The Application of Grammar
Inference to Software
Language Engineering

M. Mernik'2, D. Hrn¢ic¢l,
B. Bryant?, A. Sprague?, Q. Liu2
L. First3, V. Mahni¢3

1University of Maribor, Slovenia
2The University of Alabama at Birmingham, USA
3University of Ljubljana, Slovenia

!E::f .
Fite

& =

it
m MTHE UNIVERSITY OF B Univerza v Liubljani

ALABAMA AT BIRMINGHAM

i ¥ o

Theory Days at Saka, Estonia, October 26, 2013 1 / 54

Outline of the Presentation

e Motivation

e Background

o Context-free grammar inference
e Metamodel inference

e Graph grammar inference

e Semantic inference

e Conclusion

Theory Days at Saka, Estonia, October 26, 2013 2 / 54

-)

[N
What is a Try out our newly
grammar of developed grammar
this inference algorithm!
language?

Theory Days at Saka, Estonia, October 26, 2013 3 / 54

e Some years ago interesting questions were
posted on the Usenet group comp.compilers:

“I am looking for an algorithm that will
generate context-free grammar from given
set of strings. For example, given a set
L = {aaabbbbb, aab} one of the grammar is
G- AB,A-3aA|3a B - b|DbB"

Theory Days at Saka, Estonia, October 26, 2013 ' 4 / 54

“I'm working on a project for which I need
information about some reverse engineering
method that would help me extract the
grammar from a set of programs (written in
any language). A sufficient grammar will be
the one which is able to parse all the
programs ..."

Theory Days at Saka, Estonia, October 26, 2013 ' 5 / 54

e Those questions triggered some interesting
responses:

“Unfortunately, there are infinitely many
context-free grammars for any given set of
strings (Consider for example adding A - C,
C-0D,..Y>Z Z - Atothe above
grammar. You can obviously add as many
pointless rules as you want this way, and the
string set doesn't change) ..."

Theory Days at Saka, Estonia, October 26, 2013 ' 6 / 54

“Within machine learning there is a subfield
called Grammatical Inference. They have
demonstrated a few practical successes
mostly at the level of recognizing regular
languages or subsets thereof ...”

Theory Days at Saka, Estonia, October 26, 2013 ' 7 / 54

“There are formal theories that address this.
However, their results are far from
encouraging. The essential problem is that
given a finite set of programs, there is a
trivial regular expression which recognizes
exactly those set of programs and no others

”n

Theory Days at Saka, Estonia, October 26, 2013 ' 8 / 54

“There is a way to deal with this issue. Let us assume
for the moment that the program is compiled by a
compiler. Then the grammar knowledge that you
need resides in that compiler. What you do is write
a parser that parses the part of the compiler
containing the grammar knowledge. If you are
lucky this is easy and you recover the BNF in a
snippet. If ... and it is not possible to obtain the
source code of the grammar there is another
option. You can extract the grammar from the
manual.”

Theory Days at Saka, Estonia, October 26, 2013 o / 54

Background

o Grammatical inference is a process of
learning the grammar from positive (and
negative) language samples.

o Grammatical inference attracts researchers
from different fields such as pattern
recognition, computational linguistic,
natural language acquisition, software
engineering, ...

Theory Days at Saka, Estonia, October 26, 2013 ' 10 / 54

Background

o Context-Free Grammar G=<N, T, P, S>
e L(G)={w |S=*w,wOT*}
e Given a sentence ps and CFG G we can tell

whether ps belongs to L(G) (ps O L(G)). Such
sentence is called positive sample.

o A set of positive samples is denoted with S*. In
similar manner we can defined set of negative
samples S-. Those samples do not belong to
L(G) and can no be derived from starting
symbol S.

Theory Days at Saka, Estonia, October 26, 2013 11 /54

Background

e Given a set St and S, which might be also
empty, the task of context-free grammar
inference is to find at least one context-free
grammar G such that S*OL(G) and SOL (G).

e A set of positive samples St of a L(G) is
structurally complete if each grammar
production is used in the generation of at
least one sentence in St.

Theory Days at Saka, Estonia, October 26, 2013 ' 12 / 54

Background

e Gold Theorem (1967) - it is impossible to
identify any of the four classes of languages
in the Chomsky hierarchy in the limit using
only positive samples. Using both negative
and positive samples, the Chomsky hierarchy
languages can be identified in the limit.

Theory Days at Saka, Estonia, October 26, 2013 ' 13 / 54

Background

e Intuitively, Gold's theorem can be explained
by recognizing the fact that the final
generalization of positive samples would be
an automation that accept all strings.

e Singular use of positive samples results in an
uncertainty as to when the generalization
steps should be stopped. This implies the
need for some restrictions or background
knowledge on the generalization process.

Theory Days at Saka, Estonia, October 26, 2013 14 /54

Background

e A lot of research has been done on
extraction of context-free grammars, but
the problem is still not solved sufficiently
mainly due to immense search space.

Theory Days at Saka, Estonia, October 26, 2013 ' 15 / 54

Background

n Number of full binary
trees (Catalan numbers)

@ @ &) (B! 1
rj)‘_/u /(‘(‘ \ O C ol k:/’ b /(@ .
@ \ I"-. f;' uf\\ I". ’f\ i }_\’ \\ e \‘\ K odl N\ 2
AN A AN S A 2 AN A A A A ;
. Y Y Y v Y ") = | / ey -
3 S R L o - o N Il o s o =] é: \5_ A z ! i g__\- .
:f D000 000 \;. 6 dodbd ddodbd dddbd ,5 C_) 3o ddbdb 14

42
3
429

1430
4862

et
= O 000 =] O U0 = OB =

N . . |
(v o T /AN //e\ oD / m [16796
SHdbd Sbddh ddbbd dddbd ddbdh dddbb dddSh 58786
12 208012

Fig. 3. All full binary trees for [=5 (n = 4) 742000

o, o
s LD

2674440

Theory Days at Saka, Estonia, October 26, 2013 16 /54

O
&
=
O
-
o)

=
O
©

+1]

\
KBE

]
!
i/

(

>
(),
(©)

i
L
I
25
)
-

.-’f
(]
_,

oy

| _m]

rETenEs

Z
. i 8
oY =l

NS -

g R A

- |

e

\-II?

P

- L=)

e

z —
N ®

o 1

=i s

e - Y

[E

\Z/

o

\\ﬁm./..

-y z

Fae

r B R .
..-:.nu \\/- n\\..J._. _.U_./_ —
4 .4./_\. _ = | S
(E] NES —

W e S -

~)

W

o

_..\u_nud ,./.__

7 MJﬂ._...\._../fm.__
SEA S
xww44nu_A\\ B LB) H.U;
| W e
N e e

~3
[£)
L

i’

17/54

Fig. 4. All possible labeling’s of nonterminals for [= 3(n = 2)

Theory Days at Saka, Estonia, October 26, 2013

Background

n. Number of full binary Labeling of nonterminals Search space
trees (Catalan numbers) i
1 1 1 1
2 2 4 8
3 5 27 135
4 14 256 3584
5 42 3125 131250
6 132 46656 6158592
7 429 823543 3.53299947 ES8
8 1430 1.6777216 E7 2.399141888 E10
9 4862 3.87420489 E8 1.883638417518 E12
10 16796 1.0 E10 1.6796 E14
11 Hh8T786 2.85311670611 E11 1.6772331868538246 E16
12 208012 8.916100448256 E12 1.85465588644262707 E18
13 742900 3.02875106592253 E14 2.2500591668738474 E20
14 2674440 1.1112006825558016 E16 2.9718395534545382 K22

Theory Days at Saka, Estonia, October 26, 2013 18 / 54

Background

N
| NT4 |
}_ =D

e
NTS

(NT5) \
?{’ﬁ 5&
-

I\T1j

INI-'II I\"""II
N x

AT N2
(2)

Theory Days at Saka, Estonia, October 26, 2013

19/54

Background

Number of full binary
trees (Catalan numbers) nonterminals (Bell numbers)

Distinct labelling of

Search space

Search space before

000 =T O U = LD =

Lo b = O

|

2

5!

14

42

132
429
1430
4862
16796
H8786
208012
742900
2674440

1
2
5

1

b O

J
203
877
4140
21147
115975
678570
4213597
27644437

Theory Days at Saka, Estonia, October 26, 2013

1

4

25

210

2184

26796

376233
5920200
1.02816714 E8
1.9479161 E9

1

8

135

358/

131250

6158592

3.53299947 ES
2.399141888 E10
1.883638417518 E12
1.6796 E14

3.989041602 E10 1.6772331868538246 E16
8.76478739164 E11 1.85/65588644262707 E18
2.05370522473 E13 2.2500591668738,74 E20
190899322 5.1054878272968 E14 2.9718395534545382 E22

20/54

Background

e Memetic algorithms are evolutionary
algorithms with local search operator

— use of evolutionary concepts (population,
evolutionary operators)

— improves the search for solutions with local
search.

Theory Days at Saka, Estonia, October 26, 2013 ' 21 / 54

Context-free grammar inference

e Memetic Algorithm for Grammatical Inference

MAGIc
example n
example T selection
initiali- local evolutionary generali- found
zation search cycle zation grammars
simple -
- SleqFL)litur aitt parse positive
regular examples
definitions mutation
evaluate
(LISA
parser)

Theory Days at Saka, Estonia, October 26, 2013 22 / 54

Context-free grammar inference

e Sequitur: http://sequitur.info/
e abcabdabcabd

011

1 -2c2d

2 - ab

e piwi=n,i=n // printid where id=n, id=n
0 -plw?2?2

1 - i

2—>1=n

Theory Days at Saka, Estonia, October 26, 2013 23 / 54

Context-free grammar inference

a N
2 N |
print a where c=2
print id where id=num print 5+b where b = 10

print num+id where id=num

< %

4

Theory Days at Saka, Estonia, October 26, 2013 24 / 54

Context-free grammar inference

a N
Apply diff command!
Kprint id where id=num N 1apzp§
print num+id where id=num T
> +
But where to change the v

Q;rammar? \E//

Theory Days at Saka, Estonia, October 26, 2013 25 / 54

Context-free grammar inference

~

Qonfigurations returned from the
LR(1) parser:
NX — a; e a,
Ny — B e

~

Use information from
LR(1) parsing on 2nd
sample.

- Nz — ey

Theory Days at Saka, Estonia, October 26, 2013

\

26/54

Context-free grammar inference

e Input samples:
S{,S,,...,S, (true positive)
S1,S5,-4,SKx@1,-.,8m,Ska1,---Spy (false negative)
— difference: a,,...,a,

Theory Days at Saka, Estonia, October 26, 2013 27 / 54

Context-free grammar inference

e NX - q,*aq,
—if s, OFIRST(a,)
Nx ::=a; N1 a,
N1 :=a,, ...a,

N1 ::=¢€

— if s.,, OFIRST(a,) Cs,,, JFOLLOW(NX)
Nx ::=a; N1
N1:=aq,

N1 :=a,,...a,

—if s, 0OFIRST(a,)LCs,,, FOLLOW(NX)
change in this configuration can’t be made

Theory Days at Saka, Estonia, October 26, 2013

28/54

Context-free grammar inference

Gint a where c=2 \

print 5+b where b = 10
/ 0 N1 — print ¢ N2 where id = num
N1 ::= print N3 N2 where id = num
N2 ::=id := print N2 where id = num
N3 ::= num + = id
N3 ::=¢ /

< \/T//

Theory Days at Saka, Estonia, October 26, 2013 29 / 54

Context-free grammar inference

Production: Nx ::= al Ny a2
4 \
Option
But, how mutation is m: = :1 Nz a2
done? = y
< NJ
30/54

Theory Days at Saka, Estonia, October 26, 2013

Context-free grammar inference

~

What about
generalization step?

< w/

Theory Days at Saka, Estonia, October 26, 2013 31 / 54

Context-free grammar inference

e 12 input samples of DESK language on which the

algorithm was tested:
1. print a
2. print 3
3.printb+ 14
4. printa+b+c
5. printawhereb =14
6. print 10 whered = 15
7.print 9+ bwhereb =16
8. print 1+ 2whereid=1
9. printawhereb=5,c=4
10. print 21 wherea=6,b =5
11. print5+ 6 wherea=3,c=14
12. printa+ b +cwherea=4,b=3,c=2

Theory Days at Saka, Estonia, October 26, 2013 32 / 54

Context-free grammar inference

Original grammar: Inferred grammar:

1. DESK ::= print E C 1: NT1 -> print NT3 NT5
2.E::=E+F 2: NT2 -> + NT3
3.E::=F 3: NT2-> ¢

4. F ::=id 4: NT3 -> num NT2

5. F::= num 5: NT3 ->id NT2

6. C ::= where Ds 6: NT4 -> , id = num NT4
/.C..=¢€ 7: NT4 -> ¢

8.Ds::i=D 8: NT5 -> where id = num NT4
9.Ds::=Ds, D 9: NT5 -> ¢

10. D ::=id = num

Theory Days at Saka, Estonia, October 26, 2013

33/54

Context-free grammar inference

RESOLUTION 300 400 300

ITERATIONS 3000000 = =
POTNTINIT 0 0 DSL for hypertree description
TREEDEPTH &

BRANCHDEPTH 1

HYPERVOLUME -0.6 0.6 -1 0.6 -0.6 0.6

DEPTHCOLOR 0-1 0.7+/-0.0 0.7+/-0.0 0.5+/-0.0

DEPTHCOLOR 2-5 0.25+/-0.25 0.75+/-0.25
0.254+/-0.25

TRANSFORM 1 0

TRANSLATE (0,0,0) (1,1,1) (0,0,0)

SHEAR (0,0,0) (0.5,0.5,0.5) (2,2,2) SHEAR X%

SCALE (0.3,0.3,0.3) (0.4,0.4,0.4) (0.3,0.3,0.3)

ROTATE (-80,-80,-80) (0,0,0) (0,0,0)

ROTATE (0,0,0) (45,45,45) (0,0,0)

TRANSLATE (0,0,0) (-0.72,-0.72,-0.72) (0,0,0)

TRANSFORM 1 0

TRANSLATE (0,0,0) (1,1,1) (0,0,0)

SCALE (0.6,0.6,0.6) (0.6,0.6,0.6) (0.6,0.6,0.6)
ROTATE (0,0,0) (50,50,50) (0,0,0)

TRANSLATE (0,0,0) (-0.4,-0.4,-0.4) (0,0,0)

TRANSFORM 1 0

TRANSLATE (0,0,0) (1,1,1) (0,0,0)

SCALE (0.8,0.8,0.8) (0.8,0.8,0.8) (0.8,0.8,0.8)
ROTATE (0,0,0) (150,150,150) (0,0,0)

TRANSLATE (0,0,0) (-0.8,-0.8,-0.8) (0,0,0)

CONDENSATION 1
CONE -1.0 0.5 0.02 0.0 CONE Y

.lIIlIlIlIlIlIlI!!!

Theory Days at Saka, Estonia, October 26, 2013 34 / 54

Context-free grammar inference

Inferred grammar for hypertree description DSL

NT1 -> #resoclution NT2 #iterations #num NT3 NT2 #treedepth #num #branchdepth #num
thypervolume NTZ NTZ2 #icondensation #num #cone NT2 #inum f#coney
NT2 -> #fnum f#num fHnum NT4
NT3 -> #pointinit
NT3 -> #lineinit #num #oum #num #num
NT4 -> #depthceolor #range #bpp #bpp #bpp NT4
NT4 -> epsilon
NT4 -> #name #progname NT4
NT42 -»> #scale #lpar #num jcomma Hnum Hcomma Hnum HFrpar
#lpar #num Hcomma HFnum Fcomma HFnum Hrpar
#lpar #num Hcomma H#num HFcomma Hnum Hrpar NT4
NT4 -> #rotate #lpar #num Hfcomma HFnum Hcomma HFnum HFrpar
#lpar #num H#comma #num Hcomma Hnum HFrpar
#lpar #num #comma H#num Hcomma Hnum Hrpar NT4E
NT4 -> #translate #lpar #num jFcomma HNum HFcomma Fnum Frpar
#lpar #num #comma Hnum Hcomma Hnum Frpar
#lpar #num HFcomma HFoum Hcomma HFnum Hrpar NT4
NT4 -> #transform f#num Fnum NT4
NT4 -> #shear #lpar #num #comma Hnum Hcomma Hnum HFrpar
#lpar #num fcomma Hnum Fcomma Hnum HFrpar
#lpar #num #comma #num #Hcomma #num Hrpar #shearxz NT4L
NT4 -> #iperturb #lpar #num f#comma #num #comma Hnum Hcomma #num Hrpar
#lpar #num Hcomma #Hnum Fcomma Fnum #Fcomma HFnum Frpar
#lpar #num #comma #num Hcomma Hnum #Fcomma Hnum Frpar
#lpar #num H#comma #num HFcomma Fnum Hcomma H#num #Frpar NT4E

Theory Days at Saka, Estonia, October 26, 2013 35 / 54

Context-free grammar inference

e Our approach can be used also for syntax
extensions and for DSL embedding

— To embed domain-specific language (e.g, SQL)
into another programming language (GPL or DSL)

Theory Days at Saka, Estonia, October 26, 2013 36 /54

Context-free grammar inference

e Initial grammar (ANSI C):

. translation unit ::= external decl

. translation unit ::= translation unit external decl

. external decl ::= function denition

. external decl ::= decl

. function denition ::= declarator decl list compound stat
. decl ::= decl specs init declarator list ;

10. decl ::= decl specs ;

11. decl list ::= decl

12. decl list ::= decl list decl

15. decl specs ::= type spec decl specs

27. type spec::=int /long /...

45. init declarator list ::= init declarator

46. init declarator list ::= init declarator list , init declarator
47. init declarator ::= declarator

64. enumerator ::=id

65. enumerator ::= id = const exp

67. declarator ::= direct declarator

68. direct declarator ::=id

69. direct declarator ::= (declarator)

70. direct declarator ::= direct declarator [const exp]

71. direct declarator ::= direct declarator []

72. direct declarator ::= direct declarator (param type list)
73. direct declarator ::= direct declarator (id list)

74. direct declarator ::= direct declarator ()

88.id list ::=id

89. id list ::=id list , id

90. initializer ::= assignment exp

OO hWNE

Theory Days at Saka, Estonia, October 26, 2013

91. initializer ::= initializer list
93. initializer list ::= initializer
94, initializer list ::= initializer list , initializer

110.
114.
116.
117.
118.
119.
120.
121.
125.
126.
127.
129.
130.
131.
132.
140.
145.
146.
147.
148.

stat ::= labeled stat / exp stat /compound stat /selection stat
stat ::= iteration stat /jump stat

labeled stat ::= id : stat

labeled stat ::= case const exp : stat

labeled stat ::= default : stat

exp stat ::=exp ;

exp stat .= ;

compound stat ::= decl list stat list

stat list ::= stat

stat list ::= stat list stat

selection stat ::= if (exp) stat

selection stat ::= switch (exp) stat

iteration stat ::= while (exp) stat

iteration stat ::= do stat while (exp) ;

iteration stat ::= for (exp ; exp ; exp) stat

jump stat ::=goto id ; /continue ; /break ; /return exp ;
exp ::= assignment exp

exp ::= exp , assignment exp

assignment exp ::= conditional exp

assignment exp ::= conditional exp assignment operator

assignment exp

205.

const ::=int const /char const /oat const

37/54

Context-free grammar inference

o Initial grammar (ANSI C):

true positive sample

int main() {
char str[][1;
inti;
printf("Students:");
for(i = 0; i < str.length; i++) {
printf(str[i]);

return 0;

Theory Days at Saka, Estonia, October 26, 2013

false negative samples:

int main() {

}

char str[][] = { SELECT Name FROM
Students };

inti;

printf("Students:");

for(i = 0; i < str.length; i++) {
printf(str[i]);

return 0;

int main() {

char str[][] = { SELECT Name, Surname
FROM Students, Professors };

inti;

printf("Students and Professors:");

for(i = 0; i < str.length; i++) {
printf(str[i]);

return 0;

38/54

Context-free grammar inference

e Inferred Grammar:

1. translation unit ::= external decl

2. translation unit ::= translation unit external decl

3. external decl ::= function denition

4. external decl ::= decl

6. function denition ::= declarator decl list compound stat
9. decl ::= decl specs init declarator list ;

10. decl ::= decl specs ;

11. decl list ::= decl

12. decl list ::= decl list decl

15. decl specs ::= type spec decl specs

27. type spec ::=int /long /...

45. init declarator list ::= init declarator

46. init declarator list ::= init declarator list , init declarator
47. init declarator ::= declarator

64. enumerator ::= id

65. enumerator ::= id = const exp

67. declarator ::= direct declarator NT71

68. direct declarator ::=id

69. direct declarator ::= (declarator)

70. direct declarator ::= direct declarator [const exp]

71. direct declarator ::= direct declarator []

72. direct declarator ::= direct declarator (param type list)
73. direct declarator ::= direct declarator (id list)

74. direct declarator ::= direct declarator ()

88. id list ::=id

89. id list ::=id list , id

90. initializer ::= assignment exp

Theory Days at Saka, Estonia, October 26, 2013

91. initializer ::= initializer list
93. initializer list ::= initializer
94. initializer list ::= initializer list, initializer

110.
114.
116.
117.
118.
119.
120.
121.
125.
126.
127.
129.
130.
131.
132.
140.
145.
146.
147.
148.

stat ::= labeled stat / exp stat /compound stat /selection stat
stat ::= iteration stat /jump stat

labeled stat ::= id : stat

labeled stat ::= case const exp : stat

labeled stat ::= default : stat

exp stat ::=exp ;

exp stat ::=;

compound stat ::= decl list stat list

stat list ::= stat

stat list ::= stat list stat

selection stat ::= if (exp) stat

selection stat ::= switch (exp) stat

iteration stat ::= while (exp) stat

iteration stat ::= do stat while (exp) ;

iteration stat ::= for (exp ; exp ; exp) stat

jump stat ::= goto id ; /continue ; /break ; /return exp ;
exp ::= assignhment exp

exp ::= exp , assighment exp

assignment exp ::= conditional exp

assignment exp ::= conditional exp assignment operator

assignment exp

205.
208.
210.

const ::= int const /char const /oat const
NT1 ::= = SELECT id NT2 FROM id NT2 / €
NT2::=,idNT2 /e

39/54

Metamodel inference

e As a model conforms to a metamodel in a
similar manner to how a program conforms to a
grammar, the metamodel inference can be
defined as follows.

e The set of all models that conform to a given
metamodel MM will be called the language of
the metamodel and denoted L(MM). Given a
model instance m and a metamodel MM we can
tell whether m conforms to MM (m O L(MM)).

Theory Days at Saka, Estonia, October 26, 2013 40 / 54

Metamodel inference

o A set of positive samples is denoted with S+.
Conversely, a negative sample belongs to
L(MM), which denotes a set of all models that
do not conform to metamodel MM. A set of
negative samples is denoted with S-.

o A set of positive samples S* of a metamodel
MM is structurally complete if each
metamodel element appears in at least one
model in S*.

Theory Days at Saka, Estonia, October 26, 2013 41 / 54

Metamodel inference

e Given a set of positive samples S+ and set of
negative samples S, which might be also
empty, the task of metamodel inference is to
find at least one metamodel MM such that
S+OL(MM) and STOL(MM).

Theory Days at Saka, Estonia, October 26, 2013 ' 42 / 54

Metamodel inference

o ESML (Embedded System Modeling Language)

Interval Timeoul

§Hz Timer Tovwoud |
DEVICESHZ
L, S—— T 4 BM_ BM_ >
— L ool Loy any L O L BM_%
— [any aM_ > Qany anvy
caivmTa R MODELT, MODELE
(8.0

{any
>BM_ — .
P — L T BM_
[— oM B et
DataAvailable11 .M ANYDH— |
[Datascatabiat |]
MODEL5S '
(8. imph] P ;
*BM_ Tl S ———
{any anvpy] - =

USERINPUT DataAvaliabiet11
MU et | daliTo vaatio 11 |

AIRFRAM Ligany T -
oM BM

e PO | M R ————

DataAvailable101
i1]
1

BoM_ oM
mses anv g
DISPLAYS
s
L e
s wvg)
DISPLAYZ
Action_2_2 g
wu_ B | J) EveniTypeRef
Ehead A — BM__ OpenFunctionalFacat

DISPLAY1

®
pany ¥ -
oy ow_) Concurens|

Concutrency

AltFrame
it

AIRFRAME

Theory Days at Saka, Estonia, October 26, 2013 43 / 54

Metamodel inference

e Original ESML metamodel - Configuration vi

" MetaGME - Configuration - /ESMLY

ewpoint

Configuration

T Name: | Configuration

Configurations

Patadigms heet

Aspect

<<Folder>>

ClassDiagran

~ | Base |N/A

Zoce

100% &

Link
=«<Connection>>

Bandwidth : fisld

Pariod
»

merTypa - enum
fiaic

CommPart
1 <<Atom=>

=<Mod

Processor

| ComponentType
| =<ModetProxy=>

;Componant

FailedProcessor
<<Refarance>>

SameProcess

<<Modal>>

w || GME Browiser
Aggragate

Configurstion

= % ESML
Compansnt

Inhesitance | Meta

Di

=ableComponents

EnableComponents

o

SubscribePort
<<AtomProxy>>

Nor

<<Referance>>

alCompanantRet

Corfiguration
Everit

It action
Irdestace
Parameters
THA

Object Inspector X

Confguration

2 At

butes | Preferences | Properties

upComponentRef

Asynchronous

Even
Deadine
Priority

Criticality

tCorrelation : bool

boot

d
anum

i

Bl General Prope

<Refarance>>

NomaiComponent
<<Refarance>>

Type
Kind

IsAbstract : bool

PRISM_ID : fiald

fiald

fiald

foad

Locked bool
»

Thread
<<Alom>>

Threadral
<<Rafare

Theory Days at Saka, Estonia,

October 26, 2013

Object 1D
Relative ID
Meta iD
GUID

B FCO Propertie:

Role
Aspect

B MARS Properti

Depends
References

Mods! (Achetyps)
ParacigrShest

id-00ES- 0000004

000000008

155

{07e35561 SofT-4448-30b7-c6dF

M/
N/&

N/
M /s

44/54

Metamodel inference

e Inferred ESML metamodel - Configuration viewpoint

MetaGME - Configuration - finferred ESML/

Configuration x

¥ | | GME Browser - x
T Mama: | Configueation PaadgnShest Agpect | ClassDisgram & | Base: NAA Zoom: [100% Aggregate | Inheritance | Mela
Configus ation ~

omponent ype

FailadProcessor
<<Reforance>>

EvenlType

Al \rdertace
L Paametes

1 THA

¢
% Jal Configuation
.
.

Link
<<Connaction>>

Bandwidth : field

Enable

nents

Connection>> |

Object Inspector - %

Cordarment

Attibndes | Preferences| Properbes
B General Prope

Deadline Type Cornection

Priority Kind Cartasinment
Obsect ID id-00E8-000000 85
Flelatrve OuD00000 B
Meta 1D mo

{13a71313-c231 -40e8-85ce- 31 2(

GLID
£ FCO Propertie:

FRole Cortainment
fspect Al (Primary: Vi
£ Connection Pr
Rate Source Process
ThreadPrio i

Processor
stnshion Post

Theory Days at Saka, Estonia, October 26, 2013 45 / 54

Metamodel inference

e Our approach to model evolution using metamodel
inference

Inferred Evolved
Metamodel / ~{_Used in Used in .~ \[Metamodel
-
d”’

5~~‘
A TSa 6 . &
| Inference MMDiff A
1
‘ MIMI lI”PUt Conforms To
A
I'Used In eAutoMT
I 7

-~
-~
-

Existing II .~” Used In Transform™~~a | Evolved II
Model Model

Theory Days at Saka, Estonia, October 26, 2013 46 /54

®
T
e
o
S
o
S
1=
S
©
£
£
©
S
o
I
o
©
S
o

Positive and negative samples for hydrocarbons

with single and double bonds

47/54

Theory Days at Saka, Estonia, October 26, 2013

Graph grammar inference

Inferred graph grammar

Py--Ps3 T T T T Py T
Ll .
A o= HEH (|::r|c (|::r::(|: HE Y :H—1(|:—H Hi{':ﬁH
[] ?_'.:_.._1 L] - -
H H H H ¥ H
Pg-- Py H H H. H—=C—H [|Py--Pyq H
#1 \| i [#2 || 42 | 1 2
cHH = g | =By | g—c—y | ¢—c—y | cBh = g=c By | =y

Theory Days at Saka, Estonia, October 26, 2013 48 / 54

Graph grammar inference

Positive samples £} TS,
for flowcharts

Theory Days at Saka, Estonia, October 26, 2013 49 / 54

Graph grammar inference

Inferred graph grammar

Dy--Py

Py--P1y *

4 #1
#1 =

#l@#l

Theory Days at Saka, Estonia, October 26, 2013 50 / 54

Semantic inference

L(G) ={a"b"c"|n=>1}

S5 ABC

{S.ok = (A.val == B.val) && (B.val == C.val);}

A- aA

{A[O].val =1 + A[1],val;}

AL a Set of positive programs with
{A.val=1;} associated meanings:
B-bB

{B[0].val=1+B[1].val;} (abc, true)

B_b (aabbcc, true)
{B.val=1;} (aaabbbccc, true)
C-cC (aabc, false)
{C[0].val=1+C[1].val;} (abcc, false)

C o (abbbc, false)
{C.val=1;} (abbccc, false)

Theory Days at Saka, Estonia, October 26, 2013 51 / 54

4 D

_ _ Hope that I convinced you
Yes, I will used in my that grammatical inference is

current project on interesting and useful.
business process

mining. -

R

Theory Days at Saka, Estonia, October 26, 2013 ' 52 / 54

: HRN(VIIé, Dejan, MERNIK, Marjan, BRYANT, Barrett Richard, JAVED, Faizan. A
memetic grammar inference algorithm for language learning. Applied Soft
Computing, 2012, vol. 12, iss. 3, pp. 1006-1020.

. HRNCIC, Dejan, MERNIK, Marjan, BRYANT, Barrett Richard. Improving grammar
inference by a memetic algorithm. JEEE Transactions on Systems, Man, and
Cybernetics - Part C, 2012, vol. 42, no. 5, pp. 692-703.

. FURST, Luka, MERNIK, Marjan, MAHNIC, Viljan. Graph grammar induction as a
parser-controlled heuristic search process. AGTIVE1Z, pp. 121-136.

. HRNCIC, Dejan, MERNIK, Marjan, BRYANT, Barrett Richard. Embedding DSLS into
GPLS: A Grammatical Inference Approach. Information Technology and Control ,
2011, vol. 40, no. 4, pp. 307-315.

. JAVED, Faizan, MERNIK, Marjan, GRAY, Jeffrey G., BRYANT, Barrett Richard. MARS: A
Metamodel Recovery System Using Grammar Inference. Information and Software
Technology, 2008, vol. 50, iss. 9-10, pp. 948-968.

. FURST, Luka, MERNIK, Marjan, MAHNIC, Viljan. Converting metamodels to graph
grammars: doing without advanced graph grammar features. Software and System
Modeling (SoSym), 2013, Article in Press.

Theory Days at Saka, Estonia, October 26, 2013 ' 53 / 54

More information at:
http://www.cis.uab.edu/softcom/GrammarInference/

Sent comments/questions to:
marjan.mernik@uni-mb.si; mernik@cis.uab.edu

. Javna agencija
XM za raziskovalno dejavnost

Republike Slovenije

This work was supported in part by NSF award CCF-0811630
and by ARRS bilateral project BI-US/11-12-031

Theory Days at Saka, Estonia, October 26, 2013 54 /54

