The Delay Monad and Restriction Categories

James Chapman, Tarmo Uustalu, Niccold Veltri

Institute of Cybernetics, Tallinn

Theory Days 2013, Saka, 27 October 2013



Motivation

» The delay monad is a viable constructive alternative to the
maybe monad.

> It was introduced by Capretta for representing general
recursive functions in type theory and it is useful for modeling
non-terminating behaviours.

> It has been studied only from a type theoretical point of view.
What about a more general (categorical) analysis?

» Restriction categories are an axiomatic framework by Cockett
and Lack for reasoning about partiality.



This Talk

» We formalize some parts of the categorical theory of
restriction categories (and partial map categories) in Agda.

» We develop the theory of the Delay type in the restriction
category setting.

» We set up the basis for the study of the Kleisli category of the
delay monad on Set (e.g. partial products, joins, meets,
iteration operation)



Restriction Categories

v

A restriction category is a category X together with an
operation (restriction) that associates to every f : A — B a
map f : A — A such that

RL. fof=f

R2. gof =fogwithf:A—=B g:A—C

R3. gof =gofwithf:A—B,g:A—C

R4. gof=fogofwithf:A—-B,g:B—C
A map f: A— B is called total, if f=id.

Intuition : f is the “partial identity function” on A specifying
the domain of definedness of f : A — B.

v

v

v

f<gifandonlyif f=gof.

v

f is 'less defined' than g if f coincides with g on f's domain
of definedness.



Restriction Categories: Examples

» Set (and more generally any category X) is a restriction
category with the trivial restriction f = id

» Pfn ="sets and partial functions” is a restriction category
with the restriction

T if f(x) is defined
Flx) = { undefined otherwise

» "“A single object N and all partial recursive functions” is a
restriction category with restriction as above (for a partially
recursive function, it is partially recursive)



The Delay Type

» For a type A, we define Delay A as a coinductive type by the

rules
c : Delay A

now a: Delay A later ¢ : Delay A

» We define convergence | as a binary relation between Delay A
and A inductively by the rules

cla

now ala latercl a




Equality for the Delay Type : Strong Bisimilarity

» We define strong bisimilarity ~ coinductively via by the rules

c~c

NOW a ~ Now a later ¢ ~ later ¢’

» Two computations are 'equal’ if they contain the same
(possibly infinite) number of later applications.



Equality for the Delay Type : Weak Bisimilarity

» We define weak bisimilarity ~ coinductively via convergence
by the rules

cla cla c~c

c~c later ¢ ~ later ¢’

» Two computations are 'equal’ if they differ for a finite number
of applications of the constructor later.



The Delay Monad

» Delay (quotiented by strong/weak bisimilarity) is a strong
monad.

n:A— Delay A

7 = now

bind : (A — Delay B) — Delay A — Delay B
bind f (now a) =f a
bind f (later ¢) = later (bind f ¢)

str : (A x Delay B) — Delay (A x B)
str (a,c) = map (Ab — (a, b)) ¢

where map is the action of the endofunctor Delay on maps.



Restriction in the Kleisli Category

» The Kleisli category of the delay monad quotiented by weak
bisimilarity (KI(Delay/~)) is a restriction category.
Restriction is given in terms of the strength

(id,f)

F= A YL A Delay B2~ Delay (A x B) =2 IDelay A

» The Kileisli category of the delay monad quotiented by strong
bisimilarity (KI(Delay/~)) is not a restriction category

fo?r;éf



Cartesian Restriction Categories

> A cartesian restriction category X is a restriction category
with a partial final object and partial products between any
pair of objects.

> A restriction category X has a partial final object if there is an
object 1 such that for any map f : A — 1 there is unique map
Ia:A— 1 such that



Cartesian Restriction Categories

> A restriction category X has binary partial products if for each
pair of objects A and B there is an object A x B with total
maps g : AX B = A, m1 : A X B — B such that for any pair
of maps f : Z — A, g : Z — B there is a unique map
(f,g): Z — A x B such that

78 7 f . 7

f l(f,g) g
A<—AxB——=B
o ™

» Compare with the ordinary binary product



Partial Final Object in Kl(Delay/~)

» The partial final object is 1. Given an object A the unique
good map pointing into 1 is nowol4.

> The ordinary final object is 0. The only map of type
A — Delay 0 is the always undefined one.



Partial Products in Kl(Delay /~)

v

The partial product of A and B is A x B with projections
now o mg and now o 71, which are total.

v

Pairing:

(_,-) : Delay A — Delay B — Delay (A x B)
(now a,now b) = now (a, b)

(now a, later c) = later (now a, c)

(later c,now b) = later (c,now b)

(later c,later ¢’) = later {(c, c’)

v

The pairing is extended to functions pointwise.

The ordinary product of A and Bis A+ B+ A x B (as in the
category of sets and partial functions).

v



Restriction Joins and Meets

> In a restriction category a map f : A — B is the join of
parallel maps f; and £, if
() A<f h<f
(i) for any other map g such that f < g, f, < g we
have f < g
i.e. f is the join of f; and £, in X(A, B).

» Similarly f : A — B is the meet of f; and £ if it is the meet of
fi and f, in X(A, B).



Joins in Kl(Delay/~)

» We define a function join:

join : Delay A — Delay A — Delay A
join (now a) ¢ = now a

join (later ¢) (now a) = now a

join (later ¢) (later ¢’) = later (join ¢ ¢’)

> It is extended pointwise to maps.
» The function join above is the join of f and g in Kl(Delay/~)
only if f and g are compatible maps.

» Two maps are compatible if they return the same value
whenever they are defined.



Meets in Kl(Delay /~)

» We define a function meet:

meet : Delay A — Delay A — Delay A

meet (now a) ¢ = now a

meet (later ¢) (now a) = later (meet ¢ (now a))
meet (later ¢) (later ¢’) = later (meet ¢ ¢’)

> It is extended pointwise to maps.

» The meet function above is the meet of f, g : A — Delay B in
Kl(Delay /=) if B is a semidecidable set.



Iteration Operator

» An jteration operator in a category X is an operation

f:A=>A+B
iter f: A— B

which satisfies
B

+
iter\\ i[iter £id]
B

and other axioms.



lteration in Kl(Delay/~)

> lteration is defined as

iter’ : (A — Delay (A+ B)) — Delay (A + B) — Delay B
iter’ f (now (inl a)) = later (iter’ f (f a))

iter’ f (now (inr b)) = now b

iter’ f (later ¢) = later (iter’ f c)

iter : (A — Delay (A+ B)) — A — Delay B
iter f a = iter’ f (now (inl a))



Conclusion and Future Work

» The Kleisli category of the delay monad on Set expresses
computability in the sense that it is a cartesian restriction
category with joins, meets and iteration.

> It is the starting point for the development of the delay
monad theory in general categories.

» We claim that the Kleisli category of the delay monad has
more interesting properties (e.g. initial algebra-final coalgebra
(limit-colimit) coincidence, Kleisli exponentials, Turing
category structure).



