right), \\
& G \rightleftharpoons\left(\left(\overline{p_{n}} \ngtr G^{m-1}\right) \otimes p_{0}\right), \\
& H^{0} \rightleftharpoons(\bar{r} \otimes r), \\
& H^{j} \rightleftharpoons\left(\left(\bar{r} \ngtr H^{j-1}\right) \otimes r\right), \\
& H_{i} \rightleftharpoons\left(\left(\overline{p_{i-1}}>H^{m-1}\right) \otimes p_{i}\right), \\
& E_{i}^{0}(t) \rightleftharpoons(\bar{r} \otimes r), \\
& E_{i}^{j}(t) \rightleftharpoons \begin{cases}\left(\bar{r} \ngtr\left(E_{i}^{j-1}(t) \otimes r\right)\right) & \text { if } \llbracket x_{i} \rrbracket=t \rightarrow \llbracket c_{j} \rrbracket=1, \\
\left(\left(\bar{r} \otimes E_{i}^{j-1}(t)\right) \otimes r\right) & \text { otherwise, }\end{cases} \\
& E_{i}(t) \rightleftharpoons \begin{cases}\left(\overline{p_{i-1}}>\left(E_{i}^{m-1}(t) \otimes p_{i}\right)\right) & \text { if } \llbracket x_{i} \rrbracket=t \rightarrow \llbracket c_{m} \rrbracket=1, \\
\left(\left(\overline{p_{i-1}}>E_{i}^{m-1}(t)\right) \otimes p_{i}\right) & \text { otherwise },\end{cases} \\
& F_{i} \rightleftharpoons\left(\left(E_{i}(0) \otimes H_{i}^{\perp}\right) \ngtr H_{i} \ngtr\left(H_{i}^{\perp} \otimes E_{i}(1)\right)\right) .
\end{aligned}
$$

Lemma 6. MCLL $\vdash \rightarrow E_{i}(t) H_{i}^{\perp}$ for each $1 \leq i \leq n$ and $t \in\{0,1\}$.

Lemma 7. MCLL $\vdash \rightarrow F_{i} E_{i}(t)^{\perp}$ for each $1 \leq i \leq n$ and $t \in\{0,1\}$.

Lemma 8. If MCLL $\vdash \rightarrow \Gamma A^{\perp}$ and $\mathrm{MCLL} \vdash \rightarrow \Phi A \Delta$, then MCLL $\vdash \rightarrow$ ФГ Δ.

Theorem 7 (2003). The derivability problems for L^{*} and L are NP-complete.

Remark. It is unknown whether the same holds for $\mathrm{L}(\backslash, /)^{*}$ and $\mathrm{L}(\backslash, /)$.

Example. The derivation

$$
\frac{\rightarrow \bar{p} p}{} \frac{\rightarrow \bar{r} r \quad \rightarrow \bar{q} q}{\rightarrow \bar{q} \bar{r}(r \otimes q)}
$$

corresponds to the following proof net.

A proof net for Γ must satisfy the following conditions.
$-|\Gamma|_{8}+|\Gamma|_{\diamond}=|\Gamma|_{\otimes}+2$.

- No intersections.
- Acyclic.

Example. Let

$$
\Gamma=\left(\left(\overline{p_{0}} \ngtr(\bar{r} \otimes r)\right) \otimes p_{1}\right)\left(\overline{p_{1}} \ngtr\left((\bar{r} \otimes r) \otimes p_{2}\right)\right)\left(\left(\overline{p_{2}} \ngtr(\bar{r} \ngtr r)\right) \otimes p_{0}\right) .
$$

The following figure shows a proof net for Γ.

Example. Let

$$
\Gamma=\left(\overline{p_{0}} \ngtr\left(((\bar{r} \ngtr(\bar{r} \otimes r)) \otimes r) \otimes p_{1}\right)\right)\left(\left(\overline{p_{1}} \ngtr((\bar{r} \ngtr(\bar{r} \ngtr r)) \otimes r)\right) \otimes p_{0}\right) .
$$

The following is not a valid proof net for $\rightarrow \Gamma$ (it contains a cycle).

Definition. $\|\|\|: \mathrm{Fm} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& \left\|p_{i}\right\|=\left\|\overline{p_{i}}\right\| \rightleftharpoons 2, \\
& \|A \otimes B\|=\|A>B\| \rightleftharpoons\|A\|+\|B\|, \\
& \left\|A_{1} \ldots A_{n}\right\| \rightleftharpoons\left\|A_{1}\right\|+\ldots+\left\|A_{n}\right\| .
\end{aligned}
$$

Definition. $\mathrm{Occ} \rightleftharpoons \mathrm{Fm} \times \mathbb{Z}$.
Definition. c: Occ $\rightarrow \mathbb{Z}$

$$
\begin{aligned}
& c\left(p_{i}\right)=c\left(\overline{p_{i}}\right) \rightleftharpoons 1, \\
& c(A \otimes B)=c(A \ngtr B) \rightleftharpoons\|A\| .
\end{aligned}
$$

Definition. \prec is the following binary relation on Occ.

$$
\begin{aligned}
& \langle A, k-\|A\|+c(A)\rangle \prec\langle(A \lambda B), k\rangle, \\
& \langle B, k+c(B)\rangle \prec\langle(A \lambda B), k\rangle, \\
& \text { if }\langle A, i\rangle \prec\langle B, j\rangle \text { and }\langle B, j\rangle \prec\langle C, k\rangle \text {, then }\langle A, i\rangle \prec\langle C, k\rangle \text {. }
\end{aligned}
$$

Here $\lambda \in\{\otimes, \ngtr\}$.

Definition. Let $\diamond \notin \mathrm{Fm}$. Let $\Gamma=A_{1} \ldots A_{n}$. Then
$\boldsymbol{\Omega}_{\Gamma} \rightleftharpoons\left\langle\Omega_{\Gamma}, \prec_{\Gamma},<_{\Gamma}\right\rangle$, where
$\Omega_{\Gamma} \rightleftharpoons\left\{\left\langle B, k+\left\|A_{1} \ldots A_{i-1}\right\|\right\rangle \mid 1 \leq i \leq n\right.$ and $\left.\langle B, k\rangle \preceq\left\langle A_{i}, c\left(A_{i}\right)\right\rangle\right\}$
$\cup\left\{\left\langle\diamond,\left\|A_{1} \ldots A_{i-1}\right\|\right\rangle \mid 1 \leq i \leq n\right\}$,
$\langle A, k\rangle \prec_{\Gamma}\langle B, I\rangle$ iff $A \neq \diamond, B \neq \diamond$, and $\langle A, k\rangle \prec_{r}\langle B, I\rangle$,
$\langle A, k\rangle<_{r}\langle B, I\rangle$ iff $k<I$.
Definition.

$$
\begin{aligned}
\Omega_{\Gamma}^{\diamond} & \rightleftharpoons\left\{\langle C, k\rangle \in \Omega_{\Gamma} \mid C=\diamond\right\}, \\
\Omega_{\Gamma}^{A t} & \rightleftharpoons\left\{\langle C, k\rangle \in \Omega_{\Gamma} \mid C \in A t\right\}, \\
\Omega_{\Gamma}^{\otimes} & \rightleftharpoons\left\{\langle C, k\rangle \in \Omega_{\Gamma} \mid C=A \otimes B \text { for some } A \text { and } B\right\}, \\
\Omega_{\Gamma}^{8} & \rightleftharpoons\left\{\langle C, k\rangle \in \Omega_{\Gamma} \mid C=A \& B \text { for some } A \text { and } B\right\} .
\end{aligned}
$$

Definition. A proof net for Γ is a relational structure $\left\langle\boldsymbol{\Omega}_{\Gamma}, \mathcal{A}, \mathcal{E}\right\rangle$, where

- $b\left(\Omega_{\Gamma}^{8}\right)+b\left(\Omega_{\Gamma}^{\diamond}\right)-b\left(\Omega_{\Gamma}^{\otimes}\right)=2$,
- \mathcal{A} is a map from $\Omega_{\Gamma}^{\otimes}$ to $\Omega_{\Gamma}^{\diamond} \cup \Omega_{\Gamma}^{\diamond}$,
- \mathcal{E} is a map from $\Omega_{\Gamma}^{A t}$ to $\Omega_{\Gamma}^{\mathrm{At}}$,
- if $\langle\alpha, \beta\rangle \in \mathcal{E}$, then $\langle\beta, \alpha\rangle \in \mathcal{E}$,
- if $\langle\langle A, i\rangle,\langle B, j\rangle\rangle \in \mathcal{E}$, then $A=B^{\perp}$,
- the edges of the graph $\left\langle\Omega_{\Gamma}, \mathcal{A} \cup \mathcal{E}\right\rangle$ can be drawn without intersections on a semiplane while the vertices of the graph are ordered according to $<_{\Gamma}$ on the border of the semiplane,
- the graph $\left\langle\Omega_{\Gamma}, \prec_{\Gamma} \cup \mathcal{A}\right\rangle$ is acyclic.

Theorem 8 (1998). MCLL $\vdash \rightarrow \Gamma$ if and only if there exists a proof net for Γ.

Definition. MCLL $\vdash A \rightarrow B$ ifs MCLL $\vdash \rightarrow A^{\perp} B$.
Definition. $A \underset{M C L L}{\leftrightarrow} B$ iff MCLL $\vdash A \rightarrow B$ and MCLL $\vdash B \rightarrow A$.
Lemma 9. $A_{M C L L} A$.

- If $A \underset{\mathrm{MCLL}}{ } B$, then $B \underset{\mathrm{MCLL}}{ } A$.
- If $A_{\mathrm{MCLL}}^{\overleftrightarrow{~}} B$ and $B \underset{M C L L}{ } C$, then $A_{\mathrm{MCLL}} C$.
- If $A \underset{M C L L}{\overleftrightarrow{M}} B$ and $C_{\text {MOLL }}^{\overleftrightarrow{M}} D$, then $A \otimes C$ MIL $B \otimes D$.
- If $A \underset{M C L L}{\leftrightarrow} B$ and $C_{\text {MOLL }}^{\overleftrightarrow{~}} D$, then $A>C$ MOLL $\overleftrightarrow{\leftrightarrow} B>D$.
- If $A \underset{\text { MOLL }}{\overleftrightarrow{M C L L}} B$, then A^{\perp}.

Definition. $\sharp: \mathrm{Fm} \rightarrow \mathbb{Z}$

$$
\begin{aligned}
& \sharp\left(p_{i}\right)=\sharp\left(\overline{p_{i}}\right) \rightleftharpoons 0, \\
& \sharp(A>B) \rightleftharpoons \sharp A+\sharp B+1, \\
& \sharp(A \otimes B) \rightleftharpoons \sharp A+\sharp B-1 .
\end{aligned}
$$

Lemma 10. If $\mathrm{MCLL} \vdash A \rightarrow B$, then $\sharp A=\sharp B$.
Definition. $\mathrm{at}_{0}: \mathrm{Fm} \rightarrow \mathcal{P}(\mathrm{At})$ and $\mathrm{at}_{1}: \mathrm{Fm} \rightarrow \mathcal{P}(\mathrm{At}):$

$$
\begin{aligned}
& \operatorname{at}_{0}(C) \rightleftharpoons\{C\} \text { if } C \in A t \\
& \operatorname{at}_{1}(C) \rightleftharpoons\left\{C^{\perp}\right\} \text { if } C \in A t, \\
& \operatorname{at}_{k}(A \odot B)=\operatorname{at}_{k}(A \otimes B) \rightleftharpoons \operatorname{at}_{k}(A) \cup \operatorname{at}_{(k+1+\sharp A \bmod 2)}(B) .
\end{aligned}
$$

Lemma 11. If $A_{M C L L}^{\overleftrightarrow{M}}$, then $\operatorname{at}_{0}(A)=\operatorname{at}_{0}(B)$

Theorem 9 (2002). $A_{\text {MCLL }}^{\overleftrightarrow{L}} p_{i}$ if and only if at ${ }_{0}(A)=\left\{p_{i}\right\}$, $\sharp A=0$, and $\sharp C \in\{-1,0,1\}$ whenever C is a subformula of A.

Corollary 2. There is a deterministic polynomial time algorithm for the special equivalence problem: given $A \in T p$ and p_{i}, to decide whether $A_{\text {MCLL }} p_{i}$.

Remark. It is unknown whether the same holds for the problem $A_{M \overleftrightarrow{C L L}}^{\overleftrightarrow{S}}$.
V. M. Abrusci. Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, Journal of Symbolic Logic 56 (1991), no. 4, pp. 1403-1451.

Definition. Formulas of PNCL are the elements of the minimal set $\mathrm{Fm}_{\text {PNCL }}$ such that

- $1 \in \mathrm{Fm}_{\mathrm{PNCL}}$ and $\perp \in \mathrm{Fm}_{\mathrm{PNCL}}$
- $\left\{p_{i} \mid i>0\right\} \subset \mathrm{Fm}_{\mathrm{PNCL}}$
- $\left\{p_{i}^{\perp \ldots \perp} \mid i>0\right.$ and $\left.n>0\right\} \subset$ FmpNCL
- $\{\overbrace{\perp^{\ldots \perp}}^{{ }_{p}}{ }_{p_{i}} \mid i>0$ and $n>0\} \subset \mathrm{Fm}_{\mathrm{PNCL}}$
- If $A \in \mathrm{Fm}_{\mathrm{PNCL}}$ and $B \in \mathrm{Fm}_{\mathrm{PNCL}}$, then $(A \otimes B) \in \mathrm{Fm}_{\mathrm{PNCL}}$ and $(A \ngtr B) \in \mathrm{Fm}_{\mathrm{PNCL}}$.

$$
\begin{aligned}
& (A \otimes B)^{\perp} \rightleftharpoons B^{\perp} 8 A^{\perp} \quad{ }^{\perp}(A \otimes B) \rightleftharpoons{ }^{\perp} B 8{ }^{\perp} A \\
& (A \otimes B)^{\perp} \rightleftharpoons B^{\perp} \otimes A^{\perp} \quad{ }^{\perp}(A 8 B) \rightleftharpoons{ }^{\perp} B \otimes^{\perp} A \\
& \mathbf{1}^{\perp} \rightleftharpoons \perp \\
& \perp^{\perp} \rightleftharpoons 1 \\
& { }^{\perp}{ }_{1} \rightleftharpoons \perp \\
& \perp_{\perp} \rightleftharpoons 1 \\
& (p_{i}^{\overbrace{i}^{\prime} \perp})^{\perp} \rightleftharpoons p_{i}^{n+\ldots \perp} \\
& \perp\left(p_{i}^{1 \ldots . \perp}\right) \rightleftharpoons p_{i}^{n} \overbrace{1}^{n-1} \\
& (\overbrace{\ldots . .{ }_{p}}^{n})^{\perp} \rightleftharpoons \overbrace{\Gamma_{\ldots} I_{p_{i}}}^{n-1} \\
& \downarrow(\overbrace{1_{\ldots}^{n}}^{p_{i}}) \rightleftharpoons \overbrace{\cdots \ldots{ }_{p_{i}}^{n}}^{n+1} \\
& \tau\left(p_{i}\right) \rightleftharpoons p_{i} \\
& \tau(A \cdot B) \rightleftharpoons \tau(A) \otimes \tau(B) \\
& \tau(A \backslash B) \rightleftharpoons \tau(A)^{\perp} \gamma \tau(B) \\
& \tau(A / B) \rightleftharpoons \tau(A) \gamma{ }^{\perp} \tau(B)
\end{aligned}
$$

Axioms and rules of PNCL

$$
\begin{array}{ll}
\rightarrow\left(A^{\perp}\right) A & \rightarrow \mathbf{1} \\
\left.\frac{\rightarrow \Gamma \perp \Delta}{} \quad \rightarrow \Gamma\right) \\
\frac{\rightarrow \Gamma A B \Delta}{\rightarrow \Gamma(A \& B) \Delta}(४) & \frac{\rightarrow \Gamma A \rightarrow B \Delta}{\rightarrow \Gamma(A \otimes B) \Delta}(\otimes) \\
\frac{\rightarrow \Gamma \Delta}{\rightarrow\left(\Delta^{\perp \perp}\right) \Gamma}(\text { rotate }) & \\
\rightarrow \Gamma A \rightarrow A^{\perp} \Delta \\
(\mathrm{cut})
\end{array}
$$

Cut-elimination theorem. A sequent is derivable in PNCL if and only if it is derivable in PNCL without (cut).

Remark. $\mathrm{L}^{*} \vdash A_{1} \ldots A_{n} \rightarrow B$ if and only if
$\mathrm{PNCL} \vdash \rightarrow \tau\left(A_{n}\right)^{\perp} \ldots \tau\left(A_{1}\right)^{\perp} \tau(B)$.

