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Introduction

Index Coding with Side Information (ICSI)
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Index Coding with Side Information (ICSI)
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has n messagesSender

each receiver has some messages
requests one message

Receiver Demand Side Info.

R1 x1 {x2}

R2 x2 {x3}

R3 x3 {x1, x4}

R4 x4 {x5}

R5 x5 {x2, x4}
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Introduction

Index Coding with Side Information (ICSI)

S

R1

R2

Rn

b b b

has n messagesSender

each receiver has some messages
requests one message

Receiver Demand Side Info.

R1 x1 {x2}

R2 x2 {x3}

R3 x3 {x1, x4}

R4 x4 {x5}

R5 x5 {x2, x4}

Questions: How can S satisfy all the demands in a minimum number of
transmissions?
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Motivation

Data Distributor

C1 C2 C3

Receive P2, P3 P1, P3 P1, P2

Data Delivery

Lose P1 P2 P3
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C1 C2 C3

Received P2, P3 P1, P3 P1, P2

Data Delivery

P1 + P2 + P3
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Motivation

Data Distributor

C1 C2 C3

Received P2, P3 P1, P3 P1, P2

Data Delivery

P1 + P2 + P3

Retrieve P1 P2 P3
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Motivation

Network Coding

Network Coding (NC): Ahlswede et
al., 2000

x1 x2 xn

b b b

b b bt1 t2 tm

s1 s2 sn

y1 y2
y3

y1 + y2 y2 + y3
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Motivation

Network Coding

Network Coding (NC): Ahlswede et
al., 2000

x1 x2 xn

b b b

b b bt1 t2 tm

s1 s2 sn

y1 y2
y3

y1 + y2 y2 + y3

Index Coding and Network Coding

1 Index coding proposed by Birk
and Kol (1998)

2 ICSI is a special case of
non-multicast network coding

3 ICSI and NC are equivalent
(El Rouayheb, Sprintson,
Georghiades, 2008; Effros,
El Rouayheb, Langberg, 2012)
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Literature Overview

Bar-Yossef et al. (2006)

Associate each ICSI instance with a digraph
Optimal scalar linear transmission rate = minrank of the digraph
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Bar-Yossef et al. (2006)

Associate each ICSI instance with a digraph
Optimal scalar linear transmission rate = minrank of the digraph

Peeters (1996): Finding minrank of a graph is NP-hard (deciding
whether minrank of a graph is three is NP-hard)

Chaudhry and Sprintson (2008): exact and approximate algorithms
for minranks
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Literature Overview

Bar-Yossef et al. (2006)

Associate each ICSI instance with a digraph
Optimal scalar linear transmission rate = minrank of the digraph

Peeters (1996): Finding minrank of a graph is NP-hard (deciding
whether minrank of a graph is three is NP-hard)

Chaudhry and Sprintson (2008): exact and approximate algorithms
for minranks

Bar-Yossef et al. (2006); Berliner and Langberg (2011): polynomial
time computation of minranks for some families of graphs
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In this work we
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Our contributions

In this work we

characterize families of digraphs with some extremely high or low
minranks
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Our contributions

In this work we

characterize families of digraphs with some extremely high or low
minranks
show that deciding whether minrank of a digraph is two is NP-hard
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Our contributions

In this work we

characterize families of digraphs with some extremely high or low
minranks
show that deciding whether minrank of a digraph is two is NP-hard
(trivial for graphs)
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Definitions and Notation

An Example

Consider the following ICSI instance:

S

R1

R2 R3
R4

R5

requests x1
owns x2

requests x2
owns x3

requests x3
owns x1, x4

requests x4
owns x5

requests x5
owns x2, x4

x1 + x2
x2 + x3
x4 + x5
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Consider the following ICSI instance:
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R1

R2 R3
R4

R5

requests x1
owns x2

requests x2
owns x3

requests x3
owns x1, x4

requests x4
owns x5

requests x5
owns x2, x4

x1 + x2
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x4 + x5

S transmits x1 + x2, x2 + x3, and x4 + x5 (an IC of length 3).
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Definitions and Notation

An Example

Consider the following ICSI instance:

S

R1

R2 R3
R4

R5

requests x1
owns x2

requests x2
owns x3

requests x3
owns x1, x4

requests x4
owns x5

requests x5
owns x2, x4

x1 + x2
x2 + x3
x4 + x5

S transmits x1 + x2, x2 + x3, and x4 + x5 (an IC of length 3).

1 R1 decodes: x1 = x2 + (x1 + x2)

2 R2 decodes: x2 = x3 + (x2 + x3)

3 R3 decodes: x3 = x1 + (x1 + x2) + (x2 + x3)

4 R4 decodes: x4 = x5 + (x4 + x5)

5 R5 decodes: x5 = x4 + (x4 + x5)
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Definitions and Notation

Describe an ICSI Instance via Side Information Digraphs

Vertex set: V(D) = [n] = {1, 2, . . . , n} (n messages, n receivers)
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Definitions and Notation

Describe an ICSI Instance via Side Information Digraphs

Vertex set: V(D) = [n] = {1, 2, . . . , n} (n messages, n receivers)

Arc set: E(D) =
{

(i , j) : i ∈ [n], Ri has xj as side information
}
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Definitions and Notation

Describe an ICSI Instance via Side Information Digraphs

Vertex set: V(D) = [n] = {1, 2, . . . , n} (n messages, n receivers)

Arc set: E(D) =
{

(i , j) : i ∈ [n], Ri has xj as side information
}

Receiver Demand Side Info.
R1 x1 {x2}
R2 x2 {x3}
R3 x3 {x1, x4}
R4 x4 {x5}
R5 x5 {x2, x4}

1

2

34

5

R1

R2

R3R4

R5
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Definitions and Notation

Definition (Haemer, 1978)

Let D be a digraph where V(D) = [n].
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Definitions and Notation

Definition (Haemer, 1978)

Let D be a digraph where V(D) = [n].

1 A matrix M = (mi,j) ∈ F
n×n
q is said

to fit D if
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Definitions and Notation

Definition (Haemer, 1978)

Let D be a digraph where V(D) = [n].

1 A matrix M = (mi,j) ∈ F
n×n
q is said

to fit D if
{

mi,j 6= 0, i = j ,

mi,j = 0, i 6= j , (i , j) /∈ E(D).
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Definitions and Notation

Definition (Haemer, 1978)

Let D be a digraph where V(D) = [n].

1 A matrix M = (mi,j) ∈ F
n×n
q is said

to fit D if
{

mi,j 6= 0, i = j ,

mi,j = 0, i 6= j , (i , j) /∈ E(D).

2 The minrank of D over Fq is
defined to be

1

2

34

5

A digraph of minrank 3

minrkq(D)
△

= min
{

rank(M) : M ∈ F
n×n
q and M fits D

}

.

A+I =













1 1 0 0 0
0 1 1 0 0
1 0 1 1 0
0 0 0 1 1
0 1 0 1 1













=⇒ M =













1 1 0 0 0
0 1 1 0 0
1 0 1 0 0
0 0 0 1 1
0 0 0 1 1
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Graphs and Digraphs of Extreme MinRanks

Theorem (Bar-Yossef et al., 2006)

minrkq(D) = length of the shortest (scalar linear) index code
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Graphs and Digraphs of Extreme MinRanks

Theorem (Bar-Yossef et al., 2006)

minrkq(D) = length of the shortest (scalar linear) index code

Theorem

For any digraph D we have

α(D) ≤ minrkq(D) ≤ cc(D).
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Graphs and Digraphs of Near-Extreme MinRanks

Summary

Min-Rank Graph G Digraph D

1 G is complete (trivial)
D is complete (triv-
ial)

2
G is not complete and G is
2-colorable (Peeters, ’96)

D is not complete
and D is fairly 3-
colorable∗

n − 2

G (connected) has a maxi-
mum matching of size two
and does not contain F as
a subgraph∗

unknown

n − 1
G (connected) is a star
graph

unknown

n G has no edges (trivial)
D has no circuits
(from Bar-Yossef et
al., ’06)
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Graphs and Digraphs of Extreme MinRanks

Digraphs of minranks two

minrk2(D) = 2 iff D is not complete and D is fairly 3-colorable
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Graphs and Digraphs of Extreme MinRanks

1

2 3 4

A 4-coloring of a graph
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Graphs and Digraphs of Extreme MinRanks

1

2 3 4

A 4-coloring of a graph

1

2 3 4

A fair 2-coloring of a digraph

A fair coloring: out-neighbors of each vertex have the same color
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Graphs and Digraphs of Extreme MinRanks

1

2 3 4

A 4-coloring of a graph

1

2 3 4

A fair 2-coloring of a digraph

A fair coloring: out-neighbors of each vertex have the same color

Theorem

The fair k-coloring problem is NP-complete for k ≥ 3
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Graphs and Digraphs of Extreme MinRanks

1

2 3 4

A 4-coloring of a graph

1

2 3 4

A fair 2-coloring of a digraph

A fair coloring: out-neighbors of each vertex have the same color

Theorem

The fair k-coloring problem is NP-complete for k ≥ 3

Corollary

Deciding whether minrk2(D) = 2 is an NP-complete problem
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Graphs and Digraphs of Extreme MinRanks

Reduction from k-Coloring to Fair k-Coloring

1

2

3

1

ω1,2 ω2,1ω1,3 ω3,1

p1 p2 p3

2 3

G

D

Reduction for NP-hardness
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Reduction for NP-hardness
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Graphs and Digraphs of Near-Extreme MinRanks

Summary

Min-Rank Graph G Digraph D

1 G is complete (trivial)
D is complete (triv-
ial)
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2-colorable (Peeters, ’96)
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and D is fairly 3-
colorable∗
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Graphs and Digraphs of Extreme MinRanks

Theorem

Suppose G is a connected graph of order n ≥ 6. Then minrkq(G) = n − 2
iff G has a maximum matching of size two and does not contain a
subgraph isomorphic to the graph depicted below

The forbidden subgraph F
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Digraphs of Extreme MinRanks

Theorem

Let G be a connected graph of order n ≥ 2. Then minrkq(G) = n − 1 if
and only if G is a star graph.

b b

b
b

b

b
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Open Problems

Determine the hardness of the problem of deciding whether
minrkq(D) = 2 for q > 2?

Characterize families of graphs of order n with minrank n − k , for a
constant k > 2
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