Some recent developments in the theory of atomata

Hellis Tamm Institute of Cybernetics Tallinn University of Technology

Theory Days at Saka, Oct 25-27, 2013

Joint work with Janusz Brzozowski

Languages and automata

- We consider regular languages L ⊆ Σ* and nondeterministic finite automata (NFAs).
- An NFA is a quintuple N = (Q, Σ, δ, I, F), where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → 2^Q is the transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states.

Languages and automata

- The language accepted by an NFA \mathcal{N} is $L(\mathcal{N}) = \{ w \in \Sigma^* \mid \delta(I, w) \cap F \neq \emptyset \}.$
- Two NFAs are equivalent if they accept the same language.
- The (right) language of a state q of \mathcal{N} is $L_{q,F}(\mathcal{N}) = \{w \in \Sigma^* \mid \delta(q, w) \cap F \neq \emptyset\}.$

For example, $L_{1,\{2,3\}}(\mathcal{N}) = \{b, bb, bab, bbb, \ldots\}$

Quotients and DFA

- The (left) quotient of a language L by a word w is the language w⁻¹L = {x ∈ Σ* | wx ∈ L}.
- A deterministic finite automaton (DFA) is D = (Q, Σ, δ, q₀, F), with the transition function δ : Q × Σ → Q, and the initial state q₀.
- There is a unique minimal DFA for every regular language.
- In the minimal DFA, the right language of any state is a quotient of *L*.

Atoms

Let $L_0 = L, L_1, \ldots, L_{n-1}$ be the quotients of a regular language L.

An atom of L is any non-empty language of the form

$$A=\widetilde{L_0}\cap\widetilde{L_1}\cap\cdots\cap\widetilde{L_{n-1}},$$

where \widetilde{L}_i is either L_i or \overline{L}_i .

- A language has at most 2ⁿ atoms.
- An atom is initial if it has L_0 (rather than $\overline{L_0}$) as a term.
- An atom is final if and only if it contains ε.
- There is exactly one final atom, the atom $\widehat{L}_0 \cap \widehat{L}_1 \cap \cdots \cap \widehat{L}_{n-1}$, where $\widehat{L}_i = L_i$ if $\varepsilon \in L_i$, $\widehat{L}_i = \overline{L_i}$ otherwise.

Átomaton

We use a one-to-one correspondence $A_i \leftrightarrow A_i$ between atoms A_i of a language L and the states A_i of the NFA A defined below.

Let $L = L_0 \subseteq \Sigma^*$ be any regular language with the set of atoms $Q = \{A_0, \ldots, A_{m-1}\}$, initial set of atoms $I \subseteq Q$, and final atom A_{m-1} .

The átomaton of *L* is the NFA $\mathcal{A} = (\mathbf{Q}, \Sigma, \delta, \mathbf{I}, \{\mathbf{A}_{m-1}\})$, where

- $\mathbf{Q} = {\mathbf{A}_i \mid A_i \in Q},$
- $\mathbf{I} = {\mathbf{A}_i \mid A_i \in I},$
- $\mathbf{A}_j \in \delta(\mathbf{A}_i, a)$ if and only if $aA_j \subseteq A_i$, for all $A_i, A_j \in Q$.

Some properties of átomaton

- Let A_0, \ldots, A_{m-1} be the atoms and let \mathcal{A} be the átomaton of L.
- The right language of state \mathbf{A}_i of \mathcal{A} is the atom A_i , that is, $L_{\mathbf{A}_i, \{\mathbf{A}_{m-1}\}}(\mathcal{A}) = A_i$, for all $i \in \{0, \dots, m-1\}$.
- The language accepted by \mathcal{A} is L.
- Let \mathcal{D} be the minimal DFA of L. The átomaton \mathcal{A} is isomorphic to \mathcal{D}^{RDR} (where R reversal, D determinization).
- The reverse automaton \mathcal{A}^R of \mathcal{A} is a minimal DFA for the reverse language of L.
- The determinized automaton \mathcal{A}^D of \mathcal{A} is a minimal DFA of L.

Partial atoms

- Let $\mathcal{N} = (Q, \Sigma, \delta, I, F)$ be an NFA accepting L, with state set $Q = \{q_0, \dots, q_{k-1}\}.$
- Let $L_i = L_{q_i,F}(\mathcal{N})$, $i \in \{0, \ldots, k-1\}$ be the partial quotients of \mathcal{N} .
- A partial quotient L_i is initial if $q_i \in I$, it is final if $q_i \in F$.
- A partial atom of L is any non-empty language of the form

$$\widetilde{L_0}\cap\widetilde{L_1}\cap\cdots\cap\widetilde{L_{k-1}},$$

where \widetilde{L}_i is either L_i or \overline{L}_i .

- A partial atom is initial if it has some initial partial quotient L_i as a term.
- A partial atom is final if and only if it contains ε .
- There is exactly one final partial atom, $\widehat{L_0} \cap \widehat{L_1} \cap \cdots \cap \widehat{L_{k-1}}$, where $\widehat{L_i} = L_i$ if $\varepsilon \in L_i$, and $\widehat{L_i} = \overline{L_i}$ otherwise.

Partial átomaton

Let the set of partial atoms of \mathcal{N} be $X = \{X_0, \ldots, X_{l-1}\}$, the set of initial partial atoms I_X , and the final partial atom X_{h-1} .

We use a one-to-one correspondence $X_i \leftrightarrow \mathbf{X}_i$ between partial atoms X_i and the states \mathbf{X}_i of the NFA \mathcal{X} defined below.

The partial átomaton of \mathcal{N} , is the NFA defined by $\mathcal{X} = (\mathbf{X}, \Sigma, \eta, \mathbf{I}_X, \{\mathbf{X}_{h-1}\})$, where $\mathbf{X} = \{\mathbf{X}_i \mid X_i \in X\}$, $\mathbf{I}_X = \{\mathbf{X}_i \mid X_i \in I_X\}$, and $\mathbf{X}_j \in \eta(\mathbf{X}_i, a)$ if and only if $aX_j \subseteq X_i$, for all $\mathbf{X}_i, \mathbf{X}_j \in \mathbf{X}$ and $a \in \Sigma$.

Properties of partial atoms

- Partial atoms are pairwise disjoint, that is, $X_i \cap X_j = \emptyset$ for all $i, j \in \{0, \dots, l-1\}, i \neq j$.
- Any quotient w⁻¹L of L by w ∈ Σ* is a (possibly empty) union of partial atoms.
- Any quotient w⁻¹X_i of a partial atom X_i by w ∈ Σ* is a (possibly empty) union of partial atoms.
- Partial atoms define a partition of Σ^* .

Some properties of partial átomaton

Let $X = \{X_0, \ldots, X_{l-1}\}$ be the set of partial atoms, and let \mathcal{X} be the partial atomaton of \mathcal{N} .

- The right language of state X_i of \mathcal{X} is partial atom X_i .
- The language accepted by \mathcal{X} is L.
- Partial átomaton \mathcal{X} of \mathcal{N} is isomorphic to \mathcal{N}^{RDR} .

Proposition Let $\varphi : \mathbf{X} \to S$ be the mapping assigning to state \mathbf{X}_i , given by $X_i = L_{i_0} \cap \cdots \cap L_{i_{g-1}} \cap \overline{L_{i_g}} \cap \cdots \cap \overline{L_{i_{k-1}}}$ of \mathcal{X} , the set $\{q_{i_0}, \ldots, q_{i_{g-1}}\}$. Then φ is an NFA isomorphism between \mathcal{X} and \mathcal{N}^{RDR} .

Example: constructing partial atoms

Since
$$L_2 = \overline{L_1}$$
, $L_1 \cap L_2 = \emptyset$ and $\overline{L_1} \cap \overline{L_2} = \emptyset$.
Also, $L_1 \cap \overline{L_2} = L_1$ and $\overline{L_1} \cap L_2 = L_2$.
Partial atoms are the non-empty intersections:

tial atoms are the non-empty intersections:

$$\begin{array}{ll} X_0 &= L_0 \cap \underline{L_1} \cap \overline{L_2} = aL_1 = a(L_0 \cap \underline{L_1} \cap \overline{L_2}) \cup a(\overline{L_0} \cap \underline{L_1} \cap \overline{L_2}), \\ X_1 &= L_0 \cap \overline{L_1} \cap \underline{L_2} = aL_2 = a(L_0 \cap \overline{L_1} \cap L_2) \cup a(\overline{L_0} \cap \overline{L_1} \cap L_2), \\ X_2 &= \overline{L_0} \cap \underline{L_1} \cap \overline{L_2} = bL_2 = b(L_0 \cap \overline{L_1} \cap L_2) \cup b(\overline{L_0} \cap \overline{L_1} \cap L_2), \\ X_3 &= \overline{L_0} \cap \overline{L_1} \cap L_2 = bL_1 \cup \varepsilon = b(L_0 \cap L_1 \cap \overline{L_2}) \cup b(\overline{L_0} \cap L_1 \cap \overline{L_2}) \cup \varepsilon. \end{array}$$

3

Example: constructing partial átomaton

$$\begin{array}{ll} X_0 &= L_0 \cap \underline{L_1} \cap \overline{L_2} = aL_1 = a(L_0 \cap \underline{L_1} \cap \overline{L_2}) \cup a(\overline{L_0} \cap \underline{L_1} \cap \overline{L_2}), \\ X_1 &= L_0 \cap \overline{L_1} \cap \underline{L_2} = aL_2 = a(L_0 \cap \overline{L_1} \cap L_2) \cup a(\overline{L_0} \cap \overline{L_1} \cap L_2), \\ X_2 &= \overline{L_0} \cap \underline{L_1} \cap \overline{L_2} = bL_2 = b(L_0 \cap \overline{L_1} \cap L_2) \cup b(\overline{L_0} \cap \overline{L_1} \cap L_2), \\ X_3 &= \overline{L_0} \cap \overline{L_1} \cap L_2 = bL_1 \cup \varepsilon = b(L_0 \cap L_1 \cap \overline{L_2}) \cup b(\overline{L_0} \cap L_1 \cap \overline{L_2}) \cup \varepsilon. \end{array}$$

(a) An NFA \mathcal{N} ; (b) partial átomaton \mathcal{X} of \mathcal{N} .

Atoms and partial atoms

Let \mathcal{N} be an NFA accepting L, with partial atoms $X = \{X_0, \ldots, X_{l-1}\}$, and partial atomaton \mathcal{X} .

Let the set of atoms of L be $A = \{A_0, \ldots, A_{m-1}\}$.

- For every X_i there exists some atom A_j , such that $X_i \subseteq A_j$.
- Every atom A_j is a disjoint union of some X_i's.
- The partial átomaton \mathcal{X} of \mathcal{N} is the átomaton of L if and only if X is the set of atoms A.

Atomicity of states

We call a state q_i of an NFA N atomic if its right language L_i is a union of atoms of L.

Consider the DFA \mathcal{N}^{RD} (not necessarily minimal). Let S_0, \ldots, S_{r-1} be the sets of equivalent states of \mathcal{N}^{RD} . We use the equivalence classes S_0, \ldots, S_{r-1} to detect which states of \mathcal{N} are atomic.

Theorem A state q_i of an NFA \mathcal{N} is atomic if and only if the subset $S'_i = \{s_j \in S \mid q_i \in s_j\}$ of states of \mathcal{N}^{RD} is a union of some equivalence classes of \mathcal{N}^{RD} .

We define an NFA ${\cal N}$ to be atomic if all states of ${\cal N}$ are atomic.

Corollary An NFA \mathcal{N} is atomic if and only if \mathcal{N}^{RD} is minimal.

Corollary An NFA \mathcal{N} is atomic if and only if the partial atoms of \mathcal{N} are the atoms of \mathcal{L} .

Theorem (Brzozowski, 1962). If an NFA \mathcal{N} has no empty states and \mathcal{N}^R is deterministic, then \mathcal{N}^D is minimal.

Our generalization:

Theorem (2011) For any NFA \mathcal{N} , \mathcal{N}^D is minimal if and only if \mathcal{N}^R is atomic.