
The Delay Monad and Restriction Categories

James Chapman, Tarmo Uustalu, Niccolò Veltri

Institute of Cybernetics, Tallinn

Theory Days 2013, Saka, 27 October 2013

Motivation

I The delay monad is a viable constructive alternative to the
maybe monad.

I It was introduced by Capretta for representing general
recursive functions in type theory and it is useful for modeling
non-terminating behaviours.

I It has been studied only from a type theoretical point of view.
What about a more general (categorical) analysis?

I Restriction categories are an axiomatic framework by Cockett
and Lack for reasoning about partiality.

This Talk

I We formalize some parts of the categorical theory of
restriction categories (and partial map categories) in Agda.

I We develop the theory of the Delay type in the restriction
category setting.

I We set up the basis for the study of the Kleisli category of the
delay monad on Set (e.g. partial products, joins, meets,
iteration operation)

Restriction Categories

I A restriction category is a category X together with an
operation (restriction) that associates to every f : A→ B a
map f : A→ A such that

R1. f ◦ f = f
R2. g ◦ f = f ◦ g with f : A→ B, g : A→ C

R3. g ◦ f = g ◦ f with f : A→ B, g : A→ C
R4. g ◦ f = f ◦ g ◦ f with f : A→ B, g : B → C

I A map f : A→ B is called total, if f = id.

I Intuition : f is the “partial identity function” on A specifying
the domain of definedness of f : A→ B.

I f ≤ g if and only if f = g ◦ f .

I f is ’less defined’ than g if f coincides with g on f ’s domain
of definedness.

Restriction Categories: Examples

I Set (and more generally any category X) is a restriction
category with the trivial restriction f = id

I Pfn =“sets and partial functions” is a restriction category
with the restriction

f (x) =

{
x if f (x) is defined
undefined otherwise

I “A single object N and all partial recursive functions” is a
restriction category with restriction as above (for a partially
recursive function, it is partially recursive)

The Delay Type

I For a type A, we define Delay A as a coinductive type by the
rules

now a : Delay A

c : Delay A

later c : Delay A

I We define convergence ↓ as a binary relation between Delay A
and A inductively by the rules

now a ↓ a

c ↓ a

later c ↓ a

Equality for the Delay Type : Strong Bisimilarity

I We define strong bisimilarity ∼ coinductively via by the rules

now a ∼ now a

c ∼ c ′

later c ∼ later c ′

I Two computations are ’equal’ if they contain the same
(possibly infinite) number of later applications.

Equality for the Delay Type : Weak Bisimilarity

I We define weak bisimilarity ≈ coinductively via convergence
by the rules

c ↓ a c ′ ↓ a

c ≈ c ′
c ≈ c ′

later c ≈ later c ′

I Two computations are ’equal’ if they differ for a finite number
of applications of the constructor later.

The Delay Monad

I Delay (quotiented by strong/weak bisimilarity) is a strong
monad.

η : A→ Delay A
η = now

bind : (A→ Delay B)→ Delay A→ Delay B
bind f (now a) = f a
bind f (later c) = later (bind f c)

str : (A× Delay B)→ Delay (A× B)
str (a, c) = map (λb → (a, b)) c

where map is the action of the endofunctor Delay on maps.

Restriction in the Kleisli Category

I The Kleisli category of the delay monad quotiented by weak
bisimilarity (Kl(Delay/≈)) is a restriction category.
Restriction is given in terms of the strength

f = A
〈id,f 〉 // A× Delay B

str // Delay (A× B)
Delay π0// Delay A

I The Kleisli category of the delay monad quotiented by strong
bisimilarity (Kl(Delay/∼)) is not a restriction category

f ◦ f 6∼ f

Cartesian Restriction Categories

I A cartesian restriction category X is a restriction category
with a partial final object and partial products between any
pair of objects.

I A restriction category X has a partial final object if there is an
object 1 such that for any map f : A→ 1 there is unique map
!A : A→ 1 such that

A
f //

f ��

A

!A
��

1

I Compare with the ordinary final object

A

!A
��

f

��
1

Cartesian Restriction Categories

I A restriction category X has binary partial products if for each
pair of objects A and B there is an object A× B with total
maps π0 : A× B → A, π1 : A× B → B such that for any pair
of maps f : Z → A, g : Z → B there is a unique map
〈f , g〉 : Z → A× B such that

Z

f
��

Z
goo

〈f ,g〉
��

f // Z

g

��
A A× Bπ0
oo

π1
// B

I Compare with the ordinary binary product

Z
f

||
〈f ,g〉
��

g

""
A A× Bπ0
oo

π1
// B

Partial Final Object in Kl(Delay/≈)

I The partial final object is 1. Given an object A the unique
good map pointing into 1 is now◦!A.

I The ordinary final object is 0. The only map of type
A→ Delay 0 is the always undefined one.

Partial Products in Kl(Delay/≈)

I The partial product of A and B is A× B with projections
now ◦ π0 and now ◦ π1, which are total.

I Pairing:

〈 , 〉 : Delay A→ Delay B → Delay (A× B)
〈now a, now b〉 = now (a, b)
〈now a, later c〉 = later 〈now a, c〉
〈later c , now b〉 = later 〈c , now b〉
〈later c , later c ′〉 = later 〈c , c ′〉

I The pairing is extended to functions pointwise.

I The ordinary product of A and B is A + B + A× B (as in the
category of sets and partial functions).

Restriction Joins and Meets

I In a restriction category a map f : A→ B is the join of
parallel maps f1 and f2 if

(i) f1 ≤ f , f2 ≤ f
(ii) for any other map g such that f1 ≤ g , f2 ≤ g we

have f ≤ g

i.e. f is the join of f1 and f2 in X(A,B).

I Similarly f : A→ B is the meet of f1 and f2 if it is the meet of
f1 and f2 in X(A,B).

Joins in Kl(Delay/≈)

I We define a function join:

join : Delay A→ Delay A→ Delay A
join (now a) c = now a
join (later c) (now a) = now a
join (later c) (later c ′) = later (join c c ′)

I It is extended pointwise to maps.

I The function join above is the join of f and g in Kl(Delay/≈)
only if f and g are compatible maps.

I Two maps are compatible if they return the same value
whenever they are defined.

Meets in Kl(Delay/≈)

I We define a function meet:

meet : Delay A→ Delay A→ Delay A
meet (now a) c = now a
meet (later c) (now a) = later (meet c (now a))
meet (later c) (later c ′) = later (meet c c ′)

I It is extended pointwise to maps.

I The meet function above is the meet of f , g : A→ Delay B in
Kl(Delay/≈) if B is a semidecidable set.

Iteration Operator

I An iteration operator in a category X is an operation

f : A→ A + B
iter f : A→ B

which satisfies

A

iter f ""

f // A + B

[iter f ,id]
��

B

and other axioms.

Iteration in Kl(Delay/≈)

I Iteration is defined as

iter′ : (A→ Delay (A + B))→ Delay (A + B)→ Delay B
iter′ f (now (inl a)) = later (iter′ f (f a))
iter′ f (now (inr b)) = now b
iter′ f (later c) = later (iter′ f c)

iter : (A→ Delay (A + B))→ A→ Delay B
iter f a = iter′ f (now (inl a))

Conclusion and Future Work

I The Kleisli category of the delay monad on Set expresses
computability in the sense that it is a cartesian restriction
category with joins, meets and iteration.

I It is the starting point for the development of the delay
monad theory in general categories.

I We claim that the Kleisli category of the delay monad has
more interesting properties (e.g. initial algebra-final coalgebra
(limit-colimit) coincidence, Kleisli exponentials, Turing
category structure).

