Optimal Index Codes with Near-Extreme Rates

Vitaly Skachek

(joint work with Son Hoang Dau and Yeow Meng Chee)

Estonian Theory Days October 25th, 2013

This work is supported by Research Grant NRF-CRP2-2007-03 (Singapore)

Index Coding with Side Information (ICSI)

each receiver has some messages requests one message

3

A 10

Index Coding with Side Information (ICSI)

each receiver has some messages requests one message

Receiver	Demand	Side Info.
R_1	x1	$\{x_2\}$
R_2	x ₂	$\{x_3\}$
R ₃	X3	$\{x_1, x_4\}$
R ₄	X4	$\{x_5\}$
R_5	<i>X</i> 5	$\{x_2, x_4\}$

A 10

Index Coding with Side Information (ICSI)

Receiver	Demand	Side Info.
R_1	x1	${x_2}$
R_2	x ₂	$\{x_3\}$
R_3	X3	$\{x_1, x_4\}$
R ₄	X4	$\{x_5\}$
R_5	X5	$\{x_2, x_4\}$

each receiver has some messages requests one message

Questions: How can *S* satisfy all the demands in a minimum number of transmissions?

(ロ) (四) (三) (三) (三)

・ロ・ ・四・ ・ヨ・ ・ ヨ・

Motivation

Network Coding

Network Coding (NC): Ahlswede *et al.*, 2000

< 注入 < 注入 → □ > ……

- The second sec

Network Coding

Network Coding (NC): Ahlswede *et al.*, 2000

Index Coding and Network Coding

- Index coding proposed by Birk and Kol (1998)
- ICSI is a special case of non-multicast network coding
- ICSI and NC are equivalent (El Rouayheb, Sprintson, Georghiades, 2008; Effros, El Rouayheb, Langberg, 2012)

글 > : < 글 >

- Bar-Yossef et al. (2006)
 - Associate each ICSI instance with a digraph
 - Optimal scalar linear transmission rate = minrank of the digraph

- Bar-Yossef et al. (2006)
 - Associate each ICSI instance with a digraph
 - Optimal scalar linear transmission rate = minrank of the digraph
- Peeters (1996): Finding minrank of a graph is NP-hard (deciding whether minrank of a graph is three is NP-hard)

• Bar-Yossef et al. (2006)

- Associate each ICSI instance with a digraph
- Optimal scalar linear transmission rate = minrank of the digraph
- Peeters (1996): Finding minrank of a graph is NP-hard (deciding whether minrank of a graph is three is NP-hard)
- Chaudhry and Sprintson (2008): exact and approximate algorithms for minranks

- Bar-Yossef et al. (2006)
 - Associate each ICSI instance with a digraph
 - Optimal scalar linear transmission rate = minrank of the digraph
- Peeters (1996): Finding minrank of a graph is NP-hard (deciding whether minrank of a graph is three is NP-hard)
- Chaudhry and Sprintson (2008): exact and approximate algorithms for minranks
- Bar-Yossef *et al.* (2006); Berliner and Langberg (2011): polynomial time computation of minranks for some families of graphs

Other works

- Alon et al.(2008)
- Lubetzky, Stav (2009)
- Dau, Skachek, Chee (2011)
- Haviv, Langberg (2012)
- Ong, Lim, Ho (2012)
- Brahma, Fragouli (2012)
- Tehrani, Dimakis (2012)
- Neely, Tehrani, Zhang (2012)
- Shum, Dai, Sung (2012)
- Maleki, Cadambe, Jafar (2012)
- Arbabjolfaei, Bandemer, Kim, Sasoglu (2013)
- Shanmugam, Dimakis, Caire (2013)

法国际 化基本

Our contributions

• In this work we

▲□ → ▲ □ → ▲ □ → ……

Our contributions

- In this work we
 - characterize families of digraphs with some extremely high or low minranks

글 🖌 🖌 글 🛌

- In this work we
 - characterize families of digraphs with some extremely high or low minranks
 - show that deciding whether minrank of a digraph is two is NP-hard

< ∃ >

-

- In this work we
 - characterize families of digraphs with some extremely high or low minranks
 - show that deciding whether minrank of a digraph is two is NP-hard (trivial for graphs)

-

An Example

Consider the following ICSI instance:

・ 同 ・ ・ ヨ ・ ・ ヨ ・

An Example

Consider the following ICSI instance:

S transmits $x_1 + x_2$, $x_2 + x_3$, and $x_4 + x_5$ (an IC of length 3).

An Example

Consider the following ICSI instance:

S transmits $x_1 + x_2$, $x_2 + x_3$, and $x_4 + x_5$ (an IC of length 3).

•
$$R_1$$
 decodes: $x_1 = x_2 + (x_1 + x_2)$

2
$$R_2$$
 decodes: $x_2 = x_3 + (x_2 + x_3)$

3
$$R_3$$
 decodes: $x_3 = x_1 + (x_1 + x_2) + (x_2 + x_3)$

•
$$R_4$$
 decodes: $x_4 = x_5 + (x_4 + x_5)$

2
$$R_5$$
 decodes: $x_5 = x_4 + (x_4 + x_5)$

I

A >

글 문 문 글 문 문

• Vertex set: $\mathcal{V}(\mathcal{D}) = [n] = \{1, 2, ..., n\}$ (n messages, n receivers)

- Vertex set: $\mathcal{V}(\mathcal{D}) = [n] = \{1, 2, \dots, n\}$ (n messages, n receivers)
- Arc set: $\mathcal{E}(\mathcal{D}) = \{(i,j): i \in [n], R_i \text{ has } x_j \text{ as side information}\}$

- Vertex set: $\mathcal{V}(\mathcal{D}) = [n] = \{1, 2, ..., n\}$ (*n* messages, *n* receivers)
- Arc set: $\mathcal{E}(\mathcal{D}) = \{(i,j): i \in [n], R_i \text{ has } x_j \text{ as side information}\}$

Receiver	Demand	Side Info.
R_1	<i>x</i> ₁	${x_2}$
R_2	x ₂	$\{x_3\}$
R_3	<i>X</i> 3	$\{x_1, x_4\}$
R_4	X4	$\{x_5\}$
R_5	<i>X</i> 5	$\{x_2, x_4\}$

Definition (Haemer, 1978)

Let \mathcal{D} be a digraph where $\mathcal{V}(\mathcal{D}) = [n]$.

Definition (Haemer, 1978)

Let \mathcal{D} be a digraph where $\mathcal{V}(\mathcal{D}) = [n]$.

• A matrix
$$\mathbf{M} = (m_{i,j}) \in \mathbb{F}_q^{n \times n}$$
 is said to *fit* \mathcal{D} if

Definition (Haemer, 1978)

Let \mathcal{D} be a digraph where $\mathcal{V}(\mathcal{D}) = [n]$.

• A matrix
$$\mathbf{M} = (m_{i,j}) \in \mathbb{F}_q^{n \times n}$$
 is said to *fit* \mathcal{D} if

$$\begin{cases} m_{i,j} \neq 0, & i = j, \\ m_{i,j} = 0, & i \neq j, \ (i,j) \notin \mathcal{E}(\mathcal{D}). \end{cases}$$

Definition (Haemer, 1978)

Let \mathcal{D} be a digraph where $\mathcal{V}(\mathcal{D}) = [n]$.

• A matrix $\mathbf{M} = (m_{i,j}) \in \mathbb{F}_q^{n \times n}$ is said to *fit* \mathcal{D} if

$$\begin{cases} m_{i,j} \neq 0, & i = j, \\ m_{i,j} = 0, & i \neq j, \ (i,j) \notin \mathcal{E}(\mathcal{D}). \end{cases}$$

A digraph of minrank 3

a The *minrank* of \mathcal{D} over \mathbb{F}_q is defined to be minrk_q(\mathcal{D}) \triangleq min {rank(\mathbf{M}) : $\mathbf{M} \in \mathbb{F}_q^{n \times n}$ and \mathbf{M} fits \mathcal{D} }. $\mathbf{A} + \mathbf{I} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix} \implies \mathbf{M} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$

S. H. Dau, V. Skachek, Y. M. Chee Optimal Index Codes of Near-Extreme Rates

Theorem (Bar-Yossef et al., 2006)

 $minrk_q(\mathcal{D}) = length of the shortest (scalar linear) index code$

御 と く ヨ と く ヨ と

Theorem (Bar-Yossef et al., 2006)

 $minrk_q(\mathcal{D}) = length of the shortest (scalar linear) index code$

Theorem

For any digraph \mathcal{D} we have

 $\alpha(\mathcal{D}) \leq \operatorname{minrk}_{q}(\mathcal{D}) \leq \operatorname{cc}(D).$

C		\mathbf{n}	m	2	~ /
J	uı	ш		a	y

Min-Rank	Graph ${\cal G}$	Digraph ${\cal D}$
1	${\mathcal G}$ is complete (trivial)	${\cal D}$ is complete (triv-ial)
2	\mathcal{G} is not complete and $\overline{\mathcal{G}}$ is 2-colorable (Peeters, '96)	\mathcal{D} is not complete and $\overline{\mathcal{D}}$ is fairly 3- colorable [*]
n — 2	\mathcal{G} (connected) has a maxi- mum matching of size two and does not contain F as a subgraph*	unknown
n-1	${\cal G}$ (connected) is a star graph	unknown
n	${\cal G}$ has no edges (trivial)	\mathcal{D} has no circuits (from Bar-Yossef <i>et al.</i> , '06)

S. H. Dau, V. Skachek, Y. M. Chee Optimal Index Codes of Near-Extreme Rates

向下 イヨト イヨト

C		\mathbf{n}	m	2	~ /
J	uı	ш		a	y

Min-Rank	Graph ${\cal G}$	Digraph \mathcal{D}
1	${\cal G}$ is complete (trivial)	${\cal D}$ is complete (triv-ial)
2	\mathcal{G} is not complete and $\overline{\mathcal{G}}$ is 2-colorable (Peeters, '96)	\mathcal{D} is not complete and $\overline{\mathcal{D}}$ is fairly 3- colorable*
n – 2	\mathcal{G} (connected) has a maxi- mum matching of size two and does not contain F as a subgraph*	unknown
n-1	${\cal G}$ (connected) is a star graph	unknown
n	${\mathcal G}$ has no edges (trivial)	\mathcal{D} has no circuits (from Bar-Yossef <i>et al.</i> , '06)

S. H. Dau, V. Skachek, Y. M. Chee Optimal Index Codes of Near-Extreme Rates

回 > ・ モ > ・ モ >

Digraphs of minranks two

 $minrk_2(\mathcal{D}) = 2$ iff \mathcal{D} is not complete and $\overline{\mathcal{D}}$ is fairly 3-colorable

A fair coloring: out-neighbors of each vertex have the same color

- ∢ ≣ →

A fair coloring: out-neighbors of each vertex have the same color

Theorem

The fair k-coloring problem is NP-complete for $k \ge 3$

프 > - * 프 >

A fair coloring: out-neighbors of each vertex have the same color

Theorem

The fair k-coloring problem is NP-complete for $k \ge 3$

Corollary

Deciding whether $minrk_2(D) = 2$ is an NP-complete problem

C		\mathbf{n}	m	2	~ /
J	uı	ш		a	y

Min-Rank	Graph ${\cal G}$	Digraph ${\cal D}$
1	${\cal G}$ is complete (trivial)	${\cal D}$ is complete (triv-ial)
2	\mathcal{G} is not complete and $\overline{\mathcal{G}}$ is 2-colorable (Peeters, '96)	\mathcal{D} is not complete and $\overline{\mathcal{D}}$ is fairly 3- colorable*
<i>n</i> – 2	\mathcal{G} (connected) has a maxi- mum matching of size two and does not contain F as a subgraph*	unknown
n-1	${\cal G}$ (connected) is a star graph	unknown
n	${\mathcal G}$ has no edges (trivial)	\mathcal{D} has no circuits (from Bar-Yossef <i>et al.</i> , '06)

向下 イヨト イヨト

Theorem

Suppose G is a connected graph of order $n \ge 6$. Then $\operatorname{minrk}_q(G) = n - 2$ iff G has a maximum matching of size two and does not contain a subgraph isomorphic to the graph depicted below

The forbidden subgraph F

글 > : < 글 > : :

C		\mathbf{n}	m	2	~ /
J	uı	ш		a	y

Min-Rank	Graph ${\cal G}$	Digraph ${\cal D}$
1	${\mathcal G}$ is complete (trivial)	${\cal D}$ is complete (triv-ial)
2	\mathcal{G} is not complete and $\overline{\mathcal{G}}$ is 2-colorable (Peeters, '96)	\mathcal{D} is not complete and $\overline{\mathcal{D}}$ is fairly 3- colorable*
n – 2	\mathcal{G} (connected) has a maxi- mum matching of size two and does not contain F as a subgraph*	unknown
n-1	${\cal G}$ (connected) is a star graph	unknown
n	${\cal G}$ has no edges (trivial)	\mathcal{D} has no circuits (from Bar-Yossef <i>et al.</i> , '06)

向下 イヨト イヨト

Theorem

Let \mathcal{G} be a connected graph of order $n \geq 2$. Then $minrk_q(\mathcal{G}) = n - 1$ if and only if \mathcal{G} is a star graph.

-

Determine the hardness of the problem of deciding whether $minrk_q(D) = 2$ for q > 2?

Characterize families of graphs of order *n* with minrank n - k, for a constant k > 2