
GMRES Method and its Parallel Application
to Navier-Stokes Equations in Stability Assessment

Eero Vainikko

Tartu University Institute of Technology

joint work with:

Konstantin Skaburskas

Tartu University Institute of Technology

Ivan G. Graham, Alastair Spence

University of Bath, United Kingdom

Pedase, Arvutiteaduse teooriapäevad 2003
1

� Krylov subspace methods

� Preconditioning

� GMRES method

� Parallel implementation of GMRES

� Inner-outer GMRES method

� Stability Assessment for discretised PDEs

� Navier-Stokes Flows and DOUG
2

Suppose we are solving a linear system of equations

Ax � b

with large, sparse n � n matrix A.

In Krylov subspace methods, the solution is designed as a linear combination of Krylov

vectors (forming Krylov subspace)

K

�

i

���

v

� � �
v 	 Av 	 A2v 	

 	 Ai �1v

�

where v is some initital guess to the solution. The approximate solution x is chosen

such that it minimises the residual r � Ax
 b. The examples of Krylov methods include

CG, BiCGSTAB, MINRES and others. We are looking here at GMRES methods which

are suitable for solving systems with unsymmetric matrices A.

3

Preconditioning. For better convergence, often some preconditioner M �1 is used,

such that

M

�1 � A �1

but on contrary to A, the inverse of M is easy to compute. Here we are looking at

Domain Decomposition preconditioners which is a natural way to parallelise the prob-

lem solution process. Depending on, weather left of right preconditioning is used, the

underlying Krylov subspace is of the form:

K

�

i

�

leftM

�

v

� � �

v 	 M �1Av 	 � M

�1A

�2v 	

 	 � M

�1A

� i �1v

�

K

�

i

�

rightM

�

v

� � �
v 	 AM

�1v 	 � AM

�1 �2v 	

 	 � AM

�1 � i �1v

�

Algorithm Left-preconditioned PGMRES(m) method:

Choose initial guess x

�

0

�

for j=1,2,...

Solve r from Mr � b
 Ax

�

0

�

v

�

1

� � r ��

r

�

2
s : � � r

�

2 e1
for i=1,2,...,m

Solve w from Mw � Av

�

i

�
for k=1,...,i

hk �i � � w 	 v

�

k

� �

w � w
 hk �iv

�

k

�
end

hi �1 �i � � w

�

2
v

�

i �1 � � w �
hi �1 �i

4

apply J1 	

 	 Ji �1 on

�

h1 �i 	

 	 hi �1 �i

�

construct Ji, acting on ith and

�

i � 1 �

st component
of h: �i, such that

�

i � 1 �

st component of Jih: �i is 0
s : � Jis
if s

�

i � 1 �

is small enough then (UPDATE(x̃ 	 i) and quit)
end

end
!*** In this scheme UPDATE(x̃ 	 i)is:
Compute y as the solution of Hy � s̃, in which
the upper i � i triangular part of H has hi � j
as its elements (in least squares sense if H
is singular),
s̃ represents the first i components of s
x̃ � x

�

0

� � y

�

1

�

v

�

1

� � y

�

2

�

v
�

2
� �

 � y

�

i

�

v

�

i

�

s

�

i �1 � � � b
 Ax̃

�

2
if x̃ is an accurate enough approximation then quit
else x

�

0

� � x̃.

There are 3 key issues concerning an implementation of the given algorithm:

� Minimising the communication cost

� Storage problem – how to choose m but still get fast convergence?

� Preconditioning issues

5

Minimising the communication cost. In the previous algorithm:

Modified Gram-Schmidt:

for k=1,...,i

hk �i � � w 	 v

�

k

� �

w � w
 hk �iv

�

k

�

end

For // implementation – Classical Gram-Scmidt algorithm much better:

h �

1:i

� �i : � � w 	 v

�

1:i

� �
w : � w
 hT�

1:i

� �i
�

v
�

1
�

v
�

2
�

 v

�

i

� �

6

Problem – loss of orthogonality. Therefore, Iterated Classical Gram-Schmidt orthogo-
nalisation algorithm can be used:

h �

1:i

� �i : � 0
for j=1,2 !(3)

h �

1:i

� �i : � h �

1:i

� �i

� � w 	 v

�

1:i

� �

w � w
 h T�

1:i

� �i

�

v

�

1

�

v

�

2

�

 v

�

i

� �

end

Benefits:

* Reduced number of dotproduct operations

* Possibility of using BLAS2 subroutines ([DZ]GEMV())

* In parallel MPI implementation: ALLREDUCE of i values in a single call

In the PGMRES(m) method the preconditioner M �1 was fixed.

Even in the case when the system Mx � y is solved inexactly, with some iterative

procedure, the actual preconditioner varies from iteration to iteration.

FGMRES (Flexible GMRES) method can be used:

The modifications to the PGMRES algorithm can be outlined as follows:

* Instead of using left preconditioning, right preconditioning is used:

AM

�1y � b
x � My

7

* In the algorithm, also the intermediate vectors M �1v are stored as well.

* Use UPDATE(M �1ṽ 	 i) to compute the solution in the end.

What about the idea of preconditioning FGMRES method with some version of PGM-
RES itself?

Most often the inner GMRES method is Left-preconditioned PGMRES, with the precon-
ditioner M �1.

The result is called GMRES* or inner-outer GMRES method.

Benefits of the method:

* Better convergence behaviour than PGMRES(m) method

* On ith iteration, the unused allocated vectors v

�

i �1 �
	 v

�

i �2 �
	

 	 v

�

m

�

of Vouter

�

�

v

�

1

�
	 v

�

2

�
	

 	 v

�

m

� �

can be used to store Vinner.

* Possible variation – in the inner iteration method to orthogonalise also against

�

Vouter

� �

: �1:i
– sometimes giving benefit, (but not always for some unknown reason.)

8

Motivation: Stability Assessment for discretised PDEs

∂w
∂t

� F �

w 	 R � 	 +initial and boundary conditions

Steady state w � w�

R

� 	 R � �

. Stable?

� Solve eigenvalue problem Aw � λw for λ near Imaginary axis

where A � Fx

�

x

�

R

� 	 R �
9

Our particular case: Navier-Stokes Flows

Given a steady solution

�

w 	 q �

, Eigenvalue problem:

ε∆u � w � ∇u � u � ∇w � ∇p � λu
∇ � u � 0 	

+ Homogeneous boundary conditions.
Discretisation with mixed finite elements (e.g. in 2D):

Ax � λMx 	 x � � UT
1 	 UT

2 	 PT �T

A �
�

�

F11 F12 BT
1

F21 F22 BT
2

B1 B2 0

�
� 	 M �

�
�

M 0 0
0 M 0
0 0 0

�
�

e.g. F11U1

�
ε∆u1

� w � ∇u1
� � ∂w1

�

∂x

�

u1 , M U1

� u1.

A is unsymmetric, M is positive semi-definite. n � 105 �

10

Eigenvalue solvers for : Ax � λMx
For shift σ near an eigenvalue λ,

Ax � λMx �� �

A
 σM

� �1Mx � � λ
 σ � �1x

Inverse Iteration, Subspace Iteration:

Solve:

�

A
 σiM

�
yi � Mxi � � �

Normalise: xi �1 � yi ��

yi�

More generally: Arnoldi’s method on
�

A
 σiM

� �1M

In all cases: require solve of form (*).

Singular as σi � spectrum.
11

Large n?

Solve

�

A
 σMi �

yi � Mxi � � �

iteratively or with parallel multifrontal methods.

Our Choice: Iterative methods using Domain Decomposition.

12

Fast Parallel inner solvers:

DOmain Decomposition on Unstructured Grids

DOUG Graham, Haggers, Stals, Vainikko, 1997 - 2003

� solves systems of steady state PDEs

� User-defined discretisation on unstructured grids

� automatic parallelisation and load-balancing

� Portable
13

� 2D and 3D

� 1 and 2-level Additive Schwarz method

� two-level mesh partitioning

� Automatic Domain Decomposition and coarse grid generation

� Adaptive coarse grid refinement

� Elemental form and assembled form input of stiffness matrices

� WWW-interface

Parallel implementation based on:

� Message Passing Interface (MPI) - LAM and MPICH implementations

� UMFPACK2 - current underlying solvers

� METIS - graph partitionining software

� BLAS

Non-blocking communication where at all possible

14

Preconditioned iterative methods: Following operations required:

Vector update: z � x � y

Matrix-vector multiply: y � Ax

Dot products:

�

x 	 y �

Solution of systems: Pz � r for some preconditioner P.

PCG, MINRES, BICGSTAB, Inner-outer PGMRES with right or left preconditioning

15

Navier-Stokes Preconditioner

An ideal preconditioner for A (Elman and Silvester 96)

P �
�

�

F11 F12 BT
1

F21 F22 BT
2

0 0
X
�

� 	
where

X � BF �1BT 	 F �
!

F11 F12
F21 F22

"
	 B � #

B1B2

$

Our strategy:

�
�

F11 0 BT
1

0 F22 BT
2

0 0
X

�
�

�1

16

Choice of X :

a) X

�1
M

� M �1
p

�

ε (Elman & Silvester, 1996)

b) XF

� M �1
p FL �1

p (Kay & Loghin, 1999)

c) X

�1
B

� � BBT � �1� BFBT � �

BBT � �1 (Elman, 1999)

d) X

�1
Π

� ΠFT
11Π

�

BBT � �1, where Π – lin. interpolation operator form pressure to

velocity freedoms.

17

X

�1
Π

� ΠFT
11Π

�

BBT � �1 for

�

Q2P0

�

elements

Action of the whole block preconditioning step

�

u 	 p �T � P �1� w 	 r �T is achieved with

the following algorithm:

(i) Solve

�

BBT �

s � r, (BBT formed with sparse matrix mult.)

(ii) apply p �
ΠT F11Πs,

(iii) apply v � w
 BT p,

(iv) solve Fu � v.

Whole preconditioner combined with X

�1
B

� � BBT � �1� BFBT � �

BBT � �1 (multiplicatively)

for

�

Q2P �1

�

elements
18

The method: 2-level Additive Schwarz method with minimal overlap

Global N � N stiffness matrix

A � F BT

B 0

�

F11 F12 �

B1 �T
F21 F22 �

B2 �T
B1 B2 0

� ∑
e %E

Ae

Set of elements E is partitioned into subsets Ei i � 1 	

 	 Np

For each i the contribution to the global stiffness matrix:

Ai

� ∑
e %Ei

Ae

19

Reordering of the system freedoms.

For each slave i we make a reordering:

==

A x bA x bi i i i i i

1 1 2 3 1 2 32 3
interface
freedoms

internal freedoms

20

Note that:

� further reordering available inside each block

� Ai stored in sparse triple format

integer

double precision

either rowindex or columnindex on interface internal

rowindex
columnindex

value

21

Matrix-vector multiply y � Ax operations. On each slave i:

* Calculate y � Aix on the interfaces

* Start nonblocking sends/receives to/from the corresponding neighbours

* Calculate y � Aix on internal freedoms

* Add on the interfaces after each receive has ended.

22

Partitioning

Using METIS on master

Connected graph, element stiffness matrices as graph nodes; graph edges where two
elements share an edge (2D) or a face (3D)

Subpartitioning on slaves

- to obtain optimal size of subproblems (default 1400 DoF)

For each subpartition j and each diagonal block k define restriction

&

Ak
j:

� &
Ak

j
�

pq
� ∑e %E

�

Akk
e

�

pq 	 for p 	 q � Φk
j� &

Ak
j

�
pq

� 0 otherwise
23

&

Ak
j

� Rk
jA

kk� Rk
j

�T , where Akk � Fkk 	 k � 1 	 2
BBT orMp 	 k � 3

Ak
0 - approx. of Fkk �

k � 1 	 2 �

or BBT �

k � 3 �

on the coarse mesh

RT
0 (� � RHh �T) – linear interpolation from the coarse to the fine mesh

2-level Additive Schwarz preconditioner:

M

�1
ASC

� RT
0

�

Ak
0

� �1R0
� p

∑
i '1

RT
i

&

Ak
i

�1
Ri

1-level Additive Schwarz preconditioner:

M

�1
AS

� p

∑
i '1

RT
i

(

Ai

�1
Ri

24

Implementation of the algorithm

Master-slave setup

master initialisation; coarse grid poblem solves

slaves subdomain solves

Vector updates z � x � y – in parallel implementation no communication needed
25

Dot Products: Produce unique sets of freedoms:

Φ1

� Φ1
Φi

� Φi

) �

Φ1

*

 *

Φi �1

� 	 i � 2 	

 	 Np
	

where Np is the number of slaves.

Dot product operation is given by:

�

x 	 y � � ∑
i

∑
p %Φi

�

xi

�

p

�

yi

�

p

MPI ALLREDUCE with MPI SUM flag.
26

Preconditioner solve

Needed:

z � ∑
i

&

Ak

�1
i x

Parallel implementation:

� +

zi

�
&

Ak
i

�1
xi

� Nearest-neighbour communication like in matrix-vector multiply

27

Coarse mesh implementation

* The coarse mesh covers all of the fine mesh

* No coarse mesh element lies completely outside the fine mesh

* Prolongation and restriction – in matrix representation

* Coarse matrix calculation (computed in parallel)

Ak
0

� R0FkkRT
0

� R0 ∑
e %E

Fkk
e RT

0 	 k � 1 	 2

A3
0

� R0BBT RT
0

28

Automatic coarse grid generation - 2 conflicting aims:

� adequate representation of the PDE

� complexity which does not adversely affect the overall parallel performance of the
algorithm

* Choice of coarse mesh

- The base coarse mesh + Adaptive refinement technique:

2 main parameters:

- max # of fine grid freedoms per coarse cell

- max # coarse nodes
29

Parallel Preconditioner algorithm (in solution with Fkk �

k � 1 	 2 �
or with BBT :)

1. Restriction operation R0xi

2. Start the non-blocking receive for the result from the master

3. Compute the local subdomain solve(s)

4. Send updates on shared entries to the other slaves

5. Wait for the shared entry receives or the result from the master. If the result from the

master has arrived then immidiately prolong it and add the result to the local vector.

30

Typical discretisation grid of the flow past a cylinder.

31

Flow past a cylinder: the grid partitioned into eight subdomains.

32

Flow past a cylinder: an adaptively refined coarse grid.

33

Flow in an expanding pipe: Re � 100

34

Timings and relative speedups for the flow past a cylinder and the expanding pipe

problem.

Flow around a Cylinder Flow in an expanding pipe
Block prec., 52158 DoF Whole prec., 96400 DoF

#Slaves #it. time(s) rel.s/o #it. time(s) rel.s/o
1 1100 1507 - 3200 7237.7 -
2 1000 712.8 2.11 3400 4051.0 1.79
4 1100 379.2 3.97 3400 2291.3 3.16
8 900 193.6 7.78 2800 761.7 9.50
12 1000 174.1 8.66 4411 946.3 7.65
16 1000 175.5 8.59 3600 728.8 9.93
20 900 147.8 10.20 3800 774.5 9.35

35

Parallel Efficiency in solving the eigenvalue problem

Arnoldi (PARPACK), 20 eigenvalues, 27K freedoms

Processors time (s) relative speedup
1 50938 -
2 22673 2.25
4 11763 4.33
8 6573 7.75

36

Hopf bifurcation in flow around a cylinder

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
8.5

9

9.5

10

10.5

11

Re = 22

Re = 25

Re = 22

Re = 25

Hopf Bifurcation in flow around a cylinder, 16K dof

The paths of a few eigenvalues as Re increases, 16K dof.
37

Hopf bifurcation in flow around a cylinder

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5
8.5

9

9.5

10

10.5

11

Re = 22

Re = 25

Re = 22

Re = 25

Hopf Bifurcation in flow around a cylinder, 109K dof

The paths of a few eigenvalues as Re increases, 109K dof.
38

Computing eigenvalues with PARPACK and the combined method of refining rough

PARPACK eigenvalues by the inverse iteration methods

Strategy 1.PARPACK 2.PARPACK combined with inverse iteratio
#DoF Total time PARPACK time Inverse it. time Total time

Flow past a cylinder
33278 2270.6 471.1 53.4 524.5
52158 3732.4 714.9 260.6 975.5
75262 5282.6 114.7 261.0 1375.7

Expanding pipe problem
96400 71952.0 13566.8 2773.6 16340.4

39

Ongoing and future work

* Releasing the new version of DOUG code (DOUG 2)

* Reimplementation in an object oriented environment.
Fortran95.

* Fault tolerance and parallel programming
Problem: MPI standard says – FT is to be taken care by the user
A prototype communication model for DOUG has been implemented – based on LAM
MPI implementation.

* Research in the direction of possibility of using the framework of multiagent systems
for designing parallel adaptive computational environments.

* Adapting the DOUG code to the GRID environment.
40

