Forty-Nine Years of the Garden-of-Eden Theorem

Silvio Capobianco

Institute of Cybernetics at TUT

Theory Days at Tõrve October 7-8-9, 2011

Joint work with Pierre Guillon ¹ and Jarkko Kari ²

Revision: October 11, 2011

¹CNRS & IML Marseille ²University of Turku

Silvio Capobianco (IoC-TUT)

Outline of the talk

- The context of the theorem
- 2 The theorem
- Similar theorems
- Ange of validity
- Our results

э

Conway's Game of Life

Invented by John Horton Conway, popularized by Martin Gardner.³ The checkboard is an infinite square grid.

Each case (cell) of the checkboard is "surrounded" by those within a chess' king's move, and can be "living" or "dead".

- A dead cell surrounded by exactly three living cells, becomes living.
- A living cell surrounded by two or three living cells, survives.
- **③** A living cell surrounded by less than two living cells, dies of isolation.
- A living cell surrounded by more than three living cells, dies of overpopulation.

³Sci. Am. 223, October 1970)

Silvio Capobianco (IoC-TUT)

Cellular automata

A cellular automaton (CA) on a group G is a triple $\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$ where:

- Q is a finite set of states.
- $\mathcal{N} = \{n_1, \ldots, n_k\} \subseteq G$ is a finite neighborhood index.
- $f: Q^k \to Q$ is a finitary local function

The local function induces a global function $F: Q^G \to Q^G$ via

$$F(c)(x) = f(c(x \cdot n_1), \dots, c(x \cdot n_k))$$

= $f(c|_{x\mathcal{N}})$

The same rule induces a function over patterns with finite support:

$$f(p): E \to Q$$
, $f(p)(x) = f(p|_{x\mathcal{N}}) \quad \forall p: E\mathcal{N} \to Q$

In a Garden of Eden

A Garden of Eden (briefly, GOE) for a given CA is either an infinite configuration or a finite pattern which cannot be produced by the CA from another configuration or pattern.

A ${\rm GoE}$ is thus a sort of "paradise lost" which can be started from, but not returned to.

A CA has a GOE configuration — *i.e.*, it is non-surjective if and only if it has a GOE pattern.

The Flower of Eden

Beluchenko, 2009. Smallest known GoE pattern for the Game of Life.

Silvio Capobianco (IoC-TUT)

October 7-8-9, 2011 6 / 30

э

"Not injectivity, but almost"

Two distinct patterns $p, p' : E \to Q$ are mutually erasable for a CA with global rule F, if any two configurations c, c' with

$$\left. c \right|_{E} = p \;, \; \left. c' \right|_{E} = p' \;, \; ext{and} \; \left. c \right|_{G \setminus E} = \left. c' \right|_{G \setminus E}$$

satisfy F(c) = F(c').

A cellular automaton without mutually erasable patterns is called pre-injective

The Garden-of-Eden theorem (Moore, 1962)

If a cellular automaton over $\mathbb{Z} \times \mathbb{Z}$ has two mutuably erasable patterns, then it also has a Garden of Eden pattern Myhill's converse to Moore's theorem (1962)

If a cellular automaton over $\mathbb{Z} \times \mathbb{Z}$ has a Garden of Eden pattern, then it also has two mutuably erasable patterns

From finite to infinite

Suppose the group of the CA is finite. Then:

pattern	is the same as	configuration
mutually erasable		same image

So Moore's GoE theorem, and its converse by Myhill, together mean that:

cellular automata on an infinite space behave, with regard of surjectivity, more or less as they were finitary functions.

Not completely, however: pre-injectivity is strictly weaker than injectivity.

Counterexample: XOR with the right neighbor

The thing that makes it work

Moore's and Myhill's theorems work because in $\mathbb{Z} \times \mathbb{Z}$ — and in fact, in \mathbb{Z}^d for every $d \ge 1$,

the orange grows faster than the peel

- The volume of the hypercube is polynomial of degree d.
- The surface of the hypercube is polynomial of degree d-1.

Consequenty:

- If a CA has two mutually erasable patterns of side ℓ, then it has a GOE pattern of side M × ℓ.
- If a CA has a GOE pattern of side ℓ, then it has two mutually erasable patterns of side G × ℓ.

The constants M and G depend on the CA.

So, what other properties are linked to GOE?

э

A cellular automaton is balanced if for any given shape E, every pattern $p: E \rightarrow Q$ has the same number of preimages.

 For 2D CA with Moore neighborhood: every square pattern of side ℓ has |Q|^{4ℓ+4} preimages.

A balanced ${\rm CA}$ has no Garden of Eden.

The balancedness theorem (Maruoka and Kimura, 1976)

An unbalanced *d*-dimensional CA has a Garden of Eden.

A measure-theoretic version of balancedness

The "basic" open subsets of $Q^{\mathbb{Z}^d}$ are the cylinders of the form

$$C(p) = \left\{ c : \mathbb{Z}^d \to Q \mid c|_E = p \right\} , p : E \to Q$$

The product measure is defined by

$$\mu_{\Pi}(C(p)) = |Q|^{-|E|}$$
, $p: E \to Q$

on the σ -algebra generated by the cylinders.

A cellular automaton is balanced if and only if it preserves the product measure, *i.e.*, $\mu_{\Pi}(F^{-1}(U)) = \mu_{\Pi}(U)$ for every measurable set U.

Computing opens

- Consider a computable bijection $\phi : \mathbb{N} \to \mathbb{Z}^d$.
- ϕ induces a computable, bijective enumeration B' of the cylinders.
- A family U = {U_n}_{n≥0} of open subsets of Q^{Z^d} is computable if there is a *recursively enumerable* set A ⊆ N such that

$$U_n = \bigcup_{\pi(n,k)\in A} B'_k \quad \forall n \ge 0 ,$$

where
$$\pi(x, y) = \frac{(x+y)(x+y+1)}{2} + x$$
: that is, if \mathcal{U} is
computably constructible from the cylinders

uniformly in the elements' index

The importance of being random

Random configurations

- A computable family $\mathcal{U} = \{U_n\}_{n \ge 0}$ of open sets is a Martin-Löf test if $\mu_{\Pi}(U_n) < 2^{-n}$ for every $n \ge 0$.
- A configuration c fails a M-L test \mathcal{U} if $c \in \bigcap_{n \ge 0} U_n$.
- $c: \mathbb{Z}^d \to Q$ is M-L random if it does not fail any M-L test.

The world is random, almost surely

- For the set U of M-L random configurations, $\mu_{\Pi}(U) = 1$.
- Every pattern has an occurrence in any M-L random configuration.

Theorem (Calude *et al.*, 2001)

If a *d*-dimensional cellular automaton sends a M-L random configuration into one which is not, then it has a Garden of Eden.

A collection of the classical Garden-of-Eden theorems

Let \mathcal{A} be a *d*-dimensional CA. The following are equivalent.

- \mathcal{A} has a Garden of Eden.
- \mathcal{A} has two mutuably erasable patterns.
- \mathcal{A} is unbalanced.
- \mathcal{A} does not preserve the product measure.
- $\bullet~\mathcal{A}$ sends some M-L random configurations into some that are not.

Towards infinity... and beyond

- We have seen that the Garden-of-Eden theorem, and several analogous statements, hold in arbitrary dimension.
- We then trust it to be a general principle, holding for cellular automata in general, even on meshes more complicated that \mathbb{Z}^d .
- ... or do we?

For the rest of the talk, we will work with finitely generated groups. This is not restrictive for what we want to prove.

However, we can only talk about M-L random configurations on groups that are computably bijective to \mathbb{N} . This is true, for instance, when the word problem is decidable.

A counterexample on the free group

Consider the following CA on the free group on two generators a, b:

•
$$Q = \{0, 1\}.$$

• $\mathcal{N} = \{1, a, b, a^{-1}, b^{-1}\}.$
• $f(t, x, y, z, w) = \begin{cases} 1 & \text{if } x + y + z + w = 3 \\ & \text{or } t = 1, x + y + z + w \in \{1, 2\} \\ 0 & \text{otherwise} \end{cases}$

Theorem (Ceccherini-Silberstein et al., 1999)

- This CA does not have any GOE.
- This CA does have mutually erasable patterns.
- This CA is not balanced.

What the free group on two generators looks like

Silvio Capobianco (IoC-TUT)

49 years of GoE theorem

October 7-8-9, 2011 22 / 30

Amenable groups

A group G is amenable if it satisfies any of the following, equivalent conditions:

- There exists a finitely additive probability measure µ : P(G) → [0,1] such that µ(gA) = µ(A) for every g ∈ G, A ⊆ G.
- Por every finite U ⊆ G and every ε ≥ 0 there exists a finite K ⊆ G such that |UK \ K| < ε|K|.</p>

We then clearly see that the free group is not amenable!

• On the other hand, amenability is still a condition of the type:

a peel of any shape can be made arbitrarily proportionally small by choosing a suitable orange

• And in fact, \mathbb{Z}^d is amenable for every $d \ge 1$.

Fact: A group is amenable iff every finitely generated subgroup is.

The importance of being amenable

Theorem (Ceccherini-Silberstein, Machi and Scarabotti, 1999) Let *G* be an amenable group.

- (Moore) Every surjective CA on G is pre-injective.
- (Myhill) Also, every pre-injective CA on G is surjective.

But there are counterexamples to both in some non-amenable groups.

Theorem (Bartholdi, 2010)

Let G be a group. The following are equivalent.

- Every surjective CA on G is pre-injective.
- Every surjective CA on G preserves the product measure.
- G is amenable.

Mutual implications (2010)

property	implies	amenable	non-amenable
surjectivity	pre-injectivity	yes	no
pre-injectivity	surjectivity	yes	
surjectivity	balancedness	yes	no
surjectivity	μ_{Π} preserved	yes	no
balancedness	μ_{Π} preserved	yes	yes
μ_{Π} preserved	balancedness	yes	yes
surjectivity	M-L random to M-L random	yes on \mathbb{Z}^d	

So, what else can be said?

э

Special maps for special groups

Bartholdi's proof is based on a smart use of

bounded propagation 2:1 compressing maps

A b.p. 2:1 compressing map on a group G with propagation set S is a transformation $\phi: G \to G$ such that:

- For every $g \in G$, $(\phi(g))^{-1}g \in S$.
- **2** For every $g \in G$, $|\Phi^{-1}(g)| = 2$.

Groups with such maps are precisely those that are not amenable.

The key counterexample (Guillon, 2011)

Let G be a non-amenable group,

 ϕ a bounded propagation 2:1 compressing map with propagation set *S*. Define on *S* a total ordering \leq . Define a CA \mathcal{A} on *G* by $Q = (S \times \{0, 1\} \times S) \sqcup \{q_0\}, \mathcal{N} = S$, and

$$f(u) = \begin{cases} q_0 & \text{if } \exists s \in S \mid u_s q_0, \\ (p, \alpha, q) & \text{if } \exists (s, t) \in S \times S \mid s \prec t, u_s = (s, \alpha, p), u_t = (t, 1, q), \\ q_0 & \text{otherwise.} \end{cases}$$

Theorem (Capobianco, Guillon and Kari, 2011)

- \mathcal{A} has no GoE.
- **2** \mathcal{A} is not nonwandering.

This means that there is an open set U such that $F^t(U)$ never intersects U after t = 0.

 A sends M-L random configurations into nonrandom ones. (if the group has a decidable word problem)

イロト 不得 トイヨト イヨト 二日

Mutual implications (2011)

property	implies	amenable	non-amenable
surjectivity	pre-injectivity	yes	no
pre-injectivity	surjectivity	yes	open problem ¹
balancedness	surjectivity	yes	yes
surjectivity	balancedness	yes	no
surjectivity	μ_{Π} preserved	yes	no
balancedness	μ_{Π} preserved	yes	yes
μ_{Π} preserved	balancedness	yes	yes
nonwandering	surjectivity	yes	yes
surjectivity	nonwandering	yes ²	no
random to random	surjectivity	yes ³	yes ³
surjectivity	random to random	yes ³	no ³

O Not satisfied for groups with a free subgroup on two generators.

- **2** Because of the *Poincaré recurrence theorem*.
- Sor groups with decidable word problem.

Silvio Capobianco (IoC-TUT)

Conclusions

- Moore's Garden of Eden theorem was the first rigorous result of cellular automata theory.
- It is a beautiful statement on its own.
- It opened the way to other insightful statements.
- It actually characterizes an important class of groups!
- What can be said about its converse by Myhill?
- What can be said about the other statements?

Thank you for attention!

Any questions?

Silvio Capobianco (IoC-TUT)

49 years of GoE theorem

- A 3 N October 7-8-9, 2011 30 / 30

3