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Abstract

We study the interaction between global and local techniques

in data mining. Specifically, we study the collections of fre-

quent sets in clusters produced by a probabilistic clustering

using mixtures of Bernoulli models. That is, we first analyze

0–1 datasets by a global technique (probabilistic clustering

using the EM algorithm) and then do a local analysis (dis-

covery of frequent sets) in each of the clusters. The results

indicate that the use of clustering as a preliminary phase

in finding frequent sets produces clusters that have signifi-

cantly different collections of frequent sets. We also test the

significance of the differences in the frequent set collections

in the different clusters by obtaining estimates of the under-

lying joint density. To get from the local patterns in each

cluster back to distributions, we use the maximum entropy

technique [17] to obtain a local model for each cluster, and

then combine these local models to get a mixture model.

We obtain clear improvements to the approximation quality

against the use of either the mixture model or the maximum

entropy model.

1 Introduction

Data mining literature contains examples of at least two
research traditions. The first tradition, probabilistic
modeling, views data mining as the task of approximat-

ing the joint distribution. In this tradition, the idea is
to develop modeling and description methods that in-
corporate an understanding of the generative process
producing the data; thus the approach is global in na-
ture. The other tradition can be summarized by the
slogan: data mining is the technology of fast counting

[12]. The most prominent example of this type of work
are association rules [1]. This tradition typically aims at
discovering frequently occurring patterns. Each pattern
and its frequency indicate only a local property of the
data, and a pattern can be understood without having
information about the rest of the data.

In this paper we study the interaction between
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global and local techniques. The general question we are
interested in is whether global and local analysis meth-
ods can be combined to obtain significantly different
sets of patterns. Specifically, we study the collections
of frequent sets in clusters produced by a probabilistic
clustering using mixtures of Bernoulli models. Given
the dataset, we first build a mixture model of multivari-
ate Bernoulli distributions using the EM algorithm, and
use this model to obtain a clustering of the observations.
Within each cluster, we compute frequent sets, i.e., sets
of columns whose value is often 1 on the same row.

These techniques, association rules (frequent sets)
and mixture modeling, are both widely used in data
mining. However, their combination does not seem to
have attracted much attention. The techniques are, of
course, different. One is global, and the other is local.
Association rules are clearly asymmetric with respect
to 0s and 1s, while from the point of view of mixtures
of multivariate Bernoulli distributions the values 0 and
1 have equal status. Our study aims at finding out
whether there is something interesting to be obtained
by combining the different techniques.

The clusters can be considered as potentially inter-
esting subsets of the data, and frequent sets (or associ-
ation rules computed from them) could be shown to the
users as a way of characterizing the clusters. Our main
interest is in finding out whether we can quantify the
differences in the collections of frequent sets obtained for
each cluster. We measure the difference in the collec-
tions by considering a simple distance function between
collections of frequent sets, and comparing the observed
values against the values obtained for randomly cho-
sen clusters of observations. The results show that the
patterns explicated by the different clusters are quite
different from the ones witnessed in the whole data set.
While this is not unexpected, the results indicate that
the power of frequent set techniques can be improved
by first doing a global partition of the data set.

To get some insight into how different the total in-
formation given by the frequent set collections is, we
go back from the patterns to distributions by using the
maximum entropy technique as in [17]. Given a collec-
tion of frequent sets, this technique builds a distribution



that has the same frequent sets (and their frequencies)
and has maximal entropy among the distributions that
have this property. In this way, we can obtain a dis-
tribution from each collection of frequent sets. These
distributions can be combined to a mixture distribution
by using the original mixture weights given by the EM
clustering. We can then measure the distance of this
mixture distribution from the original, empirical data
distribution using either the Kullback-Leibler or the L1

distance. The drawback of this evaluation method is
that as the maximum entropy technique has to con-
struct the distribution explicitly, the method is expo-
nential in the number of variables, and hence can be
used only for a small number of variables. Nevertheless,
the results show that the use of collections of frequent
sets obtained from the clusters gives us very good ap-
proximations for the joint density.

2 Probabilistic modeling of binary data

To model multivariate binary data x = (x1, . . . , xd) with
a probabilistic model, we assume independence between
observations and arrive at the multivariate Bernoulli
distribution P (x|θ) =

∏d

k=1
θxk

k (1 − θk)1−xk . The
independence assumption is very strong, however, and
quite unrealistic in many situations. Finite mixtures

of distributions provide a flexible method to model
statistical phenomena, and have been used in various
applications [13, 8]. A (finite) mixture is a weighted
sum of component distributions P (x|θj), weights or
mixing proportions πj satisfying πj ≥ 0 and

∑
πj = 1.

A finite mixture of multivariate Bernoulli probability
distributions is thus specified by the equation

P (x|Θ) =
J∑

j=1

πjP (x|θj) =
J∑

j=1

πj

d∏

i=1

θxi

ji (1 − θji)
1−xi

with the parameterization Θ = {π1, . . . , πJ , (θji)} con-
taining J(d+1) parameters for data with d dimensions.

Given a data set R with d binary variables and
the number J of mixture components, the parameter
values of the mixture model can be estimated using
the Expectation Maximization (EM) algorithm [6, 19,
14]. The EM algorithm has two steps which are
applied alternately in an iterative fashion. Each step
is guaranteed to increase the likelihood of the observed
data, and the algorithm converges to a local maximum
of the likelihood function [6, 21]. Each component
distribution of the mixture model can be seen as a
cluster of data points; a point is associated with the
component that has the highest posterior probability.

While the mixture modeling framework is very
powerful, care must be taken in using it for data sets
with high dimensionality. The solutions given by the

EM algorithm are seldom unique. Much work has
been done recently in improving the properties of the
methods and in generalizing the method; see, e.g.,
[4, 15, 20, 7].

3 Frequent itemsets and

maximum entropy distributions

We now move to the treatment of local patterns in large
0–1 datasets. Let R be a set of n observations over
d variables, each observation either 0 or 1. For example,
the variables can be the items sold in a supermarket,
each observation corresponding to a basket of items
bought by a customer. If many customers buy a set
of items, we call the set frequent; in the general case, if
some variables have value 1 in at least a proportion σ
of observations, they form a frequent (item)set. The
parameter σ must be chosen so that there are not too
many frequent sets. Efficient algorithms are known for
mining frequent itemsets [2, 9, 10].

Frequent sets are the basic ingredients in finding
association rules [1]. While association rules have been
a very popular topic in data mining research, they
have produced fewer actual applications. One reason
for this is that association rules computed from the
whole dataset tend to give only fairly general and
vague information about the interconnections between
variables. In practice, one often zooms into interesting
subsets. While association rules are fairly intuitive, in
many applications the domain specialists are especially
interested in the frequently occurring patterns, not just
on the rules (see, e.g., [11]).

By themselves, the frequent sets provide only local
information about the dataset. Given a collection of
frequent sets and their frequencies, we can, however,
use the maximum entropy principle in a similar way
as in [16, 17] to obtain a global model. A model is a
joint distribution of the variables, and in general there
are many distributions that can explain the observed
frequent sets. From these distributions, we want to
find the one that has the maximum entropy. There is
a surprisingly simple algorithm for this called iterative

scaling [5, 18]. A drawback is that the joint distribution,
when represented explicitly, consists of 2d numbers.

4 Experimental data

We consider three data sets. The first data set Checker

has d = 9 and n = 104, and the generative distribu-
tion is a mixture of 6 Bernoulli distributions with vary-
ing mixture proportions P (j) ∝ j. The Bernoulli dis-
tributions form 3 horizontal and 3 vertical bars in the
3 × 3 grid of the 9 variables. To add noise to the data,
ones were observed with probability 0.8 and in the clus-
ters and with probability 0.2 elsewhere.



The second data set is a subset of the Reuters-21578

data collection, restricted to the words occurring in at
least 50 of the documents (d = 3310, n = 19043). The
third data set is the so called Microsoft Web data [3]
that records users’ visits on a collection of Web pages
(d = 285, n = 32711).

5 Frequent sets in clusters:

comparisons of the collections

Recall that our basic goal is to find out whether one
could obtain useful additional information by using the
frequent set discovery methods only after the data has
been clustered. To test this hypothesis, we first cluster
the data with the mixture model to k cluster sets, with
methods described in Section 2. Then we calculate the
collections of frequent sets separately for each cluster
using some given threshold σ. This gives us k collections
of frequent sets. To compare two different collections
F1 and F2 of frequent sets, we define a dissimilarity
measure that we call deviation,

d(F1,F2) =
1

|F1 ∪ F2|

∑

I∈{F1∪F2}

|f1(I) − f2(I)|.

Here, we denote by fj(I) the frequency of the set I in Fj ,
or σ if I 6∈ Fj . The deviation is in effect an L1 distance
where missing values are replaced by σ.

We computed the mean deviation between each
cluster and the whole dataset, varying the number
of clusters k and the value of the support threshold
σ. Moreover, we compared the results against the
collections of frequent sets obtained by taking a random
partitioning of the observations into k groups, of the
same size as the clusters, and then computing the
frequent set collections. The results are shown in
Figure 1 for the Checker dataset. Other datasets
exhibited similar behavior.

The results show that indeed the patterns expli-
cated by the different clusters are quite different from
the ones witnessed in the whole data set. The size of the
difference was tested for statistical significance by using
a randomization method, which shows a clear separa-
tion between the differences among the true clusters and
random clusters. In 100 randomization trials the differ-
ences were never larger than in the true data. While
this is not unexpected, one should note that the aver-
age error in the frequency of a frequent set is several
multiples of the frequency threshold: the collections of
frequent sets are clearly quite different. The results in-
dicate that the power of frequent set techniques can be
improved by first doing a global partition of the data
set.
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Figure 1: Mean of the difference in the Checker data
between the frequencies of the frequent sets in the
whole data set compared against the frequency in each
of the clusters, divided by the support threshold. X-
axis: frequency threshold σ. Y-axis: the difference in
multiples of σ. Frequencies of sets that are not frequent
on one of the datasets are approximated using f = σ.
Dashed values: results of a single randomization round.

6 Maximum entropy distributions from

frequent sets in the clusters

The comparison of collections of frequent sets given
in the previous section shows that the collections are
quite different. We would also like to understand how
much the collections contain information about the joint
distribution. For this, we need to be able to obtain a
distribution from the frequent sets.

We go back from the patterns to distributions by
using the maximum entropy method as in [16, 17].
Given a collection of frequent sets, this technique builds
a distribution that has the same frequent sets (and
their frequencies) and has maximum entropy among
the distributions that have this property. In this way,
we can obtain a distribution from each collection of
frequent sets. These distributions can be combined to
a mixture distribution by using the original mixture
weights given by the EM estimation. We can then
measure the distance of this mixture distribution from
the original, empirical data distribution.

The drawback of this evaluation method is that as
the maximum entropy technique has to construct the
distribution explicitly, the method is exponential in the
number of variables, and hence can be used only for a
small number of variables. In the experiments we used
the 9 most commonly occurring variables in both the
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Figure 2: Reuters data, 9 most frequently occurring
variables: L1-distance for mixtures of maxents with
empirically estimated mixing proportions. X-axis: the
frequency threshold. Y -axis: the L1-distance between
the mixture distribution and the empirical distribution
in the data.

Reuters and the Microsoft web datasets. The results
are shown in Figure 2 for the Reuters dataset and in
Figure 3 for the Microsoft web dataset. The Checker
dataset exhibited similar behavior and is omitted.

In the figures the x-axis corresponds to the fre-
quency threshold σ for the frequent set computation,
and the y-axis shows the L1 distance

∑
x |g(x) − f(x)|,

where x is a 0–1 vector of length d, g is the maxent
mixture, and f is the “real” distribution from which the
data were generated. With the Kullback-Leibler mea-
sure Eg[log(g/f)] =

∑
x g(x) log(g(x)/f(x)), the resuls

were similar and are omitted here.
We also compared the approximation of the joint

distribution given by the initial mixture model against
the empirical distribution; this distance is not depen-
dent on the frequency threshold used. The results were
in most cases clearly inferior to the others, and are
therefore not shown.

We observe that the distance from the “true” empir-
ical distribution is clearly smaller when we use the mix-
ture of maximum entropy distributions obtained from
the frequent sets of the clusters. The effect is especially
strong in the case of the Microsoft web data. The results
show that the use of collections of frequent sets obtained
from the clusters gives us very good approximations for
the joint density.

One could, of course, use out-of-sample likelihood
techniques or BIC-type of methods to test whether the
number of extra parameters involved in the mixtures of
maximum entropy distributions is worth it. Our goal in

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

all

2

34

5

6

7
8 9

support threshold σ

L 1 d
is

ta
nc

e

Mixture of maxents against empirical distribution

Figure 3: Microsoft web data, 9 most frequently occur-
ring variables: L1-distance for mixtures of maxents with
empirically estimated mixing proportions. X-axis: the
frequency threshold. Y -axis: the L1-distance between
the mixture distribution and the empirical distribution
in the data.

this paper is, however, only to show that the clusters of
observations produced by EM clustering do indeed have
significantly different collections of frequent sets.

7 Summary

We have studied the combination of mixture model-
ing and frequent sets in the analysis of 0–1 datasets.
We used mixtures of multivariate Bernoulli distributions
and the EM algorithm to cluster datasets. For each re-
sulting cluster, we computed the collection of frequent
sets. We computed the distances between the collec-
tions by an L1-like measure. We also compared the
information provided by the collections of frequent sets
by computing maximum entropy distributions from the
collections and combining them to a mixture model.

The results show that the information in the fre-
quent set collections computed from clusters of the data
is clearly different from the information given by the fre-
quent sets on the whole data collection. One could view
the result as unsurprising. Indeed, it is to be expected
that computing a larger number of results (k collections
of frequent sets instead of one) gives more information.
What is noteworthy in the results is that the differences
between the frequencies of the frequent sets are so large
(see Figure 1). This indicates that the global technique
of mixture modeling finds features that can actually be
made explicit by looking at the frequent sets in the clus-
ters.
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