
Selected surprises in 
subgraph counting

Petteri Kaski

Helsinki Institute for Information Technology HIIT &
Department of Information and Computer Science

Aalto University,  Helsinki

24th Estonian Theory Days
Saka Mõis

26 October 2013



Combinatorics

• Existence

• Is there a solution ?

• Enumeration

• How many distinct solutions are there ?



Algorithms / Complexity

• What resources are sufficient / necessary to ...

• ... decide whether a solution exists

• ... enumerate the solutions

• Resources (worst-case asymptotic)

• running time 

• space usage



Subgraph problems

• Input:

• Host graph H

• Task (existence):

• Is there a subgraph of H with property P ?

• Task (enumeration):

• How many subgraphs of H have property P ?



Graph inputs
• Resource usage is measured as a function of

the host graph

• number of vertices (=n)

• number of edges (=m)

• a problem-specific parameter (=k)

n = 6
m = 10



Existence:       Triangle?
Enumeration:  #Triangles



Classical dichotomy
• Tractable problem

~ polynomial resources suffice

• Intractable problem
~ super-polynomial resources necessary
   (conjectured necessary)

P
NP

NP-
complete

co-NP

co-NP-
complete

Existence
(Cook, Levin)



Classical dichotomy
• Tractable problem

~ polynomial resources suffice

• Intractable problem
~ super-polynomial resources necessary
   (conjectured necessary)

P

#P

#P-
complete

Enumeration
(Valiant)



Example:
#Spanning Trees

• Input:   A graph H

• Enumerate:  the spanning trees in H

P

#P

#P-
complete

polynomial-time solvable (Kirchoff)



Example:
#Perfect Matchings

• Input:   A graph H

• Enumerate:  the perfect matchings in H

P

#P

#P-
complete

#P-complete (Valiant)



Coping with intractability

• Super-polynomial resources (conjectured) necessary

~ all right,
   but what is the best we can do ?

~ super-polynomial (≈ exponential) is 
   a lot of resources, so surely we can do better 
   than brute-force ?

~ what is it that makes the problem hard ?

→Exact exponential algorithms 

→Parameterized algorithms



(F
om

in
 &

 K
ra

ts
ch

 2
01

0)



(F
om

in
 &

 K
., 

C
A

C
M

, M
ar

ch
 2

01
3)



Motivation for this talk

• “Most” subgraph counting problems are hard

• #P-complete when unparameterized 

• #W[1]-hard when parameterized with 
the “natural” parameter k

• Yet, there exist “positive surprises” in the 
form of algorithms that are substantially 
more efficient than brute force ...

• ... we review selected examples



Outline

• Selected techniques in subgraph counting

• Inclusion–exclusion & linear equations

• Split-and-list & fast matrix multiplication

• Zeta and Möbius transforms

• Applications (“selected surprises”):

• #Perfect Matchings

• Deletion–contraction & Tutte polynomial

• #k-Matchings



Example:
#Perfect Matchings

O
∗( )

O
∗(2n)

O
∗(n!)

Time Space

O
∗(1)

O
∗(2n)

O
∗(1)

O
∗(2n)

O
∗(1.415n)

O
∗(1)

O
∗(1.619n) O

∗(1.619n)
O

∗(1.942n)

O
∗(1.733n) O

∗(1.733n)

O
∗(1)

n = number of vertices
suppresses a factor polynomial in n

(Brute force)
(Dynamic programming)
Björklund & Husfeldt 2008

Koivisto 2009
Nederlof 2010
Björklund 2012
Cygan & Pilipczuk 2013



Example:
#k-Matchings

• k-matching 
= matching that touches k vertices

• A perfect matching has k = n

• What happens if we keep 
k fixed and let n → ∞?

• Complexity:
#W[1]-complete (Curticapean 2013)

k = 4



Example:
#k-Matchings

Time
(Brute force)nk+O(1)

nωk/3+O(1)

2 ≤ ω < 2.3727

nk/2+O(1)

n0.4547k+O(1)

Nešetřil & Poljak 1985
Vassilevska & Williams 2009
Koutis & Williams 2009
Björklund, Husfeldt, K. & Koivisto 2009
Björklund, K. & Kowalik 2014

(Vassilevska Williams 2012)



The good, the bad, 
and the universe

B

G

U

• Good objects G ⊆ U

• Bad objects B = U \ G

• All objects (the universe U)

• |G| = |U| – |B|

• |U| and |B| are easy to count?

• ... if so, then |G| is easy too!



Two ways to be bad?

B1

B2

|G| = |U |− |B1|− |B2|+ |B1 ∩B2|

G

U

Easy to compute?

... then so is |G|



Three ways to be bad?

U

G

B1 B2

B3

|G| = |U |
− |B1|− |B2|− |B3|
+ |B1 ∩B2|+ |B1 ∩B3|+ |B2 ∩B3|
− |B1 ∩B2 ∩B3|

Easy to compute?

... then so is |G|



The principle of 
inclusion and exclusion
• Let      be a finite universe

• Let                                be bad properties

• An            is good if it has no bad property

• Let              be the set of all good objects

• Then, 

U

B1, B2, . . . , Bn ⊆ U

x ∈ U

G ⊆ U

|G| =
�

I⊆{1,2,...,n}

(−1)|I|
����
�

j∈I

Bj

���� .

Easy to compute?Sum with 2ⁿ terms



Surprise 1:
#Perfect Matchings



Warmup:
#Perfect Matchings

in O*(2ⁿ) time 
and O*(1) space

• #P-complete (Valiant 1979)

• O*(2ⁿ) time and O*(1) space
(Björklund & Husfeldt 2008)



The bad, the good, ...

• Input:   Graph H with vertex set {1, 2, ..., n}

• Object = Ordered n/2-tuple of edges of H

• U = all objects

• B  = objects that do not touch vertex j = 1, 2, ..., n

• G = objects that touch every vertex j = 1, 2, ..., n

• #Perfect Matchings in H  =  |G| / (n/2)!

j



Algorithm
#Perfect Matchings in H =

Number of edges in the
subgraph of H with
vertices in I deleted

=
1

(n/2)!

�

I⊆{1,2,...,n}

(−1)|I|
����
�

j∈I

Bj

����

=
1

(n/2)!

�

I⊆{1,2,...,n}

(−1)|I|m(H[{1, 2, . . . , n} \ I])n/2

Time O*(2ⁿ), space O*(1)
to evaluate the sum



Current best:
#Perfect Matchings

in O*(2   ) time
and O*(1) space

(Björklund 2012)
(Cygan & Pilipczuk 2013)

n/2



Key trick

H
(input, n vertices)

Insert n/2 fixed 
“virtual edges” 

that form
a perfect matching



Key observation
Now take any 

perfect matching 
in H

We get a
set of alternating symmetric 
closed walks that traverses 

every virtual edge



The bad, the good, ...

• Input:   Graph H with vertex set {1, 2, ..., n}

• Object = Multiset of alternating symmetric* 
              closed walks with n edges        

• B  = objects that do not traverse virtual edge e

• G = objects that traverse every virtual edge
       (= perfect matchings)

• #Perfect Matchings in H  =  |G|

• Time O*(2   ), space O*(1)

e

n/2 1) undirected/unoriented &
2) no individualized 
    start/end vertex

*



Surprise 2:
Deletion–contraction



Deletion and contraction

delete e contract e

e

H

H\e H/e



Deletion–contraction tree

H

(delete loops, 
 contract cut-edges)



Deletion–contraction 
recurrences

• Many basic graph invariants f(H) admit a 
recurrence that expresses f(H) in terms of 
f(H\e) and f(H/e), with three cases:

• e is a loop

• e is a cut-edge

• e is neither of the above



Example 1:
#Spanning Trees

• Let H be connected and let τ(H) be the number 
of spanning trees in H

• Then,

• τ(H) = 1                          if H has no edges

• τ(H) = τ(H\e)                  if e is a loop

• τ(H) = τ(H/e)                  if e is a cut-edge

• τ(H) = τ(H\e) + τ(H/e)    otherwise



#Spanning Trees

H

111

111
2

111

111

11
2

1 1

1

1

1

1

1

11

3

2

4

4

8



Example 2:
#Graph Coloring

• Let           be the number of proper colorings of 
the vertices of H with t colors

• Then,

PH(t) =






t
n if H has no edges,

0 if e has a loop,

(t− 1)PH/e(t) if e is a cut-edge,

PH\e(t)− PH/e(t) otherwise

PH(t)



#Graph Coloring

H

0

t(t− 1)2

t(t− 1)(t− 2)

t(t− 1)3

t(t− 1)(t2 − 3t+ 3)

t(t− 1)(t− 2)2

t(t− 1)2

0

0

t

t

t

t

t(t− 1)2
t(t− 1)

t(t− 1)t(t− 1)2

t(t− 1)
t(t− 1)

t(t− 1)t(t− 1)2



The Tutte polynomial

Every undirected multigraph H has an 
associated polynomial in two indeterminates x, y

TH(x, y) =






1 if H has no edges,

yTH\e(x, y) if e has a loop,

xTH/e(x, y) if e is a cut-edge,

TH\e(x, y)− TH/e(x, y) otherwise



The Tutte polynomial is 
a universal invariant

• “Recipe Theorem” (Oxley & Welsh 1979)

Every constant-coefficient deletion-
contraction recurrence is (*) an evaluation of 
the Tutte polynomial at a specific point (x,y)

• (*) up to an “easily computable”
     multiplicative constant



A
n 

at
la

s 
of

 t
he

 T
ut

te
 p

la
ne





Computing T (x,y) ?

• Problem:
Given H as input, compute T  (x,y)

• The problem is #P-hard

• Solvable by deletion–contraction 
in time exp(O(n log n))

• But can we go faster ?

H

H

~ spanning trees in H



Tutte polynomial
(equivalent formulation)

TH(x, y) =
�

F⊆E

(x− 1)c(F )−c(E)(y − 1)c(F )+|F |−|V |

=
n�

d=1

m�

k=0

sd,k(x− 1)d−c(y − 1)d+k−n

= #Spanning subgraphs of H
   with exactly d connected components
   and exactly k edges



The good, the bad, ...

• Universe = all spanning subgraphs

• Bad = disconnected spanning subgraphs

• Good = connected spanning subgraphs

• Bad objects partition into strictly smaller 
good objects (=connected components)

• |Good| = |Universe| – |Bad|

The Tutte polynomial in O*(2ⁿ) time
(Björklund, K., Koivisto, Husfeldt 2008)



fζ

f

ζ
μ0

0

0

1 1

1

0

3

2

1 1

2

Fast Möbius inversion 
with applications

Petteri Kaski

Helsinki Institute for Information Technology HIIT &
Department of Information and Computer Science

Aalto University,  Helsinki

Joint Estonian–Latvian
Theory Days at Medzābaki, Lidaste

30 September 2012



A more detailed introduction/invitation
(Husfeldt 2011)
arXiv:1105.2942



Surprise 3:
#k-Matchings



#Triangles in O(n  ) time
(Itai & Rodeh 1978)

• Input:  Loopless undirected multigraph H

• Let A(x,y) be the number of edges that join x and y

• The number of triangles through x,y,z is
A(x,y)A(y,z)A(z,x)

ω

x

y

z



#Triangles in O(n  ) time
(Itai & Rodeh 1978)

• The total number of triangles in H is

N =
1

3!

�

x,y,z

A(x, y)A(y, z)A(z, x)

=
1

3!

�

x,y

A(x, y)
�

z

A(y, z)A(z, x)

Matrix product A (y,x)2

ω

2 ≤ ω < 2.3727 (Vassilevska Williams 2012)



“Split-and-list”

• Split the problem (= either the instance 
or the solution) into two or more parts

• List (or count) the solutions of each part

• Join solutions of the parts in all possible 
ways to solutions of the original problem



#k-Matchings 
by splitting to three parts

• Suppose (for simplicity) that 3 divides k

• Construct a graph H’ where 
each vertex is a k/3 -subset S of vertices of H

• The weight of vertex S is #Perfect Matchings 
in the induced subgraph H[S]

• Join vertices S,T by an edge iff S and T are disjoint

• #Weighted Triangles in H’ = f(k) * #k-Matchings in H

(Nešetřil & Poljak 1985 -- for #k-Clique)

Time

nωk/3+O(1)

≥ 2k/3



#k-Matchings
by splitting to two parts

• Vassilevska & Williams 2009

• Koutis & Williams 2009

• Björklund, Husfeldt, K. & Koivisto 2009

Time

nk/2+O(1)



#k-Matchings
by splitting to two parts

(Björklund, Husfeldt, K. & Koivisto 2009)

f :

�
V

k/2

�
→ R ,    f(A) = #(k/2)-Matchings in H[A]

=

�
k/2

k/4

�−1 �

A,B∈( V
k/2)

A∩B=∅

f(A)f(B)#k-Matchings in H

Resource bottleneck



Weighted disjoint pairs
(Björklund, Husfeldt, K. & Koivisto 2009)

f :

�
V

k/2

�
→ R g :

�
V

k/2

�
→ R

Input:

|V| = n

Task:  Evaluate

Time

nk/2+O(1)

∆(f, g) =
�

A,B∈( V
k/2)

A∩B=∅

f(A)g(B)



#k-Matchings
by splitting to three parts

(Björklund, K. & Kowalik 2014)

,    f(A) = #(k/3)-Matchings in H[A]

#k-Matchings in H

Resource bottleneck

=

�
k/2

k/6, k/6, k/6

�−1 �

A,B,C∈( V
k/3)

A∩B=∅
A∩C=∅
B∩C=∅

f(A)f(B)f(C)

f :

�
V

k/3

�
→ R



Weighted disjoint triples

Input:

Task:  Evaluate

Time

(Björklund, K. & Kowalik 2014)

n0.4547k+O(1)

∆(f, g, h) =
�

A,B,C∈( V
k/3)

A∩B=∅
A∩C=∅
B∩C=∅

f(A)g(B)h(C)

f :

�
V

k/3

�
→ R g :

�
V

k/3

�
→ R h :

�
V

k/3

�
→ R



Proof/algorithm idea:
“Method of linear equations”
• We want to compute a quantity

• Let                          be an indeterminate

• Set up “related indeterminates”

• Set up a system of linear equations

• Solve for       “indirectly” via “easier” equations 
and/or indeterminates in the system

xk = ∆(f, g, h)

x0, x1, . . . , xk

A�x = �b

xk

∆(f, g, h)



Thank you!
• Selected techniques in subgraph counting

• Inclusion–exclusion & linear equations
(“the good, the bad, and the universe”)

• Split-and-list & fast matrix multiplication

• Zeta and Möbius transforms

• Applications (“selected surprises”):

• #Perfect Matchings

• Deletion–contraction & Tutte polynomial

• #k-Matchings


