Normalization by Evaluation for Finitary Typed Lambda
Calculus

Tarmo Uustalu

joint work with Thorsten Altenkirch

Teooriapaevad Pedasel, 3.-5.10.2003

/

THINK. . . '

e ...of simply typed lambda calculus extended with a boolean type Bool (but
type variables disallowed).

e The equational theory (defining =g,) is not free of suprises: Define
once —)\Bool—>BooIf)\Boolx f r and thrice =)\Bool—>BooIf)\Boolx f (f (f LU)), it
holds that

once =g, thrice

But: try to derive it (not for the fainthearted).

e But semantically, in sets, where Bool is Bool and function types are function
spaces are, this is easy! There are just 4 functions in Bool — Bool, and for all
of these 4 the equality holds rather obviously.

SO ...AN IDEA!'

e Could we perhaps conclude =g, from equality in the set-theoretic semantics?
e Yes..., if we had completeness.

e My message of today: Yes, we have it!

How Do WE GET COMPLETENESS? . \

We show that evaluation of typed closed terms into the set-theoretic semantics

is tnvertible.

[°¢* — Tm o such that

That is: We can define a function quote? € [o
t =g, quote’ [t]>
for any t € Tm o.

Consequently, for any ¢,t' € Tm o,
[[t]]Set _ [[t/HSet — ¢ =51 t/
(completeness): and, as we obviously have soundness as well,
t :Bn t, — [[t]]Set — [[t/ﬂSet

As everything we do is constructive, quote is computable and hence we get an

implementation of normalization nf” t = quote” []>t.

/

WELL, THIS Is NBE, IsN'T IT?I

e Inverting evaluation to achieve normalization by evaluation (NBE, aka.

reduction-free normalization) is not new, but:

— we give a construction for a standard semantics rather than a nonstandard

one,
— our construction is much simpler than the usual NBE constructions,

— we give a concrete implementation using Haskell as a poor man’s

metalanguage (actually one would like to use a language with dependent

types).

OUTLINE '

A recap of the calculus

Implementation of the calculus
Implementation of quote

A demo (Yes! I can do it...)

Correctness of quote and what it gives us

Conclusions and future work

A RECAP OF THE CALCULUS'

e Types:
Ty ::=Bool | Ty — Ty
e Typed terms:

r:obt:T t:co—T u:o
Nxt:o—T tu:T

t:Bool wp:0 wy:6
true : Bool false : Bool if ¢t ug uy : 0

-

e (n-equality:

ANz t) u
Nzt

if true ug uq
if false ug uq
if ¢ true false

v (If t Uq Ul)

tlr = uj

t ifx g FV(t)
Uo

Uy

t

if t (vug) (vuy)

///’

IMPLEMENTING THE CALCULUS: SYNTAX.

e Types Ty € %, typing contexts Con € x and untyped terms UTm &€ *.

data Ty = Bool | Ty :-> Ty
deriving (Show, Eq)

type Con = [(String, Ty)]

data UTm = Var String
| TTrue | TFalse | If UTm UTm UTm
| Lam Ty String UTm | App UTm UTm
deriving (Show, Eq)

Cannot do typed terms Tm € Con — Ty — x (takes inductive families, not

available in Haskell). But we can do. ..

///’

TYPE INFERENCE '

e Type inference infer € Con — UTm — Maybe Ty (where Maybe X = 1 + X):
infer :: Con -> UTm -> Maybe Ty

infer gamma (Var x) =
do sigma <- lookup x gamma
Just sigma
infer gamma TTrue = Just Bool
infer gamma TFalse = Just Bool
infer gamma (If t u0 ul) =
do Bool <- infer gamma t
sigma0 <- infer gamma uO
sigmal <- infer gamma ul

if sigma0 == sigmal then Just sigmaO else Nothing

10

infer gamma (Lam sigma x t) =
do tau <- infer ((x, sigma) : gamma) t
Just (sigma :-> tau)
infer gamma (App t u) =
do (sigma :-> tau) <- infer gamma t
sigma’ <- infer gamma u

if sigma == sigma’ then Just tau else Nothing

11

///’

SEMANTICS (IN GENERAL) I

e Type evaluation [—] : Ty — x in a semantics is also impossible just as Tm.

Workaround: coalesce all o] into one metalanguage type U of untyped
semantic elements (just as all Tmp o appear coalesced in UTm).

class Sem u where

true :: u

false :: u

xif :: u->u ->u->u
lam :: Ty => (u -> u) > u
app :: u ->u ->u

e Untyped environments UEnvy € *:

type UEnv u = [(String, u)]

N

12

///’

e (Untyped) term evaluation [—] € UEnvy — UTm — U:

eval :: Sem u => UEnv u -> UTm -> u
eval rho (Var x) = d

where (Just d) = lookup x rho
eval rho TTrue = true

eval rho TFalse = false

eval rho (If t u0 ul) = xif (eval rho t) (eval rho u0) (eval rho ul)

eval rho (Lam sigma x t) = lam sigma (\ d -> eval ((x, d)
eval rho (App t u) = app (eval rho t) (eval rho u)

: rtho) t)

13

SETJTHEORETKJSEMANTHﬁS.

e Untyped elements SU € % of the set-theoretic semantics:

data SU = STrue | SFalse | SLam Ty (SU -> SU)

instance Eq SU where

STrue == STrue True
SFalse == SFalse = True
(SLam sigma f) == (SLam _ f’) =
and [f d == £f> d | d <- flatten (enum sigma)]

== _ = False

instance Show SU where
show STrue = "STrue"
show SFalse = "SFalse"
show (SLam sigma f) =
"SLam " ++ (show sigma) ++ " " ++

(show [(d, £ d) | d <- flatten (enum sigma)])

14

-

e The set-theoretic semantics is a semantics:

instance Sem SU where

true = STrue
false = SFalse
xif STrue d _ =d

xif SFalse d =4d

lam = SLam
app (SLam _ f) d = £ d

15

///’

ANOTHER SEMANTICS: FREE SEMANTICS.

e Typed closed terms up to Bn are a semantics too!

instance Sem UTm where
true = TTrue
false = TFalse
xif t TTrue TFalse = t
xif £t u0 ul = if u0 == ul then ul else If t u0 ul

lam sigma f = Lam sigma "x" (£ (Var "x"))

app = App

Note we do A by cheating (doing it properly would take fresh name generation).

But we are sure we will only one bound variable at a time, so cheating is fine!

/

16

///’

IMPLEMENTING quote: DECISION TREESI

~

e Decision trees Tree € Ty — x with leaves labelled with decisions, but branching

nodes unlabelled (as the trees will be balanced and the questions along each
branch in a tree the same, we prefer to keep these in a list):

data Tree u = Val u | Choice (Tree u) (Tree u) deriving (Show, Eq)

instance Monad Tree where
return = Val
(Val d) >>=h =h d
(Choice 1 r) >>= h = Choice (1 >>= h) (r >>= h)

instance Functor Tree where

fmap h ds = ds >>= return . h

flatten :: Tree u -=> [u]
flatten (Val d) = [4 1]
flatten (Choice 1 r) = (flatten 1) ++ (flatten r)

17

enum AND questions.

e Calculating the decision tree and the questions to identify an element of type:
enum € (o € Ty) — Tree [o] and questions € (o € Ty) — [[o] — [Bool]]:

enum :: Sem u => Ty -> Tree u

questions :: Sem u => Ty -> [u -> u]

enum Bool = Choice (Val true) (Val false)
questions Bool = [\ b -> b]

18

enum (sigma :-> tau) =
fmap (lam sigma) (mkEnum (questions sigma) (enum tau))

mkEnum :: Sem u => [u -> u] -> Tree u -> Tree (u -> u)
mkEnum [] es = fmap (\ e -=> \ d -> e) es
mkEnum (q : gqs) es = (mkEnum gs es) >>= \ f1 ->

(mkEnum gs es) >>= \ f2 ->

return (\ d -> xif (q d) (f1 d) (£2 4))

questions (sigma :-> tau) =
[\ f ->q (app £ d) | d <- flatten (enum sigma),
q <- questions tau]

19

e Example of the tree and the questions for an arrow type: for Bool — Bool,

these are

Choice
(Choice
(Val (lam Bool (\ d —>
(Val (lam Bool (\ 4 —>
(Choice
(Val (lam Bool (\ 4 —>
(Val (lam Bool (\ d ->

resp.

(\ £ -> app f true :
(\ £ -> app f false :
[1))

xif d true true)))
xif d true false))))

xif d false true)))
xif d false false))))

~

20

///’

quote AND nf.

e Answers and a tree give a decision: find? € [[Bool]]] — Tree [o] — [o]:

find :: Semu => [u] -> Tree u -> u
find [] (Val t) = t
find (a : as) (Choice 1 r) = xif a (find as 1) (find as r)

e Inverted evaluation quote® € [o]>% — Tm o

quote :: Ty -> SU -> UTm
quote Bool STrue

TTrue
TFalse
quote (sigma :-> tau) (SLam

quote Bool SFalse
f) =
lam sigma (\ t -> find [q t | q <- questions sigma]

(fmap (quote tau . f) (enum sigma)))

Haskell infers that we mean the enum of the set-theoretic semantics and the
questions and find of the free semantics.

21

///’

e Normalization nf € (0 € Ty) = Tm ¢ — Tm o
nf :: Ty -> UTm -> UTm
nf sigma t = quote sigma (eval [] t)
e A version nf’ € UTm — Maybe ((¢ € Ty) x Tm o) exploiting type inference:

nf’ :: UTm -> Maybe (Ty, UTm)
nf’ t = do sigma <- infer [] t

Just (sigma, nf sigma t)

22

~

CORRECTNESS OF quote.

Def. (Logical Relations) Define a family of relations R C Tm o x [¢]°* by
induction on o € Ty:

— if t =g, True, then tR®*°'true;

— if t =g, False, then tRP°°*false;

— if for all u,d, uR?d implies App t uR™ f d, then tR7™7 f.

Fund. Thm. of Logical Relations If 6R"p and t € Tmr o, then t[f] R7[¢]>°.
In particular, if £ € Tm o, then tR [t]>¢t.

Main Lemma If tRd, then ¢ =g, quote? d.

Proof: Quite some work.

Main Thm. If ¢t € Tm o, then t =g, quote? [t]>¢.

Proof: Immediate from Fund. Thm. and Main Lemma.

23

WHAT FOLLOWS? .

e Cor. (Completeness) If t,t' € Tm o, then [t]>* = [¢']>*" implies t =g, t’.
Proof: Immediate from the Main Thm.

Consequence from this together with soundness: =g, is decidable.
e Cor. If t,t' € Tm o, then t =g, t' iff quote? [t]>t = quote” [t']><.
Proof: Immediate from soundness and Main Thm.

Consequence: nf is good as a normalization function (“Church-Rosser”).

24

4 N

e Cor. Ift,t € Tmo and C t =g, C t’ for any C': Tm 0 — Tm Bool, then
t =gyt
Or, contrapositively, and more concretely, if £, € Tm (07 — ... — 0, — Bool)
and t #g, t', then there exist u; € Tm o1, ...u, € Tm o, such that

nf>°t (App (... (App t uy1) ...) uy,) # nf>*°" (App (... (App t' u1) ...) up)

Proof: Can be read out from the proof of Main Thm.

e Cor. (Maximal Consistency) If t,t' € Tm ¢ and t #g,, t/, then from the

equation t = t’ as an additional axiom one would derive True = False.

Proof: Immediate from the previous corollary.

25

PROOF OF MAIN LEMMA.

e The proof is by induction on ¢. Case Bool is trivial, case ¢ — 7 is proved

easily from two additional lemmata.

e Cheap Lemma
1. tenum? (Tree R?) senum?.

2. tquestions’ [R7 — RB°°] squestions’.

e Technical Lemma Define a relation < C UTm x [UTm — UTm] x Tree UTm
by
t < (gs,ts)iff t =g, tfind [q t | ¢ «— ¢s] ts

If t € Tm o, then t < (tquestions?, tenum?), i.e.,

t =gy tfind [g t | ¢ < tquestions?| tenum?

26

CONCLUSIONS .

e No radically new ideas, but a very nice combination.

e Inversion of evaluation into the simplest semantics—the set-theoretic one—,

the program and the proof simple and elegant.

e As an extra one gets completeness of the set-theoretic semantics (a natural
semantics) rather than completeness of some artificial semantics only invented
to do NBE.

27

FUTURE WORK '

e Do BDDs instead of decision trees, gives normalization into term graphs

(=lambda calculus extended with let, or explicit substitutions).

e Extend from simply typed lambda-calculus with Bool to simply typed
lambda-calculus with 0, +, 1, X (intuitionistic prop. logic) or dependently typed
lambda-calculus with 0, 1, Bool, ¥ and large elim. for Bool.

e Try also to extend the method to allow type variables (non-closed types).

N /

28

