Normalization by Evaluation for Finitary Typed Lambda Calculus

Tarmo Uustalu

joint work with Thorsten Altenkirch
Teooriapäevad Pedasel, 3.-5.10.2003

Think. . .

- ... of simply typed lambda calculus extended with a boolean type Bool (but type variables disallowed).
- The equational theory (defining $={ }_{\beta \eta}$) is not free of suprises: Define once $=\lambda^{\text {Bool } \rightarrow \text { Bool }} f \lambda^{\text {Bool }} x f x$ and thrice $=\lambda^{\text {Bool } \rightarrow \text { Bool }} f \lambda^{\text {Bool }} x f(f(f x))$, it holds that

$$
\text { once }={ }_{\beta \eta} \text { thrice }
$$

But: try to derive it (not for the fainthearted).

- But semantically, in sets, where Bool is Bool and function types are function spaces are, this is easy! There are just 4 functions in Bool \rightarrow Bool, and for all of these 4 the equality holds rather obviously.

So ... An IDEA!

- Could we perhaps conclude $=_{\beta \eta}$ from equality in the set-theoretic semantics?
- Yes..., if we had completeness.
- My message of today: Yes, we have it!

How Do We Get Completeness?

- We show that evaluation of typed closed terms into the set-theoretic semantics is invertible.
- That is: We can define a function quote ${ }^{\sigma} \in \llbracket \sigma \rrbracket^{\text {Set }} \rightarrow \operatorname{Tm} \sigma$ such that

$$
t={ }_{\beta \eta} \text { quote }^{\sigma} \llbracket t \rrbracket^{\text {Set }}
$$

for any $t \in \operatorname{Tm} \sigma$.

- Consequently, for any $t, t^{\prime} \in \operatorname{Tm} \sigma$,

$$
\llbracket t \rrbracket^{\text {Set }}=\llbracket t^{\prime} \rrbracket^{\text {Set }} \Rightarrow t={ }_{\beta \eta} t^{\prime}
$$

(completeness): and, as we obviously have soundness as well,

$$
t={ }_{\beta \eta} t^{\prime} \Longleftrightarrow \llbracket t \rrbracket^{\text {Set }}=\llbracket t^{\prime} \rrbracket^{\text {Set }}
$$

- As everything we do is constructive, quote is computable and hence we get an implementation of normalization $\mathrm{nf}^{\sigma} t=$ quote $^{\sigma} \llbracket t \rrbracket^{\text {Set }}$.

Well, This Is NBE, Isn’t It?

- Inverting evaluation to achieve normalization by evaluation (NBE, aka. reduction-free normalization) is not new, but:
- we give a construction for a standard semantics rather than a nonstandard one,
- our construction is much simpler than the usual NBE constructions,
- we give a concrete implementation using Haskell as a poor man's metalanguage (actually one would like to use a language with dependent types).

Outline

- A recap of the calculus
- Implementation of the calculus
- Implementation of quote
- A demo (Yes! I can do it...)
- Correctness of quote and what it gives us
- Conclusions and future work

A Recap of the calculus

- Types:

$$
\text { Ty }::=\text { Bool } \mid \text { Ty } \rightarrow \text { Ty }
$$

- Typed terms:

$$
\begin{gathered}
\frac{x: \sigma \vdash t: \tau}{\lambda^{\sigma} x t: \sigma \rightarrow \tau} \frac{t: \sigma \rightarrow \tau \quad u: \sigma}{t u: \tau} \\
\overline{\text { true }: \text { Bool }} \overline{\text { false }: \text { Bool }} \frac{t: \text { Bool } u_{0}: \theta \quad u_{1}: \theta}{\text { if } t u_{0} u_{1}: \theta}
\end{gathered}
$$

- $\beta \eta$-equality:

$$
\begin{array}{rlll}
\left(\lambda^{\sigma} x t\right) u & =_{\beta} & t[x:=u] \\
\lambda^{\sigma} x t x & =_{\eta} & t \quad \text { if } x \notin \mathrm{FV}(t) \\
\text { if true } u_{0} u_{1} & =_{\beta} & u_{0} \\
\text { if false } u_{0} u_{1} & =_{\beta} & u_{1} \\
\text { if } t \text { true false } & =_{\eta} & t \\
v\left(\text { if } t u_{0} u_{1}\right) & =_{\eta} & \text { if } t\left(v u_{0}\right)\left(v u_{1}\right)
\end{array}
$$

Implementing The Calculus: Syntax

- Types Ty $\in \star$, typing contexts Con $\in \star$ and untyped terms UTm $\in \star$.

```
data Ty = Bool | Ty :-> Ty
    deriving (Show, Eq)
type Con = [(String, Ty) ]
data UTm = Var String
    | TTrue | TFalse | If UTm UTm UTm
    | Lam Ty String UTm | App UTm UTm
    deriving (Show, Eq)
```

Cannot do typed terms $\mathrm{Tm} \in \mathrm{Con} \rightarrow \mathrm{Ty} \rightarrow \star$ (takes inductive families, not available in Haskell). But we can do...

Type Inference

- Type inference infer \in Con \rightarrow UTm \rightarrow Maybe Ty (where Maybe $X \cong 1+X$):

```
infer :: Con -> UTm -> Maybe Ty
```

infer gamma (Var x) =
do sigma <- lookup x gamma
Just sigma
infer gamma TTrue = Just Bool
infer gamma TFalse = Just Bool
infer gamma (If t u0 u1) =
do Bool <- infer gamma t
sigma0 <- infer gamma u0
sigma1 <- infer gamma u1
if sigma0 == sigma1 then Just sigma0 else Nothing

```
infer gamma (Lam sigma x t) =
    do tau <- infer ((x, sigma) : gamma) t
        Just (sigma :-> tau)
infer gamma (App t u) =
    do (sigma :-> tau) <- infer gamma t
        sigma' <- infer gamma u
        if sigma == sigma' then Just tau else Nothing
```


Semantics (In General)

- Type evaluation $\llbracket-\rrbracket:$ Ty $\rightarrow \star$ in a semantics is also impossible just as Tm. Workaround: coalesce all $\llbracket \sigma \rrbracket$ into one metalanguage type U of untyped semantic elements (just as all $\mathrm{Tm}_{\Gamma} \sigma$ appear coalesced in UTm).
class Sem u where
true :: u
false :: u
xif :: u -> u -> u -> u
lam :: Ty -> (u -> u) -> u
app :: u -> u -> u
- Untyped environments $\operatorname{UEnv}_{U} \in \star$:
type UEnv u = [(String, u)]
- (Untyped) term evaluation $\llbracket-\rrbracket \in \mathrm{UEnv}_{U} \rightarrow$ UTm $\rightarrow U$:

```
eval :: Sem u => UEnv u -> UTm -> u
eval rho (Var x) = d
    where (Just d) = lookup x rho
eval rho TTrue = true
eval rho TFalse = false
eval rho (If t u0 u1) = xif (eval rho t) (eval rho u0) (eval rho u1)
eval rho (Lam sigma x t) = lam sigma (\ d -> eval ((x, d) : rho) t)
eval rho (App t u) = app (eval rho t) (eval rho u)
```


Set-Theoretic Semantics

- Untyped elements $\mathrm{SU} \in \star$ of the set-theoretic semantics:

```
data SU = STrue | SFalse | SLam Ty (SU -> SU)
```

instance Eq SU where
STrue == STrue = True
SFalse == SFalse = True
(SLam sigma f) == (SLam _ f') =
and [f d == f' d | d <- flatten (enum sigma)]
_ == _ = False
instance Show SU where
show STrue = "STrue"
show SFalse = "SFalse"
show (SLam sigma f) =
"SLam " ++ (show sigma) ++ " " ++
(show [(d, f d) | d <- flatten (enum sigma)])

- The set-theoretic semantics is a semantics:
instance Sem SU where
true = STrue
false $=$ SFalse
xif STrue d _ $=d$
xif SFalse _ d = d
lam = SLam
app (SLam _ f) d = f d

Another Semantics: Free Semantics

- Typed closed terms up to $\beta \eta$ are a semantics too!
instance Sem UTm where
true $=$ TTrue
false = TFalse
xif t TTrue TFalse $=\mathrm{t}$
xif $\mathrm{t} u 0 \mathrm{u} 1=$ if $\mathrm{uO}==\mathrm{u} 1$ then uO else If $\mathrm{t} u 0 \mathrm{u} 1$
lam sigma f = Lam sigma "x" (f (Var "x"))
app $=$ App
Note we do λ by cheating (doing it properly would take fresh name generation). But we are sure we will only one bound variable at a time, so cheating is fine!

```
ImplemEnting quote: Decision Trees
```

- Decision trees Tree $\in \operatorname{Ty} \rightarrow \star$ with leaves labelled with decisions, but branching nodes unlabelled (as the trees will be balanced and the questions along each branch in a tree the same, we prefer to keep these in a list):

```
data Tree u = Val u | Choice (Tree u) (Tree u) deriving (Show, Eq)
instance Monad Tree where
    return = Val
    (Val d) >>= h = h d
    (Choice l r) >>= h = Choice (l >>= h) (r >>= h)
instance Functor Tree where
    fmap h ds = ds >>= return . h
flatten :: Tree u -> [ u ]
flatten (Val d) = [ d ]
flatten (Choice l r) = (flatten l) ++ (flatten r)
```

```
enum AND questions
```

- Calculating the decision tree and the questions to identify an element of type: enum $\in(\sigma \in \mathrm{Ty}) \rightarrow$ Tree $\llbracket \sigma \rrbracket$ and questions $\in(\sigma \in \mathrm{Ty}) \rightarrow[\llbracket \sigma \rrbracket \rightarrow \llbracket \mathrm{Bool} \rrbracket]$:
enum :: Sem u => Ty \rightarrow Tree u
questions :: Sem u => Ty -> [u -> u]
enum Bool = Choice (Val true) (Val false)
questions Bool = [\ b -> b]

```
enum (sigma :-> tau) =
    fmap (lam sigma) (mkEnum (questions sigma) (enum tau))
mkEnum :: Sem u => [ u -> u ] -> Tree u -> Tree (u -> u)
mkEnum [] es = fmap (\ e -> \ d -> e) es
mkEnum (q : qs) es = (mkEnum qs es) >>= \ f1 ->
                        (mkEnum qs es) >>= \ f2 ->
                                    return (\ d -> xif (q d) (f1 d) (f2 d))
questions (sigma :-> tau) =
    [ \ f -> q (app f d) | d <- flatten (enum sigma),
    q <- questions tau ]
```

- Example of the tree and the questions for an arrow type: for Bool \rightarrow Bool, these are

Choice
(Choice
(Val (lam Bool ($\backslash \mathrm{d}$-> xif d true true)))
(Val (lam Bool ($\backslash \mathrm{d}$-> xif d true false))))
(Choice
(Val (lam Bool ($\backslash \mathrm{d}$-> xif d false true)))
(Val (lam Bool ($\backslash \mathrm{d}$-> xif d false false))))
resp.
($\backslash \mathrm{f}$-> app f true :
($\backslash \mathrm{f} \rightarrow$ app f false :
[]))

```
quote AND nf
```

- Answers and a tree give a decision: find $^{\sigma} \in[\llbracket \mathrm{Bool} \rrbracket] \rightarrow$ Tree $\llbracket \sigma \rrbracket \rightarrow \llbracket \sigma \rrbracket$:

```
find :: Sem u => [ u ] -> Tree u -> u
find [] (Val t) = t
find (a : as) (Choice l r) = xif a (find as l) (find as r)
```

- Inverted evaluation quote ${ }^{\sigma} \in \llbracket \sigma \rrbracket^{\text {Set }} \rightarrow \operatorname{Tm} \sigma$:
quote : : Ty -> SU -> UTm
quote Bool STrue = TTrue
quote Bool SFalse = TFalse
quote (sigma :-> tau) (SLam _ f) =
lam sigma ($\backslash \mathrm{t}$-> find [q t | q <- questions sigma]
(fmap (quote tau . f) (enum sigma)))

Haskell infers that we mean the enum of the set-theoretic semantics and the questions and find of the free semantics.

- Normalization $\mathrm{nf} \in(\sigma \in \operatorname{Ty}) \rightarrow \operatorname{Tm} \sigma \rightarrow \operatorname{Tm} \sigma$:
nf : : Ty -> UTm -> UTm
nf sigma $t=$ quote sigma (eval [] t)
- A version $\mathrm{nf}^{\prime} \in \mathrm{UTm} \rightarrow$ Maybe $((\sigma \in \operatorname{Ty}) \times \operatorname{Tm} \sigma)$ exploiting type inference:
nf' : : UTm -> Maybe (Ty, UTm)
nf' $\mathrm{t}=\mathrm{do}$ sigma <- infer [] t
Just (sigma, nf sigma t)

Correctiness of quote

- Def. (Logical Relations) Define a family of relations $\mathrm{R}^{\sigma} \subseteq \operatorname{Tm} \sigma \times \llbracket \sigma \rrbracket^{\text {Set }}$ by induction on $\sigma \in \mathrm{Ty}$:
- if $t={ }_{\beta \eta}$ True, then $t \mathrm{R}^{B 001}$ true;
- if $t={ }_{\beta \eta}$ False, then $t \mathrm{R}^{\mathrm{Bool}}$ false;
- if for all $u, d, u \mathrm{R}^{\sigma} d$ implies App $t u \mathrm{R}^{\tau} f d$, then $t \mathrm{R}^{\sigma \rightarrow \tau} f$.
- Fund. Thm. of Logical Relations If $\theta \mathrm{R}^{\Gamma} \rho$ and $t \in \operatorname{Tm}_{\Gamma} \sigma$, then $t[\theta] \mathrm{R}^{\sigma} \llbracket t \rrbracket_{\rho}^{\text {Set }}$. In particular, if $t \in \operatorname{Tm} \sigma$, then $\left.t \mathrm{R}^{\sigma} \llbracket t\right]^{\text {Set }}$.
- Main Lemma If $t \mathrm{R}^{\sigma} d$, then $t={ }_{\beta \eta}$ quote $^{\sigma} d$.

Proof: Quite some work.

- Main Thm. If $t \in \operatorname{Tm} \sigma$, then $t={ }_{\beta \eta}$ quote $^{\sigma} \llbracket t \rrbracket \rrbracket^{\text {Set. }}$.

Proof: Immediate from Fund. Thm. and Main Lemma.

What Follows?

- Cor. (Completeness) If $t, t^{\prime} \in \operatorname{Tm} \sigma$, then $\llbracket t \rrbracket^{\text {Set }}=\llbracket t^{\prime} \rrbracket^{\text {Set }}$ implies $t={ }_{\beta \eta} t^{\prime}$.

Proof: Immediate from the Main Thm.
Consequence from this together with soundness: $=_{\beta \eta}$ is decidable.

- Cor. If $t, t^{\prime} \in \operatorname{Tm} \sigma$, then $t={ }_{\beta \eta} t^{\prime}$ iff quote ${ }^{\sigma} \llbracket t \rrbracket^{\text {Set }}=$ quote $^{\sigma} \llbracket t^{\prime} \rrbracket^{\text {Set }}$.

Proof: Immediate from soundness and Main Thm.
Consequence: nf is good as a normalization function ("Church-Rosser").

- Cor. If $t, t^{\prime} \in \operatorname{Tm} \sigma$ and $C t={ }_{\beta \eta} C t^{\prime}$ for any $C: \operatorname{Tm} \sigma \rightarrow \operatorname{Tm}$ Bool, then $t={ }_{\beta \eta} t^{\prime}$.
Or, contrapositively, and more concretely, if $t, t^{\prime} \in \operatorname{Tm}\left(\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{n} \rightarrow \mathrm{Bool}\right)$ and $t \neq \beta \eta t^{\prime}$, then there exist $u_{1} \in \operatorname{Tm} \sigma_{1}, \ldots u_{n} \in \operatorname{Tm} \sigma_{n}$ such that

```
nf }\mp@subsup{}{}{Bool}(\operatorname{App}(\ldots(\operatorname{App}t\mp@subsup{u}{1}{})\ldots)\mp@subsup{u}{n}{})\not=\mp@subsup{\textrm{nf}}{}{\textrm{Bool}}(\operatorname{App}(\ldots(\operatorname{App t}\mp@subsup{t}{}{\prime}\mp@subsup{u}{1}{})\ldots)\mp@subsup{u}{n}{}
```

Proof: Can be read out from the proof of Main Thm.

- Cor. (Maximal Consistency) If $t, t^{\prime} \in \operatorname{Tm} \sigma$ and $t \neq \beta_{\beta \eta} t^{\prime}$, then from the equation $t=t^{\prime}$ as an additional axiom one would derive True $=$ False. Proof: Immediate from the previous corollary.

Proof of Main Lemma

- The proof is by induction on σ. Case Bool is trivial, case $\sigma \rightarrow \tau$ is proved easily from two additional lemmata.
- Cheap Lemma

1. tenum ${ }^{\sigma}$ (Tree R^{σ}) senum ${ }^{\sigma}$.
2. tquestions ${ }^{\sigma}\left[R^{\sigma} \rightarrow R^{B o o l}\right]$ squestions ${ }^{\sigma}$.

- Technical Lemma Define a relation $<\subseteq$ UTm $\times[$ UTm \rightarrow UTm $] \times$ Tree UTm by

$$
t<(q s, t s) \text { iff } t=_{\beta \eta} \text { tfind }[q t \mid q \leftarrow q s] t s
$$

If $t \in \operatorname{Tm} \sigma$, then $t<\left(\right.$ tquestions $^{\sigma}$, tenum $\left.{ }^{\sigma}\right)$, i.e.,

$$
t={ }_{\beta \eta} \text { tfind }\left[q t \mid q \leftarrow \text { tquestions }^{\sigma}\right] \text { tenum }^{\sigma}
$$

Conclusions

- No radically new ideas, but a very nice combination.
- Inversion of evaluation into the simplest semantics-the set-theoretic one-, the program and the proof simple and elegant.
- As an extra one gets completeness of the set-theoretic semantics (a natural semantics) rather than completeness of some artificial semantics only invented to do NBE.

Future work

- Do BDDs instead of decision trees, gives normalization into term graphs (=lambda calculus extended with let, or explicit substitutions).
- Extend from simply typed lambda-calculus with Bool to simply typed lambda-calculus with $0,+, 1, \times$ (intuitionistic prop. logic) or dependently typed lambda-calculus with 0,1 , Bool, Σ and large elim. for Bool.
- Try also to extend the method to allow type variables (non-closed types).

