A New Private Information Retrieving Protocol With Low Computation Complexity *

Sergey Bezzateev
bsv@aanet.ru
with
Alexandra Afanasyeva and Vladimir Balakirsky

Saint Petersburg State University of Aerospace Instrumentation

Russia

Theory Days at Saka
October 25-27, 2013
Saka, Estonia

- Introduction
- Overview of previous schemes
- New scheme description
- Short numerical example
- Competitive analysis
- Conclusion

Anonymity problems

(1) Who?
(2) Wherefrom?
(0) What?

Absolute anonymity isn't practically achievable, online or offline. ("Ten Immutable Laws Of Security from Microsoft , version 2.0", Law 9)

Anonymity. Possible Solutions

(1) Who? Blind Signature
(2) Wherefrom? Onion Protocol
© What? Private Information Retrieval Protocol

The private information retrieval (PIR) concept was proposed by Chor, Goldreich, Kushilevitz and Sudan in 1995.
Authors first considered the problem of anonymity between data owner and data consumer, from the point of view of the user's security.

Problem: user would like receive some data from database without revealing its interest to database owner.
[B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. In Proc. 36th Annual IEEE Symp.Foundation Comp. Sci., pp. 41-50, 1995.]

Copy whole database, but...
this leads to a large communication cost.

Server holds n-bit string $\boldsymbol{x}=\left(x_{1} x_{2} \ldots x_{i} \ldots x_{n}\right)$,
User wishes to retrieve x_{i} and keeps i private, without asking all n-bits.

Two parts of PIR problem by attacker model considered.

1. Information-theoretic approach.

Attacker has unlimited computation power, and the security of system is based on insufficiency of information received by attacker.
It was proved by Chor, Goldreich, Kushilevitz and Sudan in 1995 that there is no solution of PIR problem in information-theoretic approach with communication less then n bit without replication of database.

Modified problem statement:

- r servers hold replicas of n-bit string $\boldsymbol{x}=\left(x_{1} x_{2} \ldots x_{i} \ldots x_{n}\right)$,
- user wishes to retrieve x_{i} and keep i private, without asking all n-bits.

Servers can't interact, and user can send different requests to different servers.
Solution:

- During pre-processing database of n-bit length increase to N bit.
$\boldsymbol{x}=\left(x_{1} x_{2} \ldots x_{i} \ldots x_{n}\right) \rightarrow\left(y_{1} y_{2} \ldots y_{N}\right)$,
- r copies of pre-processed database is stored on r servers.

User asks result of some function f of $\left(y_{1} y_{2} \ldots y_{N}\right)$ from each server and calculate value x_{i}, that he is interested.
No one server using its own request can receive any information about calculated value x_{i} and its index i.

2.Computational approach

Attacker is restricted to perform only polynomial-time computations and the privacy is based on the fact that requested position i is computationally hidden from attacker.
Under polynomial-time attacker model single-server solutions were proposed. Solution:
User has to construct function which is calculated from all database and to find the value and position interested to the user anyone should to know some secret value, or he has to solve some hard problem. As we assume that attacker is polynomial-time restricted, so he can not solve it.

Complexity of PIR schemes includes two components:
(1) Computation complexity

- Server's computational complexity. Server's costs for calculating answer on the user's query by whole database.
- User's computational complexity. User's cost for calculation bit x_{i} from server's answer.
(2) Communication complexity
- Server's communication complexity. Network overhead from server to user.
- User's communication complexity. Network overhead from user to server.

Overview of previous schemes

Database transformation with monomials.[1]

For any index number $i \in[0, N]$ it is exists unique vector $E(i) \in \mathbb{F}_{2}^{m}$ with Hamming weight w and associated with it monomial $z_{i_{1}} \cdot z_{i_{2}} \cdot \ldots \cdot z_{i_{w}}$ obtained as multiplication of a subset of w elements of the set $Z=\left\{z_{1}, z_{2}, \ldots z_{m}\right\}$ where m and w are the minimal integers such that $\binom{m}{w} \geq N$.
$\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right) \rightarrow F_{X}\left(z_{1}, \ldots, z_{m}\right)=\sum_{i=1}^{N} x_{i} \prod_{E(i)_{l}=1} z_{l}$,
where $E(i)_{l}$ is the l-th coordinate of $E(i)$.
Each point $E(i)$ corresponds to exactly one term $x_{i} \prod_{E(i)_{l}=1} z_{l}$, thus, the PIR problem is reduced to the problem of evaluating:

$$
F_{X}(E(i))=x_{i}, \forall i \in\{1, \ldots, N\} .
$$

[1] A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond. Breaking the barrier for information-theoretic private information retrieval. In Proc. of the 43rd IEEE Symp. on Foundations of Comp.Sc. (FOCS), 2002, pp. 261-270. [2] D.Woodruff and S.Yekhanin. A geometric approach to information-theoretic private information retrieval. SIAM J. Comput., vol. 37, no. 4, 2007, pp. 1046-1056.

Woodruff-Yekhanin's scheme[2]

The main idea is:

- to use derivative $f^{\prime}(\lambda)=\frac{\partial f}{\partial \lambda}=\sum_{i \geq 1} i a_{i} \lambda^{i-1}$ of the polynomial $f(\lambda)=\sum_{i \geq 0} a_{i} \lambda^{i}$ over a finite field and the partial derivatives $\frac{\partial F_{X}}{\partial z_{l}}$ of $F_{X}\left(z_{1}, \ldots, z_{m}\right)$.
- to use a partial derivative of $F_{X}\left(z_{1}, \ldots, z_{m}\right)$ and their values at point $Z^{\prime}=P+\lambda_{h} V, P=E(i), \lambda_{h}$ are distinct and nonzero elements of $\mathbb{F}_{q} \cdot V$ - random vector from \mathbb{F}_{q}^{m}, r is number of servers.

$$
f^{\prime}\left(\lambda_{h}\right)=\left.\sum_{l=1}^{m} \frac{\partial F_{X}}{\partial z_{l}}\right|_{Z=P+\lambda_{h} V} \cdot V_{l} .
$$

User wants to retrieve $F_{X}(P)$.

PIR protocol for Woodruff-Yekhanin's scheme[2]

Number of servers is r.

$$
\begin{aligned}
& \mathcal{U} \\
\mathcal{U} \rightarrow \mathcal{S}_{h} & : P+\lambda_{h} V, h \in[1, r] . \\
\mathcal{S}_{h} \rightarrow \mathcal{U} & : F\left(P+\lambda_{h} V\right) ;\left.\frac{\partial F_{X}}{\partial z_{l}}\right|_{Z=P+\lambda_{h} V}, l \in\{1, \ldots, m\} . \\
& \\
& \\
& : \text { Reconstructs } f(\lambda)=F_{X}(P+\lambda V) \text { from }\left\{f\left(\lambda_{h}\right)\right\} \text { and } \\
& \left\{f^{\prime}\left(\lambda_{h}\right)\right\} .
\end{aligned}
$$

General case for bit retrieving

In general bit retrieving scheme let's suppose that our database $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where $x_{i} \in G F(2)$.
We will use the following mapping for positions of the database:
$i--->u_{i}=\left(u_{i}^{(0)} u_{i}^{(1)} \cdots u_{i}^{(l-1)}\right), u_{i}^{(j)} \in G F(2), w t\left(u_{i}\right)=w,\binom{l}{w} \geq n$.
Where $w+1$ - number of servers from which we can obtain responds.
Each vector u_{i} corresponds to the monomial $m_{i}=z_{i_{1}} z_{i_{2}} \cdots z_{i_{w}}$.
Now we can define the following mapping for our database:
$X--->F\left(z_{0}, z_{1}, \ldots, z_{l-1}\right)=\sum_{i=1}^{n} x_{i} m_{i}=$
$x_{1} z_{0} z_{1} \cdots z_{w-1}+x_{2} z_{0} z_{1} \cdots z_{w-2} z_{w}+x_{n} z_{l-w+1} z_{l-w+2} \cdots z_{l}$.
Now we should chouse field extension m.
This value directly depends from the number of servers w from which we can obtain responds.
$(w+1) m \leq 2^{m}-2$.

New scheme description

Main Idea

For each server S_{i} we will chouse primitive element $\alpha_{i} \in G F\left(2^{m}\right)$ with coset $A_{i}=\left\{\alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{i}^{2^{m-1}}\right\}$ such that for any different servers S_{i} and S_{j}, $A_{i} \cap A_{j}=\emptyset$. For each primitive element α_{i} with coset
$A_{i}=\left\{\alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{i}^{2^{m-1}}\right\}$ let construct a basis \mathcal{B}_{i} consists of m consecutive powers of these element

$$
\mathcal{B}_{i}=\left\{\alpha_{i}, \alpha_{i}^{2}, \ldots, \alpha_{i}^{m}\right\}
$$

Now let recalculate variables $\widehat{z}_{0}, \ldots, \widehat{z}_{l-1}$ that will be sending to server S_{i} as following:

$$
\widehat{z}_{j}=z_{j}+\sum_{k=1}^{m} c_{k j} \alpha_{i}^{k}, \text { where } c_{k j} \in G F(2), j=0, \ldots, l-1
$$

Therefore on sever S_{i} the function $F\left(\widehat{z}_{0}, \widehat{z}_{1}, \ldots, \widehat{z}_{l-1}\right)$ will calculated

$$
\begin{aligned}
& F\left(\widehat{z}_{0}, \widehat{z}_{1}, \ldots, \widehat{z}_{l-1}\right)=\sum_{i=1}^{n} x_{i} m_{i} \\
& =x_{1} \widehat{z}_{0} \widehat{z}_{1} \cdots \widehat{z}_{w-1}+x_{2} \widehat{z}_{0} \widehat{z}_{1} \cdots \widehat{z}_{w-2} \widehat{z}_{w}+\ldots+x_{n} \widehat{z}_{l-w+1} \widehat{z}_{l-w+2} \cdots \widehat{z}_{l} \\
& =x_{1} z_{0} z_{1} \cdots z_{w-1}+x_{2} z_{0} z_{1} \cdots z_{w-2} z_{w}+\ldots+x_{n} z_{l-w+1} z_{l-w+2} \cdots z_{l} \\
& +\sum_{j=1}^{w m-1} b_{j} \alpha_{i}^{j} \prod_{l=1}^{f(1 \leq f<w)} z_{j_{l}}+b_{w m} \alpha_{i}^{w m}
\end{aligned}
$$

where $b_{j} \in G F(2)$.

Therefore on each server we obtain function F as a function of z_{0}, \ldots, z_{l-1} and α_{i}. By the veritable α_{i} this function can be rewritten as

$$
\begin{aligned}
F\left(\alpha_{i}, z_{0}, \ldots, z_{l-1}\right) & =f_{m w} \alpha_{i}^{m w}+f_{m w-1} \alpha_{i}^{m w-1}+\ldots+f_{1} \alpha_{i}+x_{1} z_{0} z_{1} \cdots z_{w-1} \\
& +x_{2} z_{0} z_{1} \cdots z_{w-2} z_{w}+\ldots+x_{n} z_{l-w+1} z_{l-w+2} \cdots z_{l}
\end{aligned}
$$

Thus we obtain polynomial F of degree of α_{i} not greater than $m w$ with the same coefficients for any primitive elements α_{i}. It is means that request will be same for all servers and can be represented as a summa of polynomial from some variable y and monomials $m_{i}=z_{i_{1}} z_{i_{2}} \cdots z_{i_{w}}$:

$$
\begin{aligned}
F\left(y, z_{0}, \ldots, z_{l-1}\right) & =f_{m w} y^{m w}+f_{m w-1} y^{m w-1}+\ldots+f_{1} y+x_{1} z_{0} z_{1} \cdots z_{w-1} \\
& +x_{2} z_{0} z_{1} \cdots z_{w-2} z_{w}+\ldots+x_{n} z_{l-w+1} z_{l-w+2} \cdots z_{l}
\end{aligned}
$$

By Lagrange interpolation procedure it is possible to calculate the value of $x_{1} z_{0} z_{1} \cdots z_{w-1}+x_{2} z_{0} z_{1} \cdots z_{w-2} z_{w}+\ldots+x_{n} z_{l-w+1} z_{l-w+2} \cdots z_{l}$ when we have at least $m w+1$ values of this function in $w m+1$ different points.

- By using w different primitive elements α_{i} we obtain w values of function F.
- And by using $m-1$ powers for each element α_{i} i.e. $\left\{\alpha_{i}^{2}, \ldots, \alpha_{i}^{2^{m-1}}\right\}$ we obtain $m-1$ additional values
$F\left(\alpha_{i}^{2^{j}}, z_{0}, \ldots, z_{l-1}\right)=F\left(\alpha_{i}, z_{0}, \ldots, z_{l-1}\right)^{2^{j}}, j=1, \ldots, m-1$ for each primitive element.

Requests generation for j-th bit retrieving.

In our protocol we use the scrambling matrix C as a binary random matrix of size $[m \times l]$ of elements $c_{k j}$.
Matrix B_{i} of size $[m \times m$] consists of the elements of basis :

$$
B_{i}=\left(\alpha_{i} \alpha_{i}^{2} \ldots \alpha_{i}^{m}\right)
$$

Now if we want to obtain j - th bit x_{j} we should send to server S_{i} the following request:

$$
R_{i}=U_{j}+B_{i} C
$$

where $U_{j}=\left(z_{0} \alpha^{0} z_{1} \alpha^{0} \ldots z_{l-1} \alpha^{0}\right)$ and $\left(z_{0} z_{1} \ldots z_{l-1}\right)=u_{j}$. Now we can rewrite R_{i} as:

$$
R_{i}=\left(\begin{array}{llll}
z_{0} \alpha^{0}+\sum_{k=1}^{m} c_{k 1} \alpha_{i}^{k} & z_{1} \alpha^{0}+\sum_{k=1}^{m} c_{k 2} \alpha_{i}^{k} & \ldots & z_{l-1} \alpha^{0}+\sum_{k=1}^{m} c_{k l} \alpha_{i}^{k}
\end{array}\right)
$$

where $c_{k j}$ is the element of k-th row and j-th column in matrix C.

Each server calculate $F\left(R_{i}\right)$ over the field $G F\left(2^{m}\right)$:

$$
F\left(R_{i}\right)=F\left(\alpha_{i}\right)=f_{m w} \alpha_{i}^{m w}+f_{m w-1} \alpha_{i}^{m w-1}+\ldots+f_{1} \alpha_{i}+x_{j}
$$

Therefore we obtain from $w+1$ servers $w+1$ values $F\left(\alpha_{i}\right), i=1, \ldots, w+1$ of the function $F(y)$, deg $F(y) \leq m w$. By using properties of cosets $A_{i}, i=1, \ldots w$ in the field $G F\left(2^{m}\right)$ we obtain the $m(w+1)$ values of this function in $m(w+1)$ different points.

j-th bit retrieving procedure.

By using Lagrange interpolation procedure for $m(w+1)$ values of the function $F(y))$ in $m(w+1)$ different points we can find coefficient x_{j}.

For illustration of our new solution let's consider toy example.
Database is $X=\left\{x_{1}, x_{2}, \ldots, x_{6}\right\}=\{1,0,1,1,0,0\}$ is stored on $w+1=3$ servers.
Mapping of bit position is $i->u_{i}$

i	u_{i}	monomial $\left(m_{i}\right)$
1	1100	$z_{0} z_{1}$
2	1010	$z_{0} z_{2}$
3	0110	$z_{1} z_{2}$
4	1001	$z_{0} z_{3}$
5	0101	$z_{1} z_{3}$
6	0011	$z_{2} z_{3}$

$X->F\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=\sum_{i=1}^{6} x_{i} \cdot m_{i}=z_{0} z_{1}+z_{1} z_{2}+z_{0} z_{3}$.

In current example $G F\left(2^{4}\right)$ will be used with primitive polynomial $g(x)=x^{4}+x+1$.

i	α^{i}
0	0001
1	0010
2	0100
3	1000
4	0011
5	0110
6	1100
7	1011
8	0101
9	1010
10	0111
11	1110
12	1111
13	1101
14	1001

Table: Table of elements $G F\left(2^{4}\right)$

To retrieve the second bit we should use $z_{0}=1, z_{1}=0, z_{2}=1, z_{3}=0$ and therefore request vector is $u_{2}=\left(z_{0} z_{1} z_{2} z_{3}\right)=(1010)$.
In our new approach we will use the elements from the field $G F\left(2^{m}\right)$.
Therefore our request vector u_{2} becomes the matrix U_{2} of the size $[4 \times 4]$:

$$
U_{2}=\left(z_{0} \alpha^{0} z_{1} \alpha^{0} z_{2} \alpha^{0} z_{3} \alpha^{0}\right)=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We use anywhere here the interpretation of the field element α^{j} as a binary matrix-column with number of the rows equal to the field extension. For each server S_{i} we will calculate the "salted" request:

$$
R_{i}=U_{2}+B_{i} C
$$

Scrambling random matrix $C=\left[\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$

For server S_{1} request $R_{1}=U_{2}+B_{1} C=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]+B_{1} C$
Where $B_{1}=\left\{\alpha \alpha^{2} \alpha^{3} \alpha^{4}\right\}=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$.
Therefore $R_{1}=\left[\begin{array}{cccc}1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]=\left\{\alpha^{7} \alpha^{12} \alpha^{8} \alpha^{5}\right\}$
Similarly for servers S_{2} and S_{3} we get $B_{2}=\left\{\alpha^{3} \alpha^{6} \alpha^{9} \alpha^{12}\right\}$ and $B_{3}=\left\{\alpha^{7} \alpha^{14} \alpha^{6} \alpha^{13}\right\}$.
And therefore we obtain

$$
R_{2}=\left\{\alpha^{4} \alpha^{14} \alpha^{13} \alpha^{2}\right\}
$$

and

$$
R_{3}=\left\{\alpha^{5} \alpha^{3} \alpha^{3} \alpha\right\}
$$

Each generated request is sent to appropriate server.

Each server calculates $F\left(R_{i}\right)$ over the field $G F\left(2^{4}\right)$. $F\left(R_{1}\right)=F\left(\alpha^{7} \alpha^{12} \alpha^{8} \alpha^{5}\right)=\alpha^{7} \alpha^{12}+\alpha^{12} \alpha^{8}+\alpha^{7} \alpha^{5}=\alpha^{9}$. S_{2} calculates $F\left(R_{2}\right)=F\left(\alpha^{4} \alpha^{14} \alpha^{13} \alpha^{2}\right)=\alpha^{4} \alpha^{14}+\alpha^{14} \alpha^{13}+\alpha^{4} \alpha^{2}=\alpha^{7}$. S_{3} calculates $F\left(R_{3}\right)=F\left(\alpha^{5} \alpha^{3} \alpha^{3} \alpha\right)=\alpha^{5} \alpha^{3}+\alpha^{3} \alpha^{3}+\alpha^{5} \alpha=\alpha^{8}$. Each server S_{i} sends its reply to the user.

User has precomputed Lagrange coefficients:
$\left\{\lambda_{0,1}, \lambda_{0,2}, \lambda_{0,3}, \lambda_{0,4}, \lambda_{0,6}, \lambda_{0,7}, \lambda_{0,8}, \lambda_{0,9}, \lambda_{0,12}\right\}=$ $\left\{\alpha, \alpha^{11}, \alpha^{12}, \alpha^{6}, \alpha^{0}, \alpha^{4}, \alpha^{0}, \alpha^{4}, \alpha^{11}\right\}$
He calculates additional points for polynomial interpolation:
From S_{1} one point is received $F(\alpha)=\alpha^{9}$, then

$$
(F(\alpha))^{2}=F\left(\alpha^{2}\right)=\alpha^{3},(F(\alpha))^{4}=F\left(\alpha^{4}\right)=\alpha^{6},(F(\alpha))^{8}=F\left(\alpha^{8}\right)=\alpha^{12}
$$

From S_{2} one point is received $F\left(\alpha^{3}\right)=\alpha^{7}$, then $\left(F\left(\alpha^{3}\right)\right)^{2}=F\left(\alpha^{6}\right)=$ $\alpha^{14},\left(F\left(\alpha^{3}\right)\right)^{4}=F\left(\alpha^{12}\right)=\alpha^{13},\left(F\left(\alpha^{3}\right)\right)^{8}=F\left(\alpha^{9}\right)=\alpha^{11}$.
From S_{3} one point is received $F\left(\alpha^{7}\right)=\alpha^{8}$.
There are 9 points of the polynomial $F(x)$ and it is enough to interpolate $F(0)=x_{2}$ using Lagrange coefficients.

$$
x_{2}=F(0)=\prod \lambda_{0, i} \cdot F\left(\alpha^{i}\right)=0
$$

For competitive comparison of proposed scheme with existing solution all significant parameters are presented in the following table.

Parameters	Woodruff-Yekhanin Scheme	Our solution
Communication complexity	$O\left(r^{2} \log _{2} r N^{1 /(2 r-1)}\right)$	$O\left(N^{\frac{1}{r}}\right)$
Storage complexity	N	N
Computation complexity: - server side	$O\left(r^{2} N^{2 r /(2 r-1)}\right)$	$O(r N)$
- client side	$O\left(r^{2} N^{1 /(2 r-1)}\right)$	$O\left(r^{2}\right)$

Table: Comparison
where r is number of servers and N is database size.

Questions and answers

THANK YOU FOR YOUR ATTENTION!

