
On the (Im)possibility of Privately
Outsourcing Linear Programming

26.10.13

1 / 25

Linear programming

I Suppose a brewery produces ale and beer.
I It uses three type of resources: corn, hops, and malt.
I Each beverage requires particular amount of resources per

barrel.

Ale Beer Limit
Corn 5 15 480
Hops 4 4 160
Malt 35 20 1190

Profit 13 23

How to maximize the profit having such resource limits?

[Robert G. Bland. The allocation of resources by linear
programming. Scientific American, 244(6):108–119, June
1981.]

2 / 25

Linear programming (a bit more formally)

I Let x1 denote the number of barrels of ale.
I Let x2 denote the number of barrels of beer.

maximize 13x1 + 23x2

subject to 5x1 + 15x2 ≤ 480
4x1 + 4x2 ≤ 160

35x1 + 20x2 ≤ 1190
x1 ≥ 0
x2 ≥ 0

Ale Beer Limit
Corn 5 15 480
Hops 4 4 160
Malt 35 20 1190

Profit 13 23

3 / 25

Linear programming (formally)

The same task in a matrix form:

maximize
(

13
23

)T

·
(

x1
x2

)
,

subject to

 5 15
4 4

35 20

(x1
x2

)
≤

 480
160

1190

 ,

(
x1
x2

)
≥
(

0
0

)
.

where ≤ is defined coordinatewise.

Canonical form:

maximize cT · x, subject to Ax ≤ b,x ≥ 0

4 / 25

Linear programming (formally)

The same task in a matrix form:

maximize
(

13
23

)T

·
(

x1
x2

)
,

subject to

 5 15
4 4

35 20

(x1
x2

)
≤

 480
160

1190

 ,

(
x1
x2

)
≥
(

0
0

)
.

where ≤ is defined coordinatewise.

Canonical form:

maximize cT · x, subject to Ax ≤ b,x ≥ 0

4 / 25

Feasible region of a linear program

5 / 25

Privacy-preserving linear programming
Solve a linear programming task:

maximize cT · x, subject to Ax ≤ b,x ≥ 0 ,

where the quantities A, b, c are distributed amongst several
parties.

No information about A, b, c should be leaked in the
computational process.

6 / 25

Privacy-preserving linear programming
Solve a linear programming task:

maximize cT · x, subject to Ax ≤ b,x ≥ 0 ,

where the quantities A, b, c are distributed amongst several
parties.

No information about A, b, c should be leaked in the
computational process.

6 / 25

Privacy-preserving linear programming
Solve a linear programming task:

maximize cT · x, subject to Ax ≤ b,x ≥ 0 ,

where the quantities A, b, c are distributed amongst several
parties.

No information about A, b, c should be leaked in the
computational process.

6 / 25

Privacy-preserving linear programming
Solve a linear programming task:

maximize cT · x, subject to Ax ≤ b,x ≥ 0 ,

where the quantities A, b, c are distributed amongst several
parties.

No information about A, b, c should be leaked in the
computational process.

6 / 25

Privacy-preserving linear programming
Solve a linear programming task:

maximize cT · x, subject to Ax ≤ b,x ≥ 0 ,

where the quantities A, b, c are distributed amongst several
parties.

No information about A, b, c should be leaked in the
computational process.

6 / 25

Privacy-preserving linear programming
Solve a linear programming task:

maximize cT · x, subject to Ax ≤ b,x ≥ 0 ,

where the quantities A, b, c are distributed amongst several
parties.

No information about A, b, c should be leaked in the
computational process. 6 / 25

Two main approaches

1. Straightforward: implement directly a linear programming
solving algorithm by computing the basic operations in a
cryptographic way.

Always possible, but too inefficient.

2. Transformation-based: transform the program to another
linear program so that it may be solved offline without
leaking information about the initial program.

Much more efficient.

7 / 25

Two main approaches
1. Straightforward: implement directly a linear programming

solving algorithm by computing the basic operations in a
cryptographic way.

Always possible, but too inefficient.

2. Transformation-based: transform the program to another
linear program so that it may be solved offline without
leaking information about the initial program.

Much more efficient.

7 / 25

Two main approaches
1. Straightforward: implement directly a linear programming

solving algorithm by computing the basic operations in a
cryptographic way.

Always possible, but too inefficient.

2. Transformation-based: transform the program to another
linear program so that it may be solved offline without
leaking information about the initial program.

Much more efficient.

7 / 25

Two main approaches
1. Straightforward: implement directly a linear programming

solving algorithm by computing the basic operations in a
cryptographic way.

Always possible, but too inefficient.

2. Transformation-based: transform the program to another
linear program so that it may be solved offline without
leaking information about the initial program.

Much more efficient.

7 / 25

Two main approaches
1. Straightforward: implement directly a linear programming

solving algorithm by computing the basic operations in a
cryptographic way.

Always possible, but too inefficient.

2. Transformation-based: transform the program to another
linear program so that it may be solved offline without
leaking information about the initial program.

Much more efficient.
7 / 25

Acceptable security

Definition
A protocol achieves acceptable security if the only thing that the
adversary can do is to reduce all the possible values of the
secret data to some domain with the following properties:

1. The number of values in this domain is infinite, or the
number of values in this domain is so large that a
brute-force attack is computationally infeasible.

2. The range of the domain (the difference between the upper
and the lower bounds) is acceptable for the application.

[Du & Zhan, New Security Paradigms Workshop 2002]

8 / 25

Problems of the acceptable security definition

I Non-standard and cannot therefore be integrated into
complex protocols.

I Makes the scheme too dependent on the initial sharing of
A,b,c.

I Too weak. Some attacks have been found against the
schemes that were assumed to be secure under this
definition.

9 / 25

Problems of the acceptable security definition

I Non-standard and cannot therefore be integrated into
complex protocols.

I Makes the scheme too dependent on the initial sharing of
A,b,c.

I Too weak. Some attacks have been found against the
schemes that were assumed to be secure under this
definition.

9 / 25

Problems of the acceptable security definition

I Non-standard and cannot therefore be integrated into
complex protocols.

I Makes the scheme too dependent on the initial sharing of
A,b,c.

I Too weak. Some attacks have been found against the
schemes that were assumed to be secure under this
definition.

9 / 25

Indistinguishability-based security definition

10 / 25

Why this definition is good

I Makes the linear program independent on the initial
sharing.

I Is sufficiently standard to be integrated into more complex
protocols.

11 / 25

Why this definition is good

I Makes the linear program independent on the initial
sharing.

I Is sufficiently standard to be integrated into more complex
protocols.

11 / 25

Acceptable Side Information

I It is reasonable to weaken the security definition so that
only LP tasks with certain properties are indistinguishable
after the transformation:

I have the same bounding box;
I have the same feasible solution.

12 / 25

Affine transformations

I The transformation-based methods map a linear program
to another linear program.

I The known transformations used in the related work
belong to the class of affine transformations.

I We will show that this approach may quite unlikely be
successful.

13 / 25

Affine transformations

I The transformation-based methods map a linear program
to another linear program.

I The known transformations used in the related work
belong to the class of affine transformations.

I We will show that this approach may quite unlikely be
successful.

13 / 25

Affine transformations

I The transformation-based methods map a linear program
to another linear program.

I The known transformations used in the related work
belong to the class of affine transformations.

I We will show that this approach may quite unlikely be
successful.

13 / 25

Perfect Secrecy

I A transformation with perfect secrecy is definitely possible.

I The problem is that the transformation should be no more
complex than solving the linear program itself.

I In the case of affine functions such that yopt is continuous
with respect to xopt, a perfectly secure transformation
allows to find optimal solutions in a large class of linear
programs solving just one instance.

14 / 25

Perfect Secrecy

I A transformation with perfect secrecy is definitely possible.

I The problem is that the transformation should be no more
complex than solving the linear program itself.

I In the case of affine functions such that yopt is continuous
with respect to xopt, a perfectly secure transformation
allows to find optimal solutions in a large class of linear
programs solving just one instance.

14 / 25

Perfect Secrecy

I A transformation with perfect secrecy is definitely possible.

I The problem is that the transformation should be no more
complex than solving the linear program itself.

I In the case of affine functions such that yopt is continuous
with respect to xopt, a perfectly secure transformation
allows to find optimal solutions in a large class of linear
programs solving just one instance.

14 / 25

A Requirement of Perfect Secrecy

I According to our definition, the following programs have to
be indistinguishable.

I Hence the distribution of distances between the
hyperplanes of a transformed program should not depend
on the distances between the hyperplanes of the initial
program.

15 / 25

Preprocessing

I An arbitrary n − 1 dimensional polyhedron with m − 2
facets can be scaled to a bounding box of size at most δ
and then extended to an n-dimensional m-facet hyperprism
as follows:

I We are interested in the optimal solution xopt that is closer
to the point (1,1, . . . ,1).

16 / 25

Preprocesing

I Let xopt be a known solution to some LP with parameters
n − 1, m − 2 modified in this way. Let its transformed
solution be yopt. Suppose yopt is known.

I We show how to find an optimal solution for an arbitrary LP
with parameters n − 1, m − 2.

17 / 25

No Perfect Secrecy

I First, scale the LP to δ and form a hyperprism as before.
Let xopt be the optimal solution. Clearly, ||xopt − xopt|| < δ.

I Due to continuity

∀ε > 0 ∃δ > 0 : ||xopt − xopt|| < δ =⇒ ||yopt − yopt|| < ε

I Due to perfect secrecy, for a certain d that does not
depend on δ, any vertex of the transformed program is
located at the distance at least d from the hyperplanes that
do not contain this vertex.

18 / 25

No Perfect Secrecy

I If we take ε < d/2, then there is exactly one vertex at the
distance at most ε from yopt, and this is the yopt.

I Hence it suffices to find the intersection of the bounding
hyperplanes that are at the distance of at most ε from the
yopt.

I This is much easier than solving the linear programming
task itself.

19 / 25

Requirements of Computational Security

I Some assumptions similar to the finite fields could be
defined over real numbers.

I We have tried different means of hiding:
I Adding more columns (and hence more variables)
I Adding more rows (and hence more constraints)
I Splitting the variables

I In all experiments, we have failed for the same reason:
different types of variables behave in different ways.

20 / 25

Requirements of Computational Security

I Some assumptions similar to the finite fields could be
defined over real numbers.

I We have tried different means of hiding:
I Adding more columns (and hence more variables)
I Adding more rows (and hence more constraints)
I Splitting the variables

I In all experiments, we have failed for the same reason:
different types of variables behave in different ways.

20 / 25

Requirements of Computational Security

I Some assumptions similar to the finite fields could be
defined over real numbers.

I We have tried different means of hiding:
I Adding more columns (and hence more variables)
I Adding more rows (and hence more constraints)
I Splitting the variables

I In all experiments, we have failed for the same reason:
different types of variables behave in different ways.

20 / 25

Requirements of Computational Security

I Hence we empirically state the requirement:
I Any set of t variables (where t is a security parameter)

should look the same for the adversary who has access to
the transformed linear program.

21 / 25

2-symmetric transformations
I In order to achive security for any t , we need to achieve it

for at least t = 2.
I In a 2-dimensional projection, computing the angle

between the bounds and the axes is easy.

Hence we require that for each pair of variables (xi , xj), it
must hold that xi + αxj = c.

22 / 25

No natural way to achieve it
I Since all the angles should be the same, we get the

following system:
αx1 + x2 + a123x3 + . . .+ a12(n−1)xn−1 + a12nxn = c
x1 + αx2 + a213x3 + . . .+ a21(n−1)xn−1 + a21nxn = c
. .

an(n−1)1x1 + an(n−1)2x2 + . . .+ αxn−1 + xn = c
a(n−1)n1x1 + a(n−1)n2x2 + . . .+ xn−1 + αxn = c

I Solving it, we get that the polyhedron is a simplex.

n∑
i=1

yi = c

I Such a transformation has too low degree of freedom to
encode something reasonable.

23 / 25

Conclusion

I The current approaches towards privacy-preserving
outsourcing or multiparty linear programming are unlikely
to be successful.

I Success in this direction requires some radically new ideas
violating our rather generous assumptions.

I Alternatively, it may be fruitful to optimize
privacy-preserving implementations of LP solving
algorithms in order to have universal privacy-preserving
optimization methods for large classes of tasks.

24 / 25

THE END

25 / 25

