
Theory Days at Saka, Estonia, October 26, 2013 1/54

The Application of Grammar

Inference to Software

Language Engineering

M. Mernik12, D. Hrnčič1,

B. Bryant2, A. Sprague2, Q. Liu2

L. Fürst3, V. Mahnič3

1University of Maribor, Slovenia
2The University of Alabama at Birmingham, USA

3University of Ljubljana, Slovenia

Theory Days at Saka, Estonia, October 26, 2013 2/54

Outline of the Presentation

• Motivation

• Background

• Context-free grammar inference

• Metamodel inference

• Graph grammar inference

• Semantic inference

• Conclusion

Theory Days at Saka, Estonia, October 26, 2013 3/54

Motivation

print 5
print a where a=10
print b+1 where b=1
print a+b+2 where a=1, b=2

What
computer
language
she used?

Try out our newly
developed grammar
inference algorithm!

What is a
grammar of
this
language?

Theory Days at Saka, Estonia, October 26, 2013 4/54

Motivation

• Some years ago interesting questions were
posted on the Usenet group comp.compilers:

“I am looking for an algorithm that will
generate context-free grammar from given
set of strings. For example, given a set
L = {aaabbbbb, aab} one of the grammar is
G → AB, A → aA | a, B → b | bB"

Theory Days at Saka, Estonia, October 26, 2013 5/54

Motivation

“I'm working on a project for which I need
information about some reverse engineering
method that would help me extract the
grammar from a set of programs (written in
any language). A sufficient grammar will be
the one which is able to parse all the
programs ..."

Theory Days at Saka, Estonia, October 26, 2013 6/54

Motivation

• Those questions triggered some interesting
responses:

“Unfortunately, there are infinitely many
context-free grammars for any given set of
strings (Consider for example adding A → C,
C → D, ..., Y → Z, Z → A to the above
grammar. You can obviously add as many
pointless rules as you want this way, and the
string set doesn't change) …"

Theory Days at Saka, Estonia, October 26, 2013 7/54

Motivation

“Within machine learning there is a subfield
called Grammatical Inference. They have
demonstrated a few practical successes
mostly at the level of recognizing regular
languages or subsets thereof …”

Theory Days at Saka, Estonia, October 26, 2013 8/54

Motivation

“There are formal theories that address this.
However, their results are far from
encouraging. The essential problem is that
given a finite set of programs, there is a
trivial regular expression which recognizes
exactly those set of programs and no others
…”

Theory Days at Saka, Estonia, October 26, 2013 9/54

Motivation

“There is a way to deal with this issue. Let us assume
for the moment that the program is compiled by a
compiler. Then the grammar knowledge that you
need resides in that compiler. What you do is write
a parser that parses the part of the compiler
containing the grammar knowledge. If you are
lucky this is easy and you recover the BNF in a
snippet. If … and it is not possible to obtain the
source code of the grammar there is another
option. You can extract the grammar from the
manual."

Theory Days at Saka, Estonia, October 26, 2013 10/54

Background

• Grammatical inference is a process of
learning the grammar from positive (and
negative) language samples.

• Grammatical inference attracts researchers
from different fields such as pattern
recognition, computational linguistic,
natural language acquisition, software
engineering, ...

Theory Days at Saka, Estonia, October 26, 2013 11/54

Background

• Context-Free Grammar G=<N, T, P, S>

• L(G) = {w | S ⇒* w, w ∈ T*}

• Given a sentence ps and CFG G we can tell
whether ps belongs to L(G) (ps ∈ L(G)). Such
sentence is called positive sample.

• A set of positive samples is denoted with S+. In
similar manner we can defined set of negative
samples S-. Those samples do not belong to
L(G) and can no be derived from starting
symbol S.

Theory Days at Saka, Estonia, October 26, 2013 12/54

Background

• Given a set S+ and S-, which might be also
empty, the task of context-free grammar
inference is to find at least one context-free
grammar G such that S+⊆L(G) and S-⊆L (G).

• A set of positive samples S+ of a L(G) is
structurally complete if each grammar
production is used in the generation of at
least one sentence in S+.

Theory Days at Saka, Estonia, October 26, 2013 13/54

Background

• Gold Theorem (1967) - it is impossible to
identify any of the four classes of languages
in the Chomsky hierarchy in the limit using
only positive samples. Using both negative
and positive samples, the Chomsky hierarchy
languages can be identified in the limit.

Theory Days at Saka, Estonia, October 26, 2013 14/54

Background

• Intuitively, Gold's theorem can be explained
by recognizing the fact that the final
generalization of positive samples would be
an automation that accept all strings.

• Singular use of positive samples results in an
uncertainty as to when the generalization
steps should be stopped. This implies the
need for some restrictions or background
knowledge on the generalization process.

Theory Days at Saka, Estonia, October 26, 2013 15/54

Background

• A lot of research has been done on
extraction of context-free grammars, but
the problem is still not solved sufficiently
mainly due to immense search space.

Theory Days at Saka, Estonia, October 26, 2013 16/54

Background

Theory Days at Saka, Estonia, October 26, 2013 17/54

Background

Theory Days at Saka, Estonia, October 26, 2013 18/54

Background

Theory Days at Saka, Estonia, October 26, 2013 19/54

Background

Theory Days at Saka, Estonia, October 26, 2013 20/54

Background

Theory Days at Saka, Estonia, October 26, 2013 21/54

Background

• Memetic algorithms are evolutionary
algorithms with local search operator

– use of evolutionary concepts (population,
evolutionary operators)

– improves the search for solutions with local
search.

Theory Days at Saka, Estonia, October 26, 2013 22/54

Context-free grammar inference

example n

example 1

regular
definitions

...

initiali-
zation

local
search

mutation

generali-
zation

selection

evolutionary
cycle

found
grammars

parse positive
examples

MAGIc

evaluate
(LISA

parser)

- simple
- Sequitur

diff

• Memetic Algorithm for Grammatical Inference

Theory Days at Saka, Estonia, October 26, 2013 23/54

Context-free grammar inference

• Sequitur: http://sequitur.info/
• abcabdabcabd
0 → 1 1
1 → 2 c 2 d
2 → a b

• p i w i=n, i=n // print id where id=n, id=n
0 → p 1 w 2, 2
1 → i
2 → 1 = n

Theory Days at Saka, Estonia, October 26, 2013 24/54

Context-free grammar inference

print a where c=2
print 5+b where b = 10print id where id=num

print num+id where id=num

Theory Days at Saka, Estonia, October 26, 2013 25/54

Context-free grammar inference

Apply diff command!
1a2,3
> num
> +

print id where id=num
print num+id where id=num

What is the difference
among two samples?

print id where id=num
print num+id where id=num

But where to change the
grammar?

Theory Days at Saka, Estonia, October 26, 2013 26/54

Context-free grammar inference

Start with the grammar
that parses first sample:

print a where c=2
N1 ::= print N2 where id = num
N2 ::= id

Use information from
LR(1) parsing on 2nd

sample.

Configurations returned from the
LR(1) parser:

Nx → α1 • α2
Ny → β •
Nz → • γ

Theory Days at Saka, Estonia, October 26, 2013 27/54

Context-free grammar inference

• Input samples:

s1,s2,...,sn (true positive)

s1,s2,...,sk,a1,...,am,sk+1,...sn (false negative)

– difference: a1,...,am

Theory Days at Saka, Estonia, October 26, 2013 28/54

Context-free grammar inference

• Nx → α
1
• α

2

– if

Nx ::= α1 N1 α2
N1 ::= ai+1 ... am
N1 ::= ε

– if

Nx ::= α1 N1

N1 ::= α2
N1 ::= ai+1 ... am

– if

change in this configuration can’t be made

)FIRST(αs 21k ∈+

FOLLOW(Nx)s)FIRST(αs 1k21k ∈∧∉ ++

FOLLOW(Nx)s)FIRST(αs 1k21k ∉∧∉ ++

Theory Days at Saka, Estonia, October 26, 2013 29/54

Context-free grammar inference

print a where c=2
print 5+b where b = 10

N1 → print • N2 where id = num

N1 ::= print N2 where id = num
N2 ::= id

N1 ::= print N3 N2 where id = num
N2 ::= id
N3 ::= num +
N3 ::= ε

Theory Days at Saka, Estonia, October 26, 2013 30/54

Context-free grammar inference

Production: Nx ::= α1 Ny α2

Option
Nx ::= α1 Nz α2

Nz ::= Ny

Nz ::= ε

But, how mutation is
done?

Theory Days at Saka, Estonia, October 26, 2013 31/54

Context-free grammar inference

Nx ::= α Ny Nx ::= Ny Ny
Ny ::= α Ny ::= α
Ny ::= β Ny ::= βWhat about

generalization step?

Nx ::= Ny Ny Nx ::= Ny
Ny ::= α Ny ::= α Ny
Ny ::= β Ny ::= β Ny

Ny ::= ε

Theory Days at Saka, Estonia, October 26, 2013 32/54

Context-free grammar inference

• 12 input samples of DESK language on which the
algorithm was tested:

1. print a

2. print 3

3. print b + 14

4. print a + b + c

5. print a where b = 14

6. print 10 where d = 15

7. print 9 + b where b = 16

8. print 1 + 2 where id = 1

9. print a where b = 5, c = 4

10. print 21 where a = 6, b = 5

11. print 5 + 6 where a = 3, c = 14

12. print a + b + c where a = 4, b = 3, c = 2

Theory Days at Saka, Estonia, October 26, 2013 33/54

Context-free grammar inference

Original grammar:

1. DESK ::= print E C
2. E ::= E + F
3. E ::= F
4. F ::= id
5. F ::= num
6. C ::= where Ds
7. C ::= ε
8. Ds ::= D
9. Ds ::= Ds , D
10. D ::= id = num

Inferred grammar:

1: NT1 -> print NT3 NT5
2: NT2 -> + NT3
3: NT2 -> ε
4: NT3 -> num NT2
5: NT3 -> id NT2
6: NT4 -> , id = num NT4
7: NT4 -> ε
8: NT5 -> where id = num NT4
9: NT5 -> ε

Theory Days at Saka, Estonia, October 26, 2013 34/54

Context-free grammar inference

DSL for hypertree description

Theory Days at Saka, Estonia, October 26, 2013 35/54

Context-free grammar inference

Inferred grammar for hypertree description DSL

Theory Days at Saka, Estonia, October 26, 2013 36/54

Context-free grammar inference

• Our approach can be used also for syntax
extensions and for DSL embedding

– To embed domain-specific language (e.g, SQL)
into another programming language (GPL or DSL)

Theory Days at Saka, Estonia, October 26, 2013 37/54

Context-free grammar inference

• Initial grammar (ANSI C):
1. translation unit ::= external decl

2. translation unit ::= translation unit external decl

3. external decl ::= function denition

4. external decl ::= decl

6. function denition ::= declarator decl list compound stat

9. decl ::= decl specs init declarator list ;

10. decl ::= decl specs ;

11. decl list ::= decl

12. decl list ::= decl list decl

15. decl specs ::= type spec decl specs

27. type spec ::= int | long | ...

45. init declarator list ::= init declarator

46. init declarator list ::= init declarator list , init declarator

47. init declarator ::= declarator

64. enumerator ::= id

65. enumerator ::= id = const exp

67. declarator ::= direct declarator

68. direct declarator ::= id

69. direct declarator ::= (declarator)

70. direct declarator ::= direct declarator [const exp]

71. direct declarator ::= direct declarator []

72. direct declarator ::= direct declarator (param type list)

73. direct declarator ::= direct declarator (id list)

74. direct declarator ::= direct declarator ()

88. id list ::= id

89. id list ::= id list , id

90. initializer ::= assignment exp

91. initializer ::= initializer list

93. initializer list ::= initializer

94. initializer list ::= initializer list , initializer

110. stat ::= labeled stat | exp stat | compound stat | selection stat

114. stat ::= iteration stat | jump stat

116. labeled stat ::= id : stat

117. labeled stat ::= case const exp : stat

118. labeled stat ::= default : stat

119. exp stat ::= exp ;

120. exp stat ::= ;

121. compound stat ::= decl list stat list

125. stat list ::= stat

126. stat list ::= stat list stat

127. selection stat ::= if (exp) stat

129. selection stat ::= switch (exp) stat

130. iteration stat ::= while (exp) stat

131. iteration stat ::= do stat while (exp) ;

132. iteration stat ::= for (exp ; exp ; exp) stat

140. jump stat ::= goto id ; | continue ; | break ; | return exp ;

145. exp ::= assignment exp

146. exp ::= exp , assignment exp

147. assignment exp ::= conditional exp

148. assignment exp ::= conditional exp assignment operator
assignment exp

205. const ::= int const | char const | oat const

Theory Days at Saka, Estonia, October 26, 2013 38/54

Context-free grammar inference

• Initial grammar (ANSI C):

int main() {
char str[][];
int i;
printf("Students:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}
return 0;

}

int main() {
char str[][] = { SELECT Name FROM

Students };
int i;
printf("Students:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}
return 0;

}

true positive sample false negative samples:

int main() {
char str[][] = { SELECT Name, Surname

FROM Students, Professors };
int i;
printf("Students and Professors:");
for(i = 0; i < str.length; i++) {

printf(str[i]);
}
return 0;

}

Theory Days at Saka, Estonia, October 26, 2013 39/54

Context-free grammar inference

• Inferred Grammar:

1. translation unit ::= external decl

2. translation unit ::= translation unit external decl

3. external decl ::= function denition

4. external decl ::= decl

6. function denition ::= declarator decl list compound stat

9. decl ::= decl specs init declarator list ;

10. decl ::= decl specs ;

11. decl list ::= decl

12. decl list ::= decl list decl

15. decl specs ::= type spec decl specs

27. type spec ::= int | long | ...

45. init declarator list ::= init declarator

46. init declarator list ::= init declarator list , init declarator

47. init declarator ::= declarator

64. enumerator ::= id

65. enumerator ::= id = const exp

67. declarator ::= direct declarator NT1

68. direct declarator ::= id

69. direct declarator ::= (declarator)

70. direct declarator ::= direct declarator [const exp]

71. direct declarator ::= direct declarator []

72. direct declarator ::= direct declarator (param type list)

73. direct declarator ::= direct declarator (id list)

74. direct declarator ::= direct declarator ()

88. id list ::= id

89. id list ::= id list , id

90. initializer ::= assignment exp

91. initializer ::= initializer list

93. initializer list ::= initializer

94. initializer list ::= initializer list , initializer

110. stat ::= labeled stat | exp stat | compound stat | selection stat

114. stat ::= iteration stat | jump stat

116. labeled stat ::= id : stat

117. labeled stat ::= case const exp : stat

118. labeled stat ::= default : stat

119. exp stat ::= exp ;

120. exp stat ::= ;

121. compound stat ::= decl list stat list

125. stat list ::= stat

126. stat list ::= stat list stat

127. selection stat ::= if (exp) stat

129. selection stat ::= switch (exp) stat

130. iteration stat ::= while (exp) stat

131. iteration stat ::= do stat while (exp) ;

132. iteration stat ::= for (exp ; exp ; exp) stat

140. jump stat ::= goto id ; | continue ; | break ; | return exp ;

145. exp ::= assignment exp

146. exp ::= exp , assignment exp

147. assignment exp ::= conditional exp

148. assignment exp ::= conditional exp assignment operator
assignment exp

205. const ::= int const | char const | oat const

208. NT1 ::= = SELECT id NT2 FROM id NT2 | ϵ

210. NT2 ::= , id NT2 | ϵ

Theory Days at Saka, Estonia, October 26, 2013 40/54

Metamodel inference

• As a model conforms to a metamodel in a
similar manner to how a program conforms to a
grammar, the metamodel inference can be
defined as follows.

• The set of all models that conform to a given
metamodel MM will be called the language of
the metamodel and denoted L(MM). Given a
model instance m and a metamodel MM we can
tell whether m conforms to MM (m ∈ L(MM)).

Theory Days at Saka, Estonia, October 26, 2013 41/54

Metamodel inference

• A set of positive samples is denoted with S+.
Conversely, a negative sample belongs to
L(MM), which denotes a set of all models that
do not conform to metamodel MM. A set of
negative samples is denoted with S-.

• A set of positive samples S+ of a metamodel
MM is structurally complete if each
metamodel element appears in at least one
model in S+.

Theory Days at Saka, Estonia, October 26, 2013 42/54

Metamodel inference

• Given a set of positive samples S+ and set of
negative samples S-, which might be also
empty, the task of metamodel inference is to
find at least one metamodel MM such that
S+⊆L(MM) and S-⊆L(MM).

Theory Days at Saka, Estonia, October 26, 2013 43/54

Metamodel inference

• ESML (Embedded System Modeling Language)

Theory Days at Saka, Estonia, October 26, 2013 44/54

Metamodel inference

• Original ESML metamodel - Configuration viewpoint

Theory Days at Saka, Estonia, October 26, 2013 45/54

Metamodel inference

• Inferred ESML metamodel - Configuration viewpoint

Theory Days at Saka, Estonia, October 26, 2013 46/54

Metamodel inference

• Our approach to model evolution using metamodel
inference

Theory Days at Saka, Estonia, October 26, 2013 47/54

Graph grammar inference

Positive and negative samples for hydrocarbons
with single and double bonds

Theory Days at Saka, Estonia, October 26, 2013 48/54

Graph grammar inference

Inferred graph grammar

Theory Days at Saka, Estonia, October 26, 2013 49/54

Graph grammar inference

Positive samples
for flowcharts

Theory Days at Saka, Estonia, October 26, 2013 50/54

Graph grammar inference

Inferred graph grammar

Theory Days at Saka, Estonia, October 26, 2013 51/54

Semantic inference

L(G) = {an bn cn| n ≥ 1}

S → A B C
{S.ok = (A.val == B.val) && (B.val == C.val);}
A → a A
{A[0].val = 1 + A[1],val;}
A → a
{A.val=1;}
B → b B
{B[0].val=1+B[1].val;}
B → b
{B.val=1;}
C → c C
{C[0].val=1+C[1].val;}
C → c
{C.val=1;}

Set of positive programs with
associated meanings:

(abc, true)
(aabbcc, true)
(aaabbbccc, true)
(aabc, false)
(abcc, false)
(abbbc, false)
(abbccc, false)

Theory Days at Saka, Estonia, October 26, 2013 52/54

Conclusion

Hope that I convinced you
that grammatical inference is
interesting and useful.

Yes, I will used in my
current project on
business process
mining.

Theory Days at Saka, Estonia, October 26, 2013 53/54

Conclusion

1. HRNČIČ, Dejan, MERNIK, Marjan, BRYANT, Barrett Richard, JAVED, Faizan. A
memetic grammar inference algorithm for language learning. Applied Soft
Computing, 2012, vol. 12, iss. 3, pp. 1006-1020.

2. HRNČIČ, Dejan, MERNIK, Marjan, BRYANT, Barrett Richard. Improving grammar
inference by a memetic algorithm. IEEE Transactions on Systems, Man, and
Cybernetics - Part C, 2012, vol. 42, no. 5, pp. 692-703.

3. FÜRST, Luka, MERNIK, Marjan, MAHNIČ, Viljan. Graph grammar induction as a
parser-controlled heuristic search process. AGTIVE’12, pp. 121-136.

4. HRNČIČ, Dejan, MERNIK, Marjan, BRYANT, Barrett Richard. Embedding DSLS into
GPLS: A Grammatical Inference Approach. Information Technology and Control ,
2011, vol. 40, no. 4, pp. 307-315.

5. JAVED, Faizan, MERNIK, Marjan, GRAY, Jeffrey G., BRYANT, Barrett Richard. MARS: A
Metamodel Recovery System Using Grammar Inference. Information and Software
Technology, 2008, vol. 50, iss. 9-10, pp. 948-968.

6. FÜRST, Luka, MERNIK, Marjan, MAHNIČ, Viljan. Converting metamodels to graph
grammars: doing without advanced graph grammar features. Software and System
Modeling (SoSym), 2013, Article in Press.

Theory Days at Saka, Estonia, October 26, 2013 54/54

Conclusion

This work was supported in part by NSF award CCF-0811630
and by ARRS bilateral project BI-US/11-12-031

More information at:
http://www.cis.uab.edu/softcom/GrammarInference/

Sent comments/questions to:
marjan.mernik@uni-mb.si; mernik@cis.uab.edu

