
'

&

$

%

Normalization by Evaluation for Finitary Typed Lambda

Calculus

Tarmo Uustalu

joint work with Thorsten Altenkirch

Teooriapäevad Pedasel, 3.–5.10.2003

1

'

&

$

%

Think. . .

• . . . of simply typed lambda calculus extended with a boolean type Bool (but

type variables disallowed).

• The equational theory (defining =βη) is not free of suprises: Define

once = λBool→Boolf λBoolx f x and thrice = λBool→Boolf λBoolx f (f (f x)), it

holds that

once =βη thrice

But: try to derive it (not for the fainthearted).

• But semantically, in sets, where Bool is Bool and function types are function

spaces are, this is easy! There are just 4 functions in Bool→ Bool, and for all

of these 4 the equality holds rather obviously.

2

'

&

$

%

So . . .An Idea!

• Could we perhaps conclude =βη from equality in the set-theoretic semantics?

• Yes. . . , if we had completeness.

• My message of today: Yes, we have it!

3

'

&

$

%

How Do We Get Completeness?

• We show that evaluation of typed closed terms into the set-theoretic semantics

is invertible.

• That is: We can define a function quoteσ ∈ JσKSet → Tm σ such that

t =βη quoteσ JtKSet

for any t ∈ Tm σ.

• Consequently, for any t, t′ ∈ Tm σ,

JtKSet = Jt′KSet ⇒ t =βη t′

(completeness): and, as we obviously have soundness as well,

t =βη t′ ⇐⇒ JtKSet = Jt′KSet

• As everything we do is constructive, quote is computable and hence we get an

implementation of normalization nfσ t = quoteσ JtKSet.

4

'

&

$

%

Well, This Is NBE, Isn’t It?

• Inverting evaluation to achieve normalization by evaluation (NBE, aka.

reduction-free normalization) is not new, but:

– we give a construction for a standard semantics rather than a nonstandard

one,

– our construction is much simpler than the usual NBE constructions,

– we give a concrete implementation using Haskell as a poor man’s

metalanguage (actually one would like to use a language with dependent

types).

5

'

&

$

%

Outline

• A recap of the calculus

• Implementation of the calculus

• Implementation of quote

• A demo (Yes! I can do it. . .)

• Correctness of quote and what it gives us

• Conclusions and future work

6

'

&

$

%

A recap of the calculus

• Types:

Ty ::= Bool | Ty→ Ty

• Typed terms:

x : σ ` t : τ
λσx t : σ → τ

t : σ → τ u : σ
t u : τ

true : Bool false : Bool

t : Bool u0 : θ u1 : θ

if t u0 u1 : θ

7

'

&

$

%

• βη-equality:

(λσx t) u =β t[x := u]

λσx t x =η t if x 6∈ FV(t)

if true u0 u1 =β u0

if false u0 u1 =β u1

if t true false =η t

v (if t u0 u1) =η if t (v u0) (v u1)

8

'

&

$

%

Implementing the Calculus: Syntax

• Types Ty ∈ ?, typing contexts Con ∈ ? and untyped terms UTm ∈ ?.

data Ty = Bool | Ty :-> Ty

deriving (Show, Eq)

type Con = [(String, Ty)]

data UTm = Var String

| TTrue | TFalse | If UTm UTm UTm

| Lam Ty String UTm | App UTm UTm

deriving (Show, Eq)

Cannot do typed terms Tm ∈ Con→ Ty→ ? (takes inductive families, not

available in Haskell). But we can do. . .

9

'

&

$

%

Type Inference

• Type inference infer ∈ Con→ UTm→ Maybe Ty (where Maybe X ∼= 1 + X):

infer :: Con -> UTm -> Maybe Ty

infer gamma (Var x) =

do sigma <- lookup x gamma

Just sigma

infer gamma TTrue = Just Bool

infer gamma TFalse = Just Bool

infer gamma (If t u0 u1) =

do Bool <- infer gamma t

sigma0 <- infer gamma u0

sigma1 <- infer gamma u1

if sigma0 == sigma1 then Just sigma0 else Nothing

10

'

&

$

%

infer gamma (Lam sigma x t) =

do tau <- infer ((x, sigma) : gamma) t

Just (sigma :-> tau)

infer gamma (App t u) =

do (sigma :-> tau) <- infer gamma t

sigma’ <- infer gamma u

if sigma == sigma’ then Just tau else Nothing

11

'

&

$

%

Semantics (In General)

• Type evaluation J−K : Ty→ ? in a semantics is also impossible just as Tm.

Workaround: coalesce all JσK into one metalanguage type U of untyped

semantic elements (just as all TmΓ σ appear coalesced in UTm).

class Sem u where

true :: u

false :: u

xif :: u -> u -> u -> u

lam :: Ty -> (u -> u) -> u

app :: u -> u -> u

• Untyped environments UEnvU ∈ ?:

type UEnv u = [(String, u)]

12

'

&

$

%

• (Untyped) term evaluation J−K ∈ UEnvU → UTm→ U :

eval :: Sem u => UEnv u -> UTm -> u

eval rho (Var x) = d

where (Just d) = lookup x rho

eval rho TTrue = true

eval rho TFalse = false

eval rho (If t u0 u1) = xif (eval rho t) (eval rho u0) (eval rho u1)

eval rho (Lam sigma x t) = lam sigma (\ d -> eval ((x, d) : rho) t)

eval rho (App t u) = app (eval rho t) (eval rho u)

13

'

&

$

%

Set-Theoretic Semantics

• Untyped elements SU ∈ ? of the set-theoretic semantics:

data SU = STrue | SFalse | SLam Ty (SU -> SU)

instance Eq SU where

STrue == STrue = True

SFalse == SFalse = True

(SLam sigma f) == (SLam _ f’) =

and [f d == f’ d | d <- flatten (enum sigma)]

_ == _ = False

instance Show SU where

show STrue = "STrue"

show SFalse = "SFalse"

show (SLam sigma f) =

"SLam " ++ (show sigma) ++ " " ++

(show [(d, f d) | d <- flatten (enum sigma)])

14

'

&

$

%

• The set-theoretic semantics is a semantics:

instance Sem SU where

true = STrue

false = SFalse

xif STrue d _ = d

xif SFalse _ d = d

lam = SLam

app (SLam _ f) d = f d

15

'

&

$

%

Another Semantics: Free Semantics

• Typed closed terms up to βη are a semantics too!

instance Sem UTm where

true = TTrue

false = TFalse

xif t TTrue TFalse = t

xif t u0 u1 = if u0 == u1 then u0 else If t u0 u1

lam sigma f = Lam sigma "x" (f (Var "x"))

app = App

Note we do λ by cheating (doing it properly would take fresh name generation).

But we are sure we will only one bound variable at a time, so cheating is fine!

16

'

&

$

%

Implementing quote: Decision Trees

• Decision trees Tree ∈ Ty→ ? with leaves labelled with decisions, but branching

nodes unlabelled (as the trees will be balanced and the questions along each

branch in a tree the same, we prefer to keep these in a list):

data Tree u = Val u | Choice (Tree u) (Tree u) deriving (Show, Eq)

instance Monad Tree where

return = Val

(Val d) >>= h = h d

(Choice l r) >>= h = Choice (l >>= h) (r >>= h)

instance Functor Tree where

fmap h ds = ds >>= return . h

flatten :: Tree u -> [u]

flatten (Val d) = [d]

flatten (Choice l r) = (flatten l) ++ (flatten r)

17

'

&

$

%

enum and questions

• Calculating the decision tree and the questions to identify an element of type:

enum ∈ (σ ∈ Ty)→ Tree JσK and questions ∈ (σ ∈ Ty)→ [JσK→ JBoolK]:

enum :: Sem u => Ty -> Tree u

questions :: Sem u => Ty -> [u -> u]

enum Bool = Choice (Val true) (Val false)

questions Bool = [\ b -> b]

18

'

&

$

%

enum (sigma :-> tau) =

fmap (lam sigma) (mkEnum (questions sigma) (enum tau))

mkEnum :: Sem u => [u -> u] -> Tree u -> Tree (u -> u)

mkEnum [] es = fmap (\ e -> \ d -> e) es

mkEnum (q : qs) es = (mkEnum qs es) >>= \ f1 ->

(mkEnum qs es) >>= \ f2 ->

return (\ d -> xif (q d) (f1 d) (f2 d))

questions (sigma :-> tau) =

[\ f -> q (app f d) | d <- flatten (enum sigma),

q <- questions tau]

19

'

&

$

%

• Example of the tree and the questions for an arrow type: for Bool→ Bool,

these are

Choice

(Choice

(Val (lam Bool (\ d -> xif d true true)))

(Val (lam Bool (\ d -> xif d true false))))

(Choice

(Val (lam Bool (\ d -> xif d false true)))

(Val (lam Bool (\ d -> xif d false false))))

resp.

(\ f -> app f true :

(\ f -> app f false :

[]))

20

'

&

$

%

quote and nf

• Answers and a tree give a decision: findσ ∈ [JBoolK]→ Tree JσK→ JσK:

find :: Sem u => [u] -> Tree u -> u

find [] (Val t) = t

find (a : as) (Choice l r) = xif a (find as l) (find as r)

• Inverted evaluation quoteσ ∈ JσKSet → Tm σ:

quote :: Ty -> SU -> UTm

quote Bool STrue = TTrue

quote Bool SFalse = TFalse

quote (sigma :-> tau) (SLam _ f) =

lam sigma (\ t -> find [q t | q <- questions sigma]

(fmap (quote tau . f) (enum sigma)))

Haskell infers that we mean the enum of the set-theoretic semantics and the

questions and find of the free semantics.

21

'

&

$

%

• Normalization nf ∈ (σ ∈ Ty)→ Tm σ → Tm σ:

nf :: Ty -> UTm -> UTm

nf sigma t = quote sigma (eval [] t)

• A version nf ′ ∈ UTm→ Maybe ((σ ∈ Ty)× Tm σ) exploiting type inference:

nf’ :: UTm -> Maybe (Ty, UTm)

nf’ t = do sigma <- infer [] t

Just (sigma, nf sigma t)

22

'

&

$

%

Correctness of quote

• Def. (Logical Relations) Define a family of relations Rσ ⊆ Tm σ × JσKSet by

induction on σ ∈ Ty:

– if t =βη True, then tRBooltrue;

– if t =βη False, then tRBoolfalse;

– if for all u, d, uRσd implies App t uRτf d, then tRσ→τf .

• Fund. Thm. of Logical Relations If θRΓρ and t ∈ TmΓ σ, then t[θ] RσJtKSet
ρ .

In particular, if t ∈ Tm σ, then tRσJtKSet.

• Main Lemma If tRσd, then t =βη quoteσ d.

Proof: Quite some work.

• Main Thm. If t ∈ Tm σ, then t =βη quoteσ JtKSet.

Proof: Immediate from Fund. Thm. and Main Lemma.

23

'

&

$

%

What Follows?

• Cor. (Completeness) If t, t′ ∈ Tm σ, then JtKSet = Jt′KSet implies t =βη t′.

Proof: Immediate from the Main Thm.

Consequence from this together with soundness: =βη is decidable.

• Cor. If t, t′ ∈ Tm σ, then t =βη t′ iff quoteσ JtKSet = quoteσ Jt′KSet.

Proof: Immediate from soundness and Main Thm.

Consequence: nf is good as a normalization function (“Church-Rosser”).

24

'

&

$

%

• Cor. If t, t′ ∈ Tm σ and C t =βη C t′ for any C : Tm σ → Tm Bool, then

t =βη t′.

Or, contrapositively, and more concretely, if t, t′ ∈ Tm (σ1 → . . .→ σn → Bool)

and t 6=βη t′, then there exist u1 ∈ Tm σ1, . . . un ∈ Tm σn such that

nfBool (App (. . . (App t u1) . . .) un) 6= nfBool (App (. . . (App t′ u1) . . .) un)

Proof: Can be read out from the proof of Main Thm.

• Cor. (Maximal Consistency) If t, t′ ∈ Tm σ and t 6=βη t′, then from the

equation t = t′ as an additional axiom one would derive True = False.

Proof: Immediate from the previous corollary.

25

'

&

$

%

Proof of Main Lemma

• The proof is by induction on σ. Case Bool is trivial, case σ → τ is proved

easily from two additional lemmata.

• Cheap Lemma

1. tenumσ (Tree Rσ) senumσ.

2. tquestionsσ [Rσ → RBool] squestionsσ.

• Technical Lemma Define a relation < ⊆ UTm × [UTm → UTm]× Tree UTm

by

t < (qs, ts) iff t =βη tfind [q t | q ← qs] ts

If t ∈ Tm σ, then t < (tquestionsσ, tenumσ), i.e.,

t =βη tfind [q t | q ← tquestionsσ] tenumσ

26

'

&

$

%

Conclusions

• No radically new ideas, but a very nice combination.

• Inversion of evaluation into the simplest semantics—the set-theoretic one—,

the program and the proof simple and elegant.

• As an extra one gets completeness of the set-theoretic semantics (a natural

semantics) rather than completeness of some artificial semantics only invented

to do NBE.

27

'

&

$

%

Future work

• Do BDDs instead of decision trees, gives normalization into term graphs

(=lambda calculus extended with let, or explicit substitutions).

• Extend from simply typed lambda-calculus with Bool to simply typed

lambda-calculus with 0, +, 1,× (intuitionistic prop. logic) or dependently typed

lambda-calculus with 0, 1, Bool, Σ and large elim. for Bool.

• Try also to extend the method to allow type variables (non-closed types).

28

