To Infinity, and Beyond: From Setoids to Weak ω-Categories Thanks to Nicolai Krauss, Dan Licata, Darin Morrison and Ondrej Rypacek

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

October 8, 2011

Theorem proving in Agda

$$_{-}+_{-}:\mathbb{N}\longrightarrow\mathbb{N}\longrightarrow\mathbb{N}$$

zero $+n=n$
suc $m+n=suc (m+n)$

assoc :
$$\{i j k : \mathbb{N}\} \longrightarrow i + (j + k) \equiv (i + j) + k$$

assoc zero $j k = refl$
assoc (suc i) $j k = cong suc (assoc i j k)$

- Exploit Curry-Howard.
- Think of proofs as programs.
- Termination checker to achieve logical soundness.

Basic ingredients of Type Theory

 $\Box\text{-types } (x:A) \longrightarrow B x \text{ or } \{x:A\} \longrightarrow B x$

- Generalize function types $(A \longrightarrow B)$
- Represent universal quantification
- Alternative syntax: $\Pi [x : A] B x$

$$\Sigma$$
-types $\Sigma [x : A] B x$

- Generalize product types
- Represent existential quantification
- Usually curried away or replaced by datatypes

Equality types $a \equiv b$ (for a b : A)

- No simply typed correspondence
- Represent propositional equality
- Implicitly used in dependent datatypes (like Vec or Fin)

Per Martin-Löf

Equality types

• Equality types in Type Theory: *a* = *b* is the set of proofs that *a* is equal to *b*.

data
$$_\equiv _:A \longrightarrow A \longrightarrow Set$$
 where
refl : { a : A} $\longrightarrow a \equiv a$

• We can show that ≡ is an equivalence relation using pattern matching.

sym :
$$a \equiv b \longrightarrow b \equiv a$$

sym refl = refl
trans : $a \equiv b \longrightarrow b \equiv c \longrightarrow a \equiv c$
trans refl $q = q$

About equality proofs

- In Type Theory we can make statements about the equality of equality proofs.
- E.g. Uniqueness of Identity Proofs (UIP) : all equality proofs are equal.

$$uip:(p q: a \equiv b) \longrightarrow p \equiv q$$

• We may ask wether equality is a groupoid, i.e.

Ineutr : trans refl $p \equiv p$ rneutr : trans p refl $\equiv p$ assoc : trans (trans p q) $r \equiv$ trans p (trans q r) linv : trans (sym p) $p \equiv$ refl rinv : trans p (sym p) \equiv refl

Pattern matching proves UIP

• All the equalities are provable using pattern matching, e.g.

$$uip: (p q: a \equiv b) \longrightarrow p \equiv q$$

 $uip refl refl = refl$

J - the eliminator

• An alternative to pattern matching is the eliminator J:

$$J: (M: \{a b: A\} \longrightarrow a \equiv b \longrightarrow Set)$$
$$\longrightarrow (\{a: A\} \longrightarrow M (refl \{a\}))$$
$$\longrightarrow (p: a \equiv b) \longrightarrow M p$$
$$J M m (refl \{a\}) = m \{a\}$$

Using J we can derive all the previous propositions but not *uip*.
J corresponds to a restricted form of pattern matching.

Question

Should we accept or reject UIP?

Equality of functions

- What should be equality of functions?
- All operations in Type Theory preserve extensional equality of functions.

The only exception is intensional propositional equality.

• We would like to define propositional equality as extensional equality.

 $\begin{array}{l} \textit{postulate} \\ \textit{ext} : (f \ g : A \longrightarrow B) \\ \longrightarrow ((a : A) \longrightarrow f \ a \equiv g \ a) \longrightarrow f \equiv g \end{array}$

Equality of types

- What should be equality of types?
- All operations of Type Theory preserve isomorphisms (or bijections).

The only exception is intensional propositional equality.

- Unlike Set Theory, e.g. $\{0,1\} \simeq \{1,2\}$ but $\{0,1\} \cup \{0,1\} \not\simeq \{0,1\} \cup \{1,2\}.$
- We would like to define propositional equality of types as isomorphism.

UIP and isomorphism

- UIP doesn't hold if we define equality of types as isomorphism.
- E.g. there is more than one way to prove that *Bool* is isomorphic to *Bool*.
- If we want to use isomorphism as equality we cannot allow uip.

Eliminating extensionality

- Adding principles like *ext* or univalence as constants destroys basic computational properties of Type Theory.
- E.g. there are natural numbers not reducible to a numeral.
- We can eliminate *ext* by translating every type as a setoid see my LICS 99 paper: *Extensional Equality in Intensional Type Theory*.

• Setoids are sets with an equivalence relation.

```
record Setoid : Set_1 where
field
set : Set
eq : set \longrightarrow set \longrightarrow Prop
...
```

- I write *Prop* to indicate that all proofs should be identified.
- This seems necessary for the construction.

Function setoids

• A function between setoids has to respect the equivalence relation.

record
$$_ \Rightarrow$$
 set_ (A B : Setoid) : Set where
field
app : set A \longrightarrow set B
resp : $\forall \{a\} \{a'\} \longrightarrow$ eq A a a' \longrightarrow eq B (app a) (app a')

• Equality between functions is extensional equality:

$$\begin{array}{l} _\Rightarrow_:Setoid \longrightarrow Setoid \longrightarrow Setoid \\ A\Rightarrow B = record \{ \\ set = A \Rightarrow set B; \\ eq = \lambda f f' \longrightarrow \\ \forall \{a\} \longrightarrow eq B (app f a) (app f' a) \} \end{array}$$

• Since we are using *Prop* the construction enforces UIP.

Question

What do we have to use instead of setoids, if we don't want UIP?

Globular sets

• The first approximation are *globular sets* which are a coinductive type:

```
record Glob : Set<sub>1</sub> where
field
obj : Set
eq : obj \longrightarrow obj \longrightarrow \inftyGlob
```

Function globular sets

 The set of functions is also defined coinductively: *record* _⇒ set_ (A B : Glob) : Set where field *app* : set A → set B *resp* : ∀{ a a' } → ∞(b(eq A a a') ⇒ set (b(eq B (app a) (app a'))))

To define equality we need Π-types as a globular set:

$$\begin{array}{l} \Pi: (A: Set) \ (F: A \longrightarrow Glob) \longrightarrow Glob \\ \Pi \ A \ F = record \ \{ \\ set = (a: A) \longrightarrow set \ (F \ a); \\ eq = \lambda \ f \ g \longrightarrow \ \ \Pi \ A \ (\lambda \ a \longrightarrow \ \ \ (eq \ (F \ a) \ (f \ a) \ (g \ a))) \} \end{array}$$

• Now we can define function globular sets:

$$\begin{array}{l} _\Rightarrow_:Glob \longrightarrow Glob \longrightarrow Glob\\ A\Rightarrow B = record \{\\set = A \Rightarrow set B;\\eq = \lambda \ f \ g \longrightarrow \sharp \Pi \ (set A) \ (\lambda \ a \longrightarrow \flat (eq \ B \ (app \ f \ a) \ (app \ g \ a) \end{array}$$

What about the ...?

For setoids we have to add:

```
record Setoid : Set<sub>1</sub> where

field

set : Set

eq : set \longrightarrow set \longrightarrow Prop

refl : \forall \{a\} \longrightarrow eq a a

sym : \forall \{a\} \{b\} \longrightarrow eq a b \longrightarrow eq b a

trans : \forall \{a\} \{b\} \{c\} \longrightarrow eq a b \longrightarrow eq b c \longrightarrow eq a c
```

What do we need for globular sets?

Weak ω -groupoids

- We need *refl*, *sym* and *trans* at all levels.
- We require the groupoid equations everywhere.
- *trans* and *sym* are actually functors.
- All equalities are weak, i.e. equations are witnessed by elements of homsets.
- Coherence: All equations which are provable using a strict equality should be witnessed in the weak sense.

Globular sets

- A weak ω -groupoids is a globular set with additional structure.
- To define this framework we introduce a language to talk about categories and objects in a weak ω-groupoid.
- A weak ω-gropoid is then defined as a globular set which interprets this language.

Syntax for globular sets

data Con : Set where
$$\frac{\Gamma : Con}{\varepsilon : Con}$$
; $\frac{\Gamma : Con}{(\Gamma, C) : Con}$
data $\frac{\Gamma : Con}{Cat \Gamma : Set}$ where $\frac{\Gamma : Cat \Gamma}{\bullet : Cat \Gamma}$; $\frac{C : Cat \Gamma}{C[a, b] : Cat \Gamma}$
data $\frac{C : Cat \Gamma}{Obj C : Set}$ where $\frac{v : Var C}{Var v : Obj C}$...

Interpretation

(2)

A weak ω category is given by the following data:

A globular set G : Glob

$$\begin{array}{c} o: \operatorname{Obj} C & x: \llbracket \Gamma \rrbracket \\ \hline \llbracket o \rrbracket x: \operatorname{obj} (\llbracket C \rrbracket x) \end{array}$$

$$\frac{\Gamma: \text{Con}}{\llbracket\Gamma\rrbracket: \text{Set}} \quad \boxed{\llbracket\varepsilon\rrbracket = 1} \quad \boxed{\llbracket\Gamma, C\rrbracket = \Sigma(x : \llbracket\Gamma\rrbracket)(\llbracketC\rrbracket x)} \\
\frac{C: \text{Cat } \Gamma \quad x : \llbracket\Gamma\rrbracket}{\llbracketC\rrbracket \; x : \text{Glob}}$$

 $\llbracket \bullet \rrbracket x = G \quad \boxed{\llbracket C[a,b]\rrbracket x = \hom \left(\llbracket C\rrbracket x\right) \left(\llbracket a\rrbracket x\right) \left(\llbracket b\rrbracket x\right)}$

Onditions on the interpretation of variables

Composability

data $\frac{C D : \text{Cat } \Gamma}{C \circlearrowright D : \text{Set}}$ where $\frac{}{\text{zero} : C[a, b] \circlearrowright C[b, c]}$; $\frac{H : C \circlearrowright D}{\text{suc } H : C[a, b] \circlearrowright D[a', b']}$

Composition

С	<i>D</i> : Cat Г	n :	<i>C</i> ≬ <i>D</i>	a : 0	Dbj C	<i>b</i> : Obj	D
<i>С</i> ∘ _{<i>n</i>} <i>D</i> : Саt Г				<i>a</i> ∘ _{<i>n</i>} <i>b</i> : Obj (<i>C</i> ∘ _{<i>n</i>} <i>D</i>)			
C D	: Cat Г	n : C	C (D	<i>C</i> : Ca	at F	<i>a b c</i> : Ol	oj C
<i>С</i> ∘ _{<i>n</i>} <i>D</i> : Саt Г				$C[a,b]\circ_0 C[b,c]=C[a,c]$			
	n:C ≬	D	a b : C	Dbj C	c d	: Obj D	
$C[a,b] \circ_{n+1} D[c,d] = (C \circ_n D)[a \circ_n c, b \circ_n d]$							

Strict equality

$$\frac{\text{data } \frac{C \ D : \text{Cat } \Gamma}{C \doteq D : \text{Set}}}{\substack{H : C \doteq D \\ H : C \doteq D \\ H[A, B]_{\pm} : H[a, b] \doteq H[c, d]}}$$

$$\frac{H : C \doteq D \\ H = D \\ A : Obj C \\ H = b : Set}$$
where \cdots

$$\begin{array}{c} \frac{\{T: \mathsf{Tele}\;(C[a,b])\} \qquad \alpha: \mathsf{Obj}\;(T\;\Downarrow)}{\lambda_{\doteq}\;\alpha:_\vdash\;\alpha\circ_(\mathsf{id}^{(\mathsf{depth}\;t)}\;b) \doteq \alpha} \\ \frac{\{T: \mathsf{Tele}\;(C[a,b])\} \qquad \alpha: \mathsf{Obj}\;(T\;\Downarrow)}{\rho_{\doteq}\;\alpha:_\vdash\;(\mathsf{id}^{(\mathsf{depth}\;t)}\;a)\circ_\alpha \doteq \alpha} \\ \{t: \mathsf{Tele}\;(C[a,b])\} \qquad \{u: \mathsf{Tele}\;(C[b,c])\} \qquad \{v: \mathsf{Tele}\;(C[b,c])\} \\ \frac{\alpha: \mathsf{Obj}\;(T\;\Downarrow) \qquad \beta: \mathsf{Obj}\;(u\;\Downarrow) \qquad \gamma: \mathsf{Obj}\;(v\;\Downarrow)}{\alpha_{\doteq}:_\vdash\;(\alpha\circ_\beta)\circ_\gamma \doteq \alpha\circ_(\beta\circ_\gamma)} \end{array}$$

Conclusions

- Weak ω-groupoids replace setoids when we want to interpret Type Theory without UIP. (*higher dimensional Type Theory*)
- Already defining them precisely is quite hard.
- Using them to interpret Type Theory looks even harder.
- Are there ways to reduce bureaucracy?