
Security Proofs for Hash Tree
Time-Stamping using Hash Functions with
Small Output Size

Ahto Buldas 1 2 Risto Laanoja1 2

Guardtime AS, Tammsaare tee 60, 11316 Tallinn, Estonia.

Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.

October 26, 2013 — Theory Days at Saka

Motivation

We have an application (a linking-based time-stamping system) that is built on
cryptographic hash functions.

There is also a security proof: if H is 2n/2-collision resistant (it has n output bits), then
our application is 2s-secure. Proof is asymptotically optimally tight at our case.

What to do if practical hash functions with e.g. 160, 256 bit output do not provide
reasonable security? Let’s consider other abstractions:

Random Oracle H is a random function.

Pseudorandom Oracle H is built from an ideal primitive P and is indifferentiable from
a random oracle.

Preimage Awareness if an adversary A commits y and later comes up with x, such
that y = H(x), then it is safe to say that A knew x before
committing y.

Previous Results

It was proven by Buldas, Niitsoo in 2010 that they have provided asyptotically
optimally tight proof based on CR assumption. So when we take configuration of an
existing implementation we get following necessary hash function output length:

Proof Output Size n = n(C, s) n(264, 80)

Asiacrypt 2004 n = 2 log2 C + 4s+ 2 448
ACISP 2010 n = log2 C + 3s+ 8 312

where C is the potential size of the hash tree, which must be bounded.

Hash Tree

• Hash tree (Merkle tree): authenticated dictionary data structure
• Fixing the top does not allow any modifications
• Leaves: hashes of input documents
• Signature token: sufficient data to re-compute the top starting from a particular

document, i.e. membership proof. Size logC when C is capacity.

y

xtop = h(x12|x34)

x12 = h(x1|x2) x34 = h(x3|x4)

x1 x2 x3 x4

y3 = h(y2|x34)

y2 = h(x1|y)

x34

x1

Hash-Tree Based Time-Stamping and its Security

During every time unit t the time-stamping server:

• receives a list Xt = (x1, . . . , xm) of n-bit requests from clients,
• finds the root hash r(t) = T(x1, . . . , xm) of a hash tree T and
• publishes r(t) in a public repository R = (r(1), r(2), . . . , r(t)).

Each request xi is then provided with a hash chain ci (the time stamp token for xi)
that proves the participance of xi in the computation of the root hash r(t).

Security: A malicious server is unable to add new (fresh, with high min-entropy)
requests to already published hash trees.

Formalizing the Security Notion

We have two-stage unpredictable adversary A = (A1, A2) potentially colluding with
the server.

• At stage A1 the server operates normally, creating commitments R

• Then A2 presents an unpredictable x and a hash chain c so that x c
 r for an

r ∈ R.

A time-stamping scheme is S-secure against back-dating if for every t-time strongly
unpredictable A:

Pr
[
(R, a)←A1, (x, c)←A2(R, a) : x

c
 R, `(c) ∈ S

]
≤ t

S
(1)

Proof on RO Assumption

• Showing probability of finding x = x1‖x2 so that A1 ‘haven”t seen’ x1 or x2, but
‘have seen’ h(x) during time t.

• t
δ
≥ 2

n−1
2 .

• Do not care if hash tree is bounded or not!
• Idealized construction, indicating what could be achieved on stronger

assumptions

Assumption Output Size n = n(C, s) n(264, 80)

CR n = log2 C + 3s+ 8 312
RO n = 2s+ 1 161

Proof on Preimage Awareness Assumption

• PrA was introduced by Dodis, Ristenpart et al at Eurocrypt 2009.
• Concept similar to plaintext awareness.
• Formal model using extractor and some wrapper oracles, so that all h-calls are

recorded in advice string a.
• RO >> PrA >> CR
• Preserved by Merkle-Damgård construct

Proof outline: We run experiment where let the extractor loose on R, then try to hit any
extracted hash value with x. The attacker’s time-success ratio is t

δ
≥ S

2C
.

Assumption Output Size n = n(C, s) n(264, 80)

CR n = log2 C + 3s+ 8 312
PrA n = 2(log2 C + s+ 1) 290
RO n = 2s+ 1 161

Stong Preimage Awareness

• The result on PrA assumption is not impressive, we got linear dependence on C.
Intuitively log2 C relation should be possible.

• Let’s find reasonable strenghtenings of the PrA definition. Extracting full hash
tree is not necessary, we should restrict it to hash chain.

• We chose to limit the amount of information available in advice string a, using the
“oldest possible” version of a.

Strong PrA: If an adversary A:

• commits y and y′, and later
• outputs x and x′ such that y = H(x) and y′ = H(x′), and
• y′ can be extracted (parsed) from x in an obvious way,

then we may assume that A knew x′ before y was committed.

Example: In time-stamping application this parser de-concatenates a pair of hashes.

Proof on SPrA assumption

The formal experiment setup is even uglier than standard PrA, thus not displayed
here. Sketch of proof: We are able to change the order of things:

1. Simulate: (R, a)← A1

2. Call Ext(r) for every r ∈ R ; thanks to modifications it ‘fixes’ a

3. Simulate A2

4. use the Ext-oracle to extract the hash values along c (less than 2 log2 C)

Time-success ratio is here t
δ
≥ S

4 log2 C
.

Assumption Output Size n = n(C, s) n(264, 80)

CR n = log2 N + 3s+ 8 344
PrA n = 2(log2 C + s+ 1) 290

SPrA n = 2(log2 log2 C + s+ 2) 176
RO n = 2s+ 1 161

Other results

• Show that SPrA implies PrA, thus RO >> SPrA >> PrA >> CR.
• Necessity of C:

– Construct a PrA hash function that is insecure for unbounded time-stamping schemes,
– ... same for SPrA.

Next Steps

Honestly, SPrA is not exactly elegant construction.

Bounded Preimage Awareness: number of inputs y where extractor outputs
something is bounded by number of P -calls (size of a).

• Tight proof, almost RO
• Security loss does not depend on capacity,
• Found a stronger property which is:

– preserved by Merkle Damgård construct,
– provided by tested compression functions: Davis-Meyer, etc.

Proof in standard model almost as strong as RO!

Thank You!

