
To Infinity, and Beyond:
From Setoids to Weak ω-Categories

Thanks to Nicolai Krauss, Dan Licata, Darin Morrison
and Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory
School of Computer Science

University of Nottingham

October 8, 2011

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 1 / 28

Theorem proving in Agda

+_ :N−→ N−→ N
zero + n = n
suc m + n = suc (m + n)

assoc : { i j k : N} −→ i + (j + k) ≡ (i + j) + k
assoc zero j k = refl
assoc (suc i) j k = cong suc (assoc i j k)

Exploit Curry-Howard.
Think of proofs as programs.
Termination checker to achieve logical soundness.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 2 / 28

Basic ingredients of Type Theory
Per Martin-Löf

Π-types (x : A)−→ B x or {x : A} −→ B x

Generalize function types (A−→ B).
Represent universal quantification
Alternative syntax: Π [x : A] B x

Σ-types Σ [x : A] B x

Generalize product types
Represent existential quantification
Usually curried away or replaced by datatypes

Equality types a ≡ b (for a b : A)

No simply typed correspondence
Represent propositional equality
Implicitly used in dependent datatypes
(like Vec or Fin)

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 3 / 28

Equality types

Equality types in Type Theory: a ≡ b is the set of proofs that a is
equal to b.

data ≡ _ :A−→ A−→ Set where
refl : {a : A} −→ a ≡ a

We can show that ≡ is an equivalence relation using pattern
matching.

sym : a ≡ b −→ b ≡ a
sym refl = refl
trans : a ≡ b −→ b ≡ c −→ a ≡ c
trans refl q = q

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 4 / 28

About equality proofs
In Type Theory we can make statements about the equality of
equality proofs.
E.g. Uniqueness of Identity Proofs (UIP) : all equality proofs are
equal.

uip : (p q : a ≡ b)−→ p ≡ q

We may ask wether equality is a groupoid, i.e.

lneutr : trans refl p ≡ p
rneutr : trans p refl ≡ p
assoc : trans (trans p q) r ≡ trans p (trans q r)

linv : trans (sym p) p ≡ refl
rinv : trans p (sym p) ≡ refl

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 5 / 28

Pattern matching proves UIP

All the equalities are provable using pattern matching, e.g.

uip : (p q : a ≡ b)−→ p ≡ q
uip refl refl = refl

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 6 / 28

J - the eliminator

An alternative to pattern matching is the eliminator J:

J : (M : {a b : A} −→ a ≡ b −→ Set)
−→ ({a : A} −→M (refl {a}))
−→ (p : a ≡ b)−→M p

J M m (refl {a}) = m {a}

Using J we can derive all the previous propositions but not uip.
J corresponds to a restricted form of pattern matching.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 7 / 28

Question
Should we accept or reject UIP?

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 8 / 28

Equality of functions

What should be equality of functions?
All operations in Type Theory preserve extensional equality of
functions.
The only exception is intensional propositional equality.
We would like to define propositional equality as extensional
equality.

postulate
ext : (f g : A−→ B)
−→ ((a : A)−→ f a ≡ g a)−→ f ≡ g

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 9 / 28

Equality of types

What should be equality of types?
All operations of Type Theory preserve isomorphisms (or
bijections).
The only exception is intensional propositional equality.
Unlike Set Theory, e.g. {0,1} ' {1,2} but
{0,1} ∪ {0,1} 6' {0,1} ∪ {1,2}.
We would like to define propositional equality of types as
isomorphism.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 10 / 28

UIP and isomorphism

UIP doesn’t hold if we define equality of types as isomorphism.
E.g. there is more than one way to prove that Bool is isomorphic
to Bool .
If we want to use isomorphism as equality we cannot allow uip.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 11 / 28

Eliminating extensionality

Adding principles like ext or univalence as constants destroys
basic computational properties of Type Theory.
E.g. there are natural numbers not reducible to a numeral.
We can eliminate ext by translating every type as a setoid
see my LICS 99 paper: Extensional Equality in Intensional Type
Theory.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 12 / 28

Setoids

Setoids are sets with an equivalence relation.

record Setoid : Set1 where
field

set : Set
eq : set −→ set −→ Prop
...

I write Prop to indicate that all proofs should be identified.
This seems necessary for the construction.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 13 / 28

Function setoids
A function between setoids has to respect the equivalence
relation.

record ⇒ set_ (A B : Setoid) : Set where
field

app : set A−→ set B
resp : ∀{a} {a′} −→ eq A a a′ −→ eq B (app a) (app a′)

Equality between functions is extensional equality:

⇒ _ :Setoid −→ Setoid −→ Setoid
A⇒ B = record {

set = A⇒ set B;
eq = λ f f ′ −→
∀ {a} −→ eq B (app f a) (app f ′ a)}

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 14 / 28

Proof-Irrelevance

Since we are using Prop the construction enforces UIP.

Question
What do we have to use instead of setoids, if we don’t want UIP?

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 15 / 28

Globular sets

The first approximation are globular sets which are a coinductive
type:

record Glob : Set1 where
field

obj : Set
eq : obj −→ obj −→∞Glob

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 16 / 28

Function globular sets
The set of functions is also defined coinductively:

record ⇒ set_ (A B : Glob) : Set where field
app : set A−→ set B
resp : ∀{a a′} −→∞([(eq A a a′)
⇒ set ([(eq B (app a) (app a′))))

To define equality we need Π-types as a globular set:

Π : (A : Set) (F : A−→Glob)−→Glob
Π A F = record {

set = (a : A)−→ set (F a);
eq = λ f g −→]Π A (λ a−→ [(eq (F a) (f a) (g a)))}

Now we can define function globular sets:

⇒ _ :Glob −→Glob −→Glob
A⇒ B = record {

set = A⇒ set B;
eq = λ f g −→]Π (set A) (λ a−→ [(eq B (app f a) (app g a)))}

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 17 / 28

What about the . . . ?

For setoids we have to add:

record Setoid : Set1 where
field

set : Set
eq : set −→ set −→ Prop
refl : ∀{a} −→ eq a a
sym : ∀{a} {b} −→ eq a b −→ eq b a
trans : ∀{a} {b} {c} −→ eq a b −→ eq b c −→ eq a c

What do we need for globular sets?

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 18 / 28

Weak ω-groupoids

We need refl , sym and trans at all levels.
We require the groupoid equations everywhere.
trans and sym are actually functors.
All equalities are weak, i.e. equations are witnessed by elements
of homsets.
Coherence: All equations which are provable using a strict
equality should be witnessed in the weak sense.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 19 / 28

Globular sets

A weak ω-groupoids is a globular set with additional structure.
To define this framework we introduce a language to talk about
categories and objects in a weak ω-groupoid.
A weak ω-gropoid is then defined as a globular set which
interprets this language.

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 20 / 28

Syntax for globular sets

data Con : Set where
ε : Con

; Γ : Con C : Cat Γ
(Γ,C) : Con

data Γ : Con
Cat Γ : Set

where • : Cat Γ
;

C : Cat Γ a b : Obj C
C[a , b] : Cat Γ

data C : Cat Γ
Obj C : Set

where v : Var C
var v : Obj C

· · ·

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 21 / 28

Interpretation

A weak ω category is given by the following data:
1 A globular set G : Glob
2

o : Obj C x : JΓK
JoK x : obj (JCK x)

Γ : Con
JΓK : Set JεK = 1 JΓ,CK = Σ(x : JΓK)(JCK x)

C : Cat Γ x : JΓK
JCK x : Glob

J•K x = G JC[a,b]K x = hom (JCKx) (JaK x) (JbK x)

3 Conditions on the interpretation of variables . . .

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 22 / 28

Composability

data C D : Cat Γ
C G D : Set

where
zero : C[a,b] G C[b, c]

;

H : C G D
suc H : C[a,b] G D[a′,b′]

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 23 / 28

Composition

C D : Cat Γ n : C G D
C ◦n D : Cat Γ

a : Obj C b : Obj D
a ◦n b : Obj (C ◦n D)

C D : Cat Γ n : C G D
C ◦n D : Cat Γ

C : Cat Γ a b c : Obj C
C[a,b] ◦0 C[b, c] = C[a, c]

n : C G D a b : Obj C c d : Obj D
C[a,b] ◦n+1 D[c,d] = (C ◦n D)[a ◦n c,b ◦n d]

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 24 / 28

Strict equality

data C D : Cat Γ
C .

= D : Set

• .= : • .= •
H : C .

= D A : H ` a .
= c B : H ` b .

= d
H[A,B] .= : H[a,b]

.
= H[c,d]

data H : C .
= D a : Obj C b : Obj D

H ` a .
= b : Set

where · · ·

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 25 / 28

{T : Tele (C[a,b])} α : Obj (T ⇓)

λ .= α : _ ` α ◦_ (id(depth t) b)
.

= α

{T : Tele (C[a,b])} α : Obj (T ⇓)

ρ .= α : _ ` (id(depth t) a) ◦_ α
.

= α

{t : Tele (C[a,b])}
α : Obj (T ⇓)

{u : Tele (C[b, c])}
β : Obj (u ⇓)

{v : Tele (C[b, c])}
γ : Obj (v ⇓)

α .= : _ ` (α ◦_ β) ◦_ γ
.

= α ◦_ (β ◦_ γ)

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 26 / 28

a : Obj C
id a : id C ` a .

= a
p : H ` a .

= b
p−1 : H−1 ` b .

= a

p : H ` a .
= b q : I ` b .

= c
p;q : H;I ` a .

= c

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 27 / 28

Conclusions

Weak ω-groupoids replace setoids when we want to interpret Type
Theory without UIP.
(higher dimensional Type Theory)
Already defining them precisely is quite hard.
Using them to interpret Type Theory looks even harder.
Are there ways to reduce bureaucracy?

Thorsten Altenkirch (Nottingham) theorydays 11 October 8, 2011 28 / 28

