Selected surprises in subgraph counting

Petteri Kaski

Helsinki Institute for Information Technology HIIT \& Department of Information and Computer Science Aalto University, Helsinki

24th Estonian Theory Days Saka Mõis 26 October 2013

Combinatorics

- Existence
- Is there a solution ?
- Enumeration
- How many distinct solutions are there ?

Algorithms / Complexity

- What resources are sufficient / necessary to ...
- ... decide whether a solution exists
- ... enumerate the solutions
- Resources (worst-case asymptotic)
- running time
- space usage

Subgraph problems

- Input:
- Host graph H
- Task (existence):

- Is there a subgraph of H with property P ?
- Task (enumeration):
- How many subgraphs of H have property P ?

Graph inputs

- Resource usage is measured as a function of the host graph
- number of vertices (=n)
- number of edges (=m)
- a problem-specific parameter (=k)

$$
\begin{aligned}
& n=6 \\
& m=10
\end{aligned}
$$

Existence:
 Triangle? Enumeration: \#Triangles

Classical dichotomy

- Tractable problem
~ polynomial resources suffice
- Intractable problem
~ super-polynomial resources necessary
(conjectured necessary)

Existence

(Cook, Levin)

Classical dichotomy

- Tractable problem
~ polynomial resources suffice
- Intractable problem
~ super-polynomial resources necessary
(conjectured necessary)

Enumeration (Valiant)

- Input: A graph H
- Enumerate: the spanning trees in H
polynomial-time solvable (Kirchoff)

Example:

\#Perfect Matchings

- Input: A graph H
- Enumerate: the perfect matchings in H \#P-complete (Valiant)

Coping with intractability

- Super-polynomial resources (conjectured) necessary
~ all right, but what is the best we can do ?
\sim super-polynomial (\approx exponential) is a lot of resources, so surely we can do better than brute-force ?
\rightarrow Exact exponential algorithms
\sim what is it that makes the problem hard ?
\rightarrow Parameterized algorithms

Exact Exponential Algorithms

Springer

review articles

Discovering surprises in

 the face of Intractability.BY FEDOR V. FOMIN AND PETTERI KASKI

Exact Exponential Algorithms

many computational problems have been shown to be intractable, either in the strong sense that no algorithm exists at all-the canonical example being the undecidability of the Halting Problem-or that no efficient algorithm exists. From a theoretical perspective perhaps the most intriguing case occurs with the family of $N P$-complete problems, for which it is not known whether the problems are intractable. That is, despite extensive research, neither is an efficient algorithm known, nor has the existence of one been rigorously ruled out. ${ }^{16}$

To cope with intractability, advanced techniques such as parameterized algorithms ${ }^{10,13,31}$ (that isolate the exponential complexity to a specific structural parameter of a problem instance) and approximation algorithms ${ }^{34}$ (that produce a solution whose value is guaranteed to be within a known factor of the value of an optimum solution) have been developed. But what can we say about finding exact solutions

Motivation for this talk

- "Most" subgraph counting problems are hard
- \#P-complete when unparameterized
- \#W[I]-hard when parameterized with the "natural" parameter k
- Yet, there exist "positive surprises" in the form of algorithms that are substantially more efficient than brute force ...
- ... we review selected examples

Outline

- Selected techniques in subgraph counting
- Inclusion-exclusion \& linear equations
- Split-and-list \& fast matrix multiplication
- Zeta and Möbius transforms
- Applications ("selected surprises"):
- \#Perfect Matchings
- Deletion-contraction \& Tutte polynomial
- \#k-Matchings

Example:

\#Perfect Matchings

Time
$\mathcal{O}^{*}\left(1.619^{n}\right)$
$O^{*}\left(1.942^{n}\right)$
$O^{*}(1)$
$\mathcal{O}^{*}\left(1.415^{n}\right)$
$O^{*}(1)$
$O^{*}\left(1.733^{n}\right)$
(Brute force)
(Dynamic programming)
Björklund \& Husfeldt 2008

Koivisto 2009
Nederlof 2010
Björklund 2012
Cygan \& Pilipczuk 2013
$n=$ number of vertices
$\mathcal{O}^{*}()$ suppresses a factor polynomial in n

Example: \#k-Matchings

- k-matching
$=$ matching that touches k vertices
- A perfect matching has $\mathrm{k}=\mathrm{n}$
- What happens if we keep
k fixed and let $\mathrm{n} \rightarrow \infty$?
- Complexity:
\#W[I]-complete (Curticapean 2013)

$$
k=4
$$

Example: \#k-Matchings

Time
$n^{k+O(1)}$
$n^{\omega k / 3+O(1)}$
$n^{k / 2+O(1)}$
(Brute force)
Nešetřil \& Poljak 1985
Vassilevska \& Williams 2009
Koutis \& Williams 2009
Björklund, Husfeldt, K. \& Koivisto 2009
$n^{0.4547 k+O(1)} \quad$ Björklund, K. \& Kowalik 2014

$$
2 \leq \omega<2.3727 \text { (Vassilevska Williams 20I2) }
$$

The good, the bad, and the universe

- Good objects $G \subseteq U$
- Bad objects $\mathrm{B}=\mathrm{U} \backslash \mathrm{G}$
- All objects (the universe U)
- $|\mathrm{G}|=|\mathrm{U}|-|\mathrm{B}|$
- $|\mathrm{U}|$ and $|\mathrm{B}|$ are easy to count?
... if so, then $|\mathrm{G}|$ is easy too!

Two ways to be bad?

$$
|G|=|U|-\left|B_{1}\right|-\left|B_{2}\right|+\left|B_{1} \cap B_{2}\right|
$$

Easy to compute?
... then so is |G|

Three ways to be bad?

$|G|=|U|$

$$
-\left|B_{1}\right|-\left|B_{2}\right|-\left|B_{3}\right|
$$

$$
+\left|B_{1} \cap B_{2}\right|+\left|B_{1} \cap B_{3}\right|+\left|B_{2} \cap B_{3}\right|
$$

$$
-\left|B_{1} \cap B_{2} \cap B_{3}\right|
$$

Easy to compute?
... then so is |G|

The principle of inclusion and exclusion

- Let U be a finite universe
- Let $B_{1}, B_{2}, \ldots, B_{n} \subseteq U$ be bad properties
- An $x \in U$ is good if it has no bad property
- Let $G \subseteq U$ be the set of all good objects
- Then,

$$
|G|=\sum_{I \subseteq\{1,2, \ldots, n\}}(-1)^{|I|}\left|\bigcap_{j \in I} B_{j}\right|
$$

Easy to compute?

Surprise I: \#Perfect Matchings

Warmup: \#Perfect Matchings in $\mathrm{O}^{*}\left(2^{\mathrm{n}}\right)$ time and $\mathrm{O}^{*}(\mathrm{I})$ space

- \#P-complete (Valiant I979)
- $\mathrm{O}^{*}\left(2^{\mathrm{n}}\right)$ time and $\mathrm{O}^{*}(1)$ space (Björklund \& Husfeldt 2008)

The bad, the good, ...

- Input: Graph H with vertex set $\{1,2, \ldots, n\}$
- Object $=$ Ordered n/2-tuple of edges of H
- $\mathrm{U}=$ all objects
- $B_{j}=$ objects that do not touch vertex $j=I, 2, \ldots, n$
- $G=$ objects that touch every vertex $j=I, 2, \ldots, n$
- \#Perfect Matchings in H = |G| / $\mathrm{n} / 2$)!

Algorithm

\#Perfect Matchings in H =

$$
\begin{aligned}
& \left.=\frac{1}{(n / 2)!} \sum_{I \subseteq\{1,2, \ldots, n\}}(-1)^{|I|} \bigcap_{j \in I} B_{j} \right\rvert\, \\
& =\frac{1}{(n / 2)!} \sum_{I \subseteq\{1,2, \ldots, n\}}(-1)^{|I|} m(H[\{1,2, \ldots, n\} \backslash I])^{n / 2}
\end{aligned}
$$

Number of edges in the subgraph of H with vertices in I deleted

Time $O^{*}\left(2^{n}\right)$, space $O^{*}(I)$
to evaluate the sum

Current best:

 \#Perfect Matchings in $O^{*}\left(2^{n / 2}\right)$ time and $\mathrm{O}^{*}(\mathrm{I})$ space (Björklund 2012)(Cygan \& Pilipczuk 2013)

Key trick

Insert $\mathrm{n} / 2$ fixed
"virtual edges"
that form
a perfect matching

(input, n vertices)

Key observation

Now take any
perfect matching in H

We get a set of alternating symmetric closed walks that traverses every virtual edge

The bad, the good, ...

- Input: Graph H with vertex set $\{1,2, \ldots, n\}$
- Object = Multiset of alternating symmetric* closed walks with n edges
- $B_{e}=$ objects that do not traverse virtual edge e
- $G=$ objects that traverse every virtual edge (= perfect matchings)
- \#Perfect Matchings in $H=|G|$
- Time $O^{*}\left(2^{\mathrm{n} / 2}\right)$, space $\mathrm{O}^{*}(\mathrm{I})$

Surprise 2: Deletion-contraction

Deletion and contraction

delete e

e

Hle
contract e

H/e

Deletion-contraction tree

Deletion-contraction recurrences

- Many basic graph invariants $f(H)$ admit a recurrence that expresses $f(H)$ in terms of $f(H / e)$ and $f(H / e)$, with three cases:
- e is a loop
- e is a cut-edge
- e is neither of the above

Example I: \#Spanning Trees

- Let H be connected and let $\mathrm{T}(\mathrm{H})$ be the number of spanning trees in H
- Then,
- $T(H)=1$
- $\mathrm{T}(\mathrm{H})=\mathrm{T}(\mathrm{Hle})$
- $T(H)=T(H / e)$
- $T(H)=T($ Hle $)+T(H / e)$ otherwise

\#Spanning Trees

Example 2: \#Graph Coloring

- Let $P_{H}(t)$ be the number of proper colorings of the vertices of H with t colors
- Then,

$$
P_{H}(t)= \begin{cases}t^{n} & \text { if } H \text { has no edges, } \\ 0 & \text { if } e \text { has a loop, } \\ (t-1) P_{H / e}(t) & \text { if } e \text { is a cut-edge, } \\ P_{H \backslash e}(t)-P_{H / e}(t) & \text { otherwise }\end{cases}
$$

\#Graph Coloring

The Tutte polynomial

Every undirected multigraph H has an associated polynomial in two indeterminates x, y

$$
T_{H}(x, y)= \begin{cases}1 & \text { if } H \text { has no edges, } \\ y T_{H \backslash e}(x, y) & \text { if } e \text { has a loop } \\ x T_{H / e}(x, y) & \text { if } e \text { is a cut-edge, } \\ T_{H \backslash e}(x, y)+T_{H / e}(x, y) & \text { otherwise }\end{cases}
$$

The Tutte polynomial is a universal invariant

- "Recipe Theorem" (Oxley \& Welsh I979)

Every constant-coefficient deletioncontraction recurrence is (*) an evaluation of the Tutte polynomial at a specific point (x, y)

- (*) up to an "easily computable" multiplicative constant

Computing $T_{H}(x, y)$?

- Problem:

Given H as input, compute $\mathrm{T}_{\mathrm{H}}(\mathrm{x}, \mathrm{y})$

- The problem is \#P-hard
- Solvable by deletion-contraction in time $\exp (\mathrm{O}(\mathrm{n} \log \mathrm{n})) \quad \sim$ spanning trees in H
- But can we go faster ?

Tutte polynomial

 (equivalent formulation)$$
\begin{aligned}
T_{H}(x, y) & =\sum_{F \subseteq E}(x-1)^{c(F)-c(E)}(y-1)^{c(F)+|F|-|V|} \\
& =\sum_{d=1}^{n} \sum_{k=0}^{m} s_{d, k}(x-1)^{d-c}(y-1)^{d+k-n}
\end{aligned}
$$

$$
\text { = \#Spanning subgraphs of } \mathrm{H}
$$ with exactly d connected components and exactly k edges

The good, the bad, ...

The Tutte polynomial in $O^{*}\left(2^{n}\right)$ time (Björklund, K., Koivisto, Husfeldt 2008)

- Universe = all spanning subgraphs
- Bad = disconnected spanning subgraphs
- Good = connected spanning subgraphs
- Bad objects partition into strictly smaller good objects (=connected components)
- |Good| = |Universe| - |Bad|

Fast Möbius inversion with applications

Petteri Kaski

Helsinki Institute for Information Technology HIIT \& Department of Information and Computer Science Aalto University, Helsinki

Joint Estonian-Latvian Theory Days at Medzābaki, Lidaste 30 September 2012

A more detailed introduction/invitation (Husfeldt 20II) arXiv:I I 05.2942

Invitation to Algorithmic Uses of Inclusion-Exclusion

Thore Husfeldt

IT University of Copenhagen, Denmark
Lund University, Sweden

Abstract

I give an introduction to algorithmic uses of the principle of inclusion-exclusion. The presentation is intended to be be concrete and accessible, at the expense of generality and comprehensiveness.

1 The principle of inclusion-exclusion. There are as many odd-sized as even-sized subsets sandwiched between two different sets: For $R \subseteq T$,

$$
\begin{equation*}
\sum_{R \subseteq S \subseteq T}(-1)^{|T \backslash S|}=[R=T] . \tag{1}
\end{equation*}
$$

We use Iverson notation $[P]$ for proposition P, meaning $[P]=1$ if P and $[P]=0$ otherwise.

Proof of (1). If $R=T$ then there is exactly one sandwiched set, namely $S=T$.
Otherwise we set up a bijection between the odd- and even-sized subsets as

Surprise 3: \#k-Matchings

\#Triangles in $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ time (Itai \& Rodeh 1978)

- Input: Loopless undirected multigraph H
- Let $A(x, y)$ be the number of edges that join x and y
- The number of triangles through x, y, z is $A(x, y) A(y, z) A(z, x)$

\#Triangles in $\mathrm{O}\left(\mathrm{n}^{\omega}\right)$ time (Itai \& Rodeh 1978)

- The total number of triangles in H is

$$
\begin{aligned}
N & =\frac{1}{3!} \sum_{x, y, z} A(x, y) A(y, z) A(z, x) \\
& =\frac{1}{3!} \sum_{x, y} A(x, y) \sum_{z}^{\sum_{z}} A(y, z) A(z, x) \\
& \begin{array}{|c}
\text { Matrix product } \mathrm{A}^{2} \\
\mathrm{y}, \mathrm{x})
\end{array}
\end{aligned}
$$

$2 \leq \omega<2.3727$ (Vassilevska Williams 20I2)

"Split-and-list"

- Split the problem (= either the instance or the solution) into two or more parts
- List (or count) the solutions of each part
- Join solutions of the parts in all possible ways to solutions of the original problem

\#k-Matchings
 by splitting to three parts

(Nešetřil \& Poljak I985 -- for \#k-Clique)

- Suppose (for simplicity) that 3 divides k
- Construct a graph H' where each vertex is a $\mathrm{k} / 3$-subset S of vertices of H
- The weight of vertex S is \#Perfect Matchings in the induced subgraph H[S]

Time

$$
n^{\omega k / 3+O(1)}
$$

- Join vertices S,T by an edge eff S and T are disjoint
- \#Weighted Triangles in $\mathrm{H}^{\prime}=\mathrm{f}(\mathrm{k}) *$ \#k-Matchings in H

\#k-Matchings by splitting to two parts

- Vassilevska \& Williams 2009
- Koutis \& Williams 2009
- Björklund, Husfeldt, K. \& Koivisto 2009

Time
$n^{k / 2+O(1)}$

\#k-Matchings by splitting to two parts

 (Björklund, Husfeldt, K. \& Koivisto 2009)$f:\binom{V}{k / 2} \rightarrow R, \quad \mathrm{f}(\mathrm{A})=\#(\mathrm{k} / 2)-$ Matchings in $\mathrm{H}[\mathrm{A}]$
\#k-Matchings in $\mathrm{H}=\binom{k / 2}{k / 4}^{-1} \sum_{\substack{A, B \in\left(\begin{array}{c}V \\ k / 2 \\ A \cap B=\emptyset \\ A\end{array}\right.}} f(A) f(B)$
Resource bottleneck

Weighted disjoint pairs

(Björklund, Husfeldt, K. \& Koivisto 2009)

Input:

$$
f:\binom{V}{k / 2} \rightarrow R \quad g:\binom{V}{k / 2} \rightarrow R
$$

$$
|V|=n
$$

Task: Evaluate

$$
\Delta(f, g)=\sum_{\substack{A, B \in\left(\begin{array}{c}
V \\
k / 2 \\
A \cap B=\emptyset \\
\hline
\end{array}\right.}} f(A) g(B)
$$

Time
$n^{k / 2+O(1)}$

\#k-Matchings

by splitting to three parts
(Björklund, K. \& Kowalik 2014)
$f:\binom{V}{k / 3} \rightarrow R, \quad \mathrm{f}(\mathrm{A})=\#(\mathrm{k} / 3)$-Matchings in $\mathrm{H}[\mathrm{A}]$
\#k-Matchings in $\mathbf{H}=\binom{k / 2}{k / 6, k / 6, k / 6}^{-1} \sum_{\substack{A, B, C \in(k / 3) \\ A \cap B=0 \\ A \cap C=0 \\ B \cap C=0}} f(A) f(B) f(C)$
Resource bottleneck

Weighted disjoint triples

(Björklund, K. \& Kowalik 2014)

Input:

$$
f:\binom{V}{k / 3} \rightarrow R \quad g:\binom{V}{k / 3} \rightarrow R \quad h:\binom{V}{k / 3} \rightarrow R
$$

Task: Evaluate

$$
\Delta(f, g, h)=\sum_{\substack{A, B, C \in\left(\begin{array}{c}
V \\
k / 3
\end{array}\right) \\
A \cap B=\emptyset \\
A \cap C=\emptyset \\
B \cap C=\emptyset}} f(A) g(B) h(C)
$$

Time
$n^{0.4547 k+O(1)}$

Proof/algorithm idea:

 "Method of linear equations"- We want to compute a quantity $\Delta(f, g, h)$
- Let $x_{k}=\Delta(f, g, h)$ be an indeterminate
- Set up "related indeterminates" $x_{0}, x_{1}, \ldots, x_{k}$
- Set up a system of linear equations

$$
A \vec{x}=\vec{b}
$$

- Solve for x_{k} "indirectly" via "easier" equations and/or indeterminates in the system

Thank you!

- Selected techniques in subgraph counting
- Inclusion-exclusion \& linear equations ("the good, the bad, and the universe")
- Split-and-list \& fast matrix multiplication
- Zeta and Möbius transforms
- Applications ("selected surprises"):
- \#Perfect Matchings
- Deletion-contraction \& Tutte polynomial
- \#k-Matchings

