Update monads:
 Cointerpreting directed containers

Danel Ahman, U. of Edinburgh
Tarmo Uustalu, Inst. of Cybernetics, Tallinn

Theory Days at Saka, 25-27 October 2013

Background: Three famous monads

Reader monad	State monad	Writer monad
$S —$ a set	S-a set	(P, o, \oplus)-a monoid
$T X=S \rightarrow X$	$T X=S \rightarrow S \times X$	$T X=P \times X$

S —states, P —updates (alt. "programs")

This talk: A unification (+ a little more)

Update monad

$$
S \text { —a set }
$$

(P, o, \oplus) —a monoid
\downarrow —an action
$T X=S \rightarrow P \times X$

Reader monad
S —a set
$T X=S \rightarrow X$

State monad
S-a set
$T X=S \rightarrow S \times X$

Writer monad
(P, o, \oplus) —a monoid
$T X=P \times X$

This talk: A unification (+ a little more)

Update monad

$$
S \text { —a set }
$$

(P, o, \oplus) —a monoid
\downarrow —an action
$T X=S \rightarrow P \times X$
cf. $T X=\Pi s: S .(s \downarrow P) \times X$ by Kammar and Plotkin

Reader monad
S-a set
$T X=S \rightarrow X \quad T X=S \rightarrow S \times X$

State monad
S-a set

Writer monad
(P, o, \oplus) —a monoid
$T X=P \times X$

Monoids, monoid actions

- A monoid on a set P is given by

$$
\begin{gathered}
\circ: P, \\
\oplus: P \rightarrow P \rightarrow P \\
p \oplus \circ=p \\
\circ \oplus p=p \\
\left(p \oplus p^{\prime}\right) \oplus p^{\prime \prime}=p \oplus\left(p^{\prime} \oplus p^{\prime \prime}\right)
\end{gathered}
$$

- An action of a monoid (P, o, \oplus) on a set S is given by

$$
\begin{gathered}
\downarrow: S \rightarrow P \rightarrow S \\
s \downarrow \circ=s \\
s \downarrow\left(p \oplus p^{\prime}\right)=(s \downarrow p) \downarrow p^{\prime}
\end{gathered}
$$

Reader and writer monads

A set S and monoid $(P, \mathrm{o}, \oplus), \downarrow$ give monads via

$$
\begin{array}{cc}
T_{0} X=S \rightarrow X & T_{1} X=P \times X \\
\eta_{0}: \forall\{X\} . X \rightarrow S \rightarrow X & \eta_{1}: \forall\{X\} . X \rightarrow P \times X \\
\eta_{0} x=\lambda s . x & \eta_{1} x=(o, x) \\
\mu_{0}: \forall\{X\} \cdot(S \rightarrow(S \rightarrow X)) & \mu_{1}: \forall\{X\} . P \times(P \times X) \\
\rightarrow S \rightarrow X & \rightarrow P \times X \\
\mu_{0} f=\lambda s . f s s & \mu_{1}\left(p,\left(p^{\prime}, x\right)\right)=\left(p \oplus p^{\prime}, x\right)
\end{array}
$$

State monads

- A set S gives a monad via

$$
\begin{gathered}
T X=S \rightarrow S \times X \\
\eta: \forall\{X\} . X \rightarrow S \rightarrow S \times X \\
\eta x=\lambda s .(s, x) \\
\mu: \forall\{X\} \cdot(S \rightarrow S \times(S \rightarrow S \times X)) \rightarrow S \rightarrow S \times X \\
\mu f=\lambda s . \text { let }\left(s^{\prime}, g\right)=f s ; \\
\left(s^{\prime \prime}, x\right)=g s^{\prime} \\
\text { in }\left(s^{\prime \prime}, x\right)
\end{gathered}
$$

Update monads

- A set S, monoid (P, o, \oplus) and action \downarrow give a monad via

$$
\begin{gathered}
T X=S \rightarrow P \times X \\
\eta: \forall\{X\} . X \rightarrow S \rightarrow P \times X \\
\eta x=\lambda s .(o, x) \\
\mu: \forall\{X\} \cdot(S \rightarrow P \times(S \rightarrow P \times X)) \rightarrow S \rightarrow P \times X \\
\mu f=\lambda s . \text { let }(p, g)=f s ; \\
\left(p^{\prime}, x\right)=g(s \downarrow p) \\
\operatorname{in}\left(p \oplus p^{\prime}, x\right)
\end{gathered}
$$

Reader and writer monads as instances

- Recall update monads:

$$
T X=S \rightarrow P \times X
$$

- Reader monads: update monads with (P, o, \oplus) and \downarrow trivial
- Writer monads:
update monads with S and \downarrow trivial
- State monads:
embed into update monads for P the free monoid on the overwrite semi-group (S, \bullet) with $s \bullet s^{\prime}=s^{\prime}$

Update monad example: writing into a buffer

- $S=E^{*} \times$ Nat \quad (current buffer content and free space)
- $P=E^{*}$ (new values to write)
- $0=[]$
- $p \oplus p^{\prime}=p+p^{\prime}$
- $(s, n) \downarrow p=(s+(p \mid n), n-\operatorname{length}(p \mid n))$
($p \mid n$ is p truncated to length n)

Algebras of update monads

An algebra of such a monad is a set X with an operation

$$
\begin{gathered}
\text { act }:(S \rightarrow P \times X) \rightarrow X \\
x=\operatorname{act}(\lambda s .(o, x)) \\
\operatorname{act}\left(\lambda s .\left(p, \operatorname{act}\left(\lambda s^{\prime} .\left(p^{\prime}, x\right)\right)\right)\right) \\
=\operatorname{act}\left(\lambda s .\left(p \oplus p^{\prime}\left[s \downarrow p / s^{\prime}\right], x\left[s \downarrow p / s^{\prime}\right]\right)\right)
\end{gathered}
$$

or, equivalently a pair of operations (cf. algebraic effects)

$$
\begin{gathered}
\operatorname{Ikp}:(S \rightarrow X) \rightarrow X \\
\operatorname{upd}: P \times X \rightarrow X \\
x=\operatorname{Ikp}(\lambda s \cdot \operatorname{upd}(o, x)) \\
\operatorname{upd}\left(p, \operatorname{upd}\left(p^{\prime}, x\right)\right)=\operatorname{upd}\left(p \oplus p^{\prime}, x\right) \\
\operatorname{Ikp}\left(\lambda s \cdot \operatorname{upd}\left(p, \operatorname{lkp}\left(\lambda s^{\prime} . x\right)\right)\right)=\operatorname{Ikp}\left(\lambda s . \operatorname{upd}\left(p, x\left[s \downarrow p / s^{\prime}\right]\right)\right)
\end{gathered}
$$

Algebras of update monads cont'd

The operations

$$
\begin{gathered}
\text { act }:(S \rightarrow P \times X) \rightarrow X \\
\text { Ikp }:(S \rightarrow X) \rightarrow X \\
\text { upd }: P \times X \rightarrow X
\end{gathered}
$$

are interdefinable via

$$
\begin{aligned}
\operatorname{lkp}(\lambda s \cdot x) & =\operatorname{act}(\lambda s \cdot(o, x)) \\
\operatorname{upd}(p, x) & =\operatorname{act}(\lambda s \cdot(p, x)) \\
\operatorname{act}(\lambda s \cdot(p, x)) & =\operatorname{lkp}(\lambda s \cdot \operatorname{upd}(p, x))
\end{aligned}
$$

Update monads as compatible compositions

The update monad for $S,(P, \mathrm{o}, \oplus), \downarrow$ is the compatible composition the reader and writer monads

$$
\begin{array}{cc}
T_{0} X=S \rightarrow X & T_{1} X=P \times X \\
\eta_{0}: \forall\{X\} . X \rightarrow S \rightarrow X & \eta_{1}: \forall\{X\} . X \rightarrow P \times X \\
\eta_{0} X=\lambda s . x & \eta_{1} x=(o, x) \\
\mu_{0}: \forall\{X\} .(S \rightarrow(S \rightarrow X)) & \mu_{1}: \forall\{X\} . P \times(P \times X) \\
\rightarrow S \rightarrow X & \rightarrow P \times X \\
\mu_{0} f=\lambda s . f s s & \mu_{1}\left(p,\left(p^{\prime}, x\right)\right)=\left(p \oplus p^{\prime}, x\right)
\end{array}
$$

for the distributive law

$$
\begin{gathered}
\theta: \forall\{X\} . P \times(S \rightarrow X) \rightarrow(S \rightarrow P \times X) \\
\theta(p, f)=\lambda s \cdot(p, f(s \downarrow p))
\end{gathered}
$$

Update algebras as compatible pairs of reader and writer algebras

An algebra of the update monad for $S,(P, \mathrm{o}, \oplus), \downarrow$ is a set X carrying algebras of both the reader and writer monad

$$
\begin{array}{cr}
\operatorname{Ikp}:(S \rightarrow X) \rightarrow X & \text { upd }: P \times X \rightarrow X \\
\operatorname{Ikp}(\lambda s . x)=x & \operatorname{upd}(o, x)=x \\
\operatorname{Ikp}\left(\lambda s . \operatorname{lkp}\left(\lambda s^{\prime} \cdot x\right)\right) & \operatorname{upd}\left(p, \operatorname{upd}\left(p^{\prime}, x\right)\right) \\
=\operatorname{Ikp}\left(\lambda s . x\left[s / s^{\prime}\right]\right) & =\operatorname{upd}\left(p \oplus p^{\prime}, x\right)
\end{array}
$$

satisfying an additional compatibility condition

$$
\operatorname{upd}\left(p, \operatorname{lkp}\left(\lambda s^{\prime} . x\right)\right)=\operatorname{Ikp}\left(\lambda s . \operatorname{upd}\left(p, x\left[s \downarrow p / s^{\prime}\right]\right)\right)
$$

A finer version

- Rather than

$$
\begin{gathered}
S \text {-a set } \\
(P, \mathrm{o}, \oplus) \text {-a monoid } \\
\downarrow \text {-an action } \\
T X=S \rightarrow P \times X
\end{gathered}
$$

consider

$$
\begin{gathered}
(S, P, \downarrow, \mathrm{o}, \oplus) \text {-a directed container } \\
T X=\Pi s: S . P s \times X
\end{gathered}
$$

S —states, $P s$ —updates enabled (or safe) in state s

Directed containers

- A directed container is

$$
\begin{gathered}
S \text { a set, } \\
P \text { a } S \text {-indexed family, }
\end{gathered}
$$

$$
\begin{gathered}
\downarrow: \Pi s: S . P s \rightarrow S \\
o: \Pi\{s: S\} . P s
\end{gathered}
$$

$\oplus: \Pi\{s: S\} . \Pi p: P s . P(s \downarrow p) \rightarrow P s$,

$$
\begin{gathered}
s \downarrow \circ=s, \\
s \downarrow\left(p \oplus p^{\prime}\right)=(s \downarrow p) \downarrow p^{\prime}, \\
p \oplus 0=p, \\
\circ \oplus p=p, \\
\left(p \oplus p^{\prime}\right) \oplus p^{\prime \prime}=p \oplus\left(p^{\prime} \oplus p^{\prime \prime}\right)
\end{gathered}
$$

Monads from directed containers

A directed container $(S, P, \downarrow, \circ, \oplus)$ yields a monad via

$$
\begin{gathered}
T X=\Pi s: S . P s \times X \\
\eta: \forall\{X\} . X \rightarrow \Pi s: S . P s \times X \\
\eta x=\lambda s .(o, x) \\
\mu: \forall\{X\} .\left(\Pi s: S . P s \times\left(\Pi s^{\prime}: S . P s^{\prime} \times X\right)\right) \rightarrow \Pi s: S . P s \times X \\
\mu f=\lambda s . \text { let }(p, g)=f s ; \\
\left(p^{\prime}, x\right)=g(s \downarrow p) \\
\text { in }\left(p \oplus p^{\prime}, x\right)
\end{gathered}
$$

Example: writing into a buffer (a finer version)

- $S=E^{*} \times$ Nat \quad (current buffer content and free space)
- $P(s, n)=E^{\leq n}$
(new values to write)
- $0=[]$
- $p \oplus p^{\prime}=p+p^{\prime}$
- $(s, n) \downarrow p=(s+p, n-$ length $(p))$

Monads from directed containers: Algebras

An algebra for the monad for the directed container $(S, P, \downarrow, \mathrm{o}, \oplus)$ is a set X with an operation

$$
\begin{gathered}
\text { act }:(\Pi s: S . P s \times X) \rightarrow X \\
x=\operatorname{act}(\lambda s . o, x) \\
\operatorname{act}\left(\lambda s . p, \operatorname{act}\left(\lambda s^{\prime} \cdot p^{\prime}, x\right)\right) \\
=\operatorname{act}\left(\lambda s \cdot p \oplus p^{\prime}\left[s \downarrow p / s^{\prime}\right], x\left[s \downarrow p / s^{\prime}\right]\right)
\end{gathered}
$$

Directed container morphisms, monad morphisms

- A morphism between two directed containers $\left(S^{\prime}, P^{\prime}, \downarrow^{\prime}, \mathrm{o}^{\prime}, \oplus^{\prime}\right)$ and $(S, P, \downarrow, \mathrm{o}, \oplus)$ is given by

$$
\begin{gathered}
t: S^{\prime} \rightarrow S \\
q: \Pi\left\{s: S^{\prime}\right\} . P(t s) \rightarrow P^{\prime} s \\
t\left(s \downarrow^{\prime} q p\right)=t s \downarrow p \\
{o^{\prime}}^{\prime}=q \circ \\
q p \oplus^{\prime} q p^{\prime}=q\left(p \oplus p^{\prime}\right)
\end{gathered}
$$

- It yields a morphism between the monads (T, η, μ) and $\left(T^{\prime}, \eta^{\prime}, \mu^{\prime}\right)$ via

$$
\begin{gathered}
\tau: \forall\{X\} .(\Pi s: S . P s \times X) \rightarrow \Pi s: S^{\prime} . P^{\prime} s \times X \\
\tau f=\lambda s . \text { let }(p, x)=f(t s) \text { in }(q p, x)
\end{gathered}
$$

- Notice the reversal of arrow directions!

Directed containers and comonads

(A., C., U., FoSSaCS 2012)

Comonads(Set)

$$
\llbracket S, P \rrbracket^{c} X=\Sigma s: S . P s \rightarrow X
$$

Directed containers and monads

(the new picture)

$\langle\langle S, P\rangle\rangle^{c} X=\Pi s: S . P s \times X$

