Chameleon Hashes in the Forward-Secure ID-Based Setting

Madeline González Muñiz* and Peeter Laud

Theory Days Tõrve, Estonia

October 8, 2011

MOTIVATION FOR CHAMELEON HASHING

Sanitizable Signature Schemes

- » Allow modification to the original message
 - Pre-determined deletion
 - Pre-determined modification
 - Chameleon hashes
- » Sender→Sanitizer→Receiver

Chameleon Hashes

- Introduced by Krawczyk and Rabin in 2000
- » Collision-resistant with a trapdoor for finding collisions
- » Key exposure problem
- » Non-transferable

Key Exposure Problem [KR2000]

» For public key y=g^x mod p
» Hash defined as h(m, r)=g^my^r mod p
» One can solve for x given (m, r) and (m', r') such that g^my^r =g^{m'}y^{r'}

PRELIMINARIES

Identity-Based Cryptography

Has a master public/private key

YBERNETICA

Public key computed from ID

Bilinear Map (Pairing)

Let G_1 (+) and G_2 (·) be two groups of prime order q

- $e: G_1 X G_1 \rightarrow G_2$ a bilinear map:
- 1. Bilinear:
 - $e(\alpha P, \beta Q) = e(P, Q)^{\alpha\beta}$
- 2. Non-degenerate
- 3. Efficiently computable

Bilinear Computational Diffie-Hellman Problem

Given *P*, αP , βP , γP , compute:

 $e(P, P)^{\alpha\beta\gamma}$

We will refer to this as BCDH

Bilinear Decisional Diffie-Hellman Problem

Given *P*, αP , βP , γP , decide:

random element in G_2 or $e(P, P)^{\alpha\beta\gamma}$

We will refer to this as BDDH

Pseudorandom Bit Generator

» Bellare and Yee 2003 $\rightarrow G=(G_k, G_n, k, T)$ $\succ G_k$ takes no input, outputs Seed₀ $\succ G_n$ deterministically takes input Seed_{t-1}, outputs (Out_t , $Seed_t$) where Out_t is a k-bit block and runs a max of T times Indistinguishable from a function that outputs k-bit blocks unif at random

CHAMELEON HASHES IN ID-BASED SETTING W/O KEY EXPOSURE

12 of 33

Chen et al. 2010 Proposed Scheme

e: $G_1 X G_1 \rightarrow G_2$ Master Secret key *s* Master Public key *sP*

Key Extraction

YBERNETICA

Chameleon Hash

Collision (Forgery) by ID

private

sH(ID)

Select message m'
a'P=aP+(m-m') H₁(L)
r'=(a'P, e(a'P, sH(ID))

The proof relies on the difficulty of computing the second component of r'

The Problem

» Who can verify the correctness of the second component of r and r'? \succ Sender knows discrete log *a* Forger using private key **BDDH** easy » Solution Include a NIZK proof

SECURITY MODEL W/ FORWARD SECURITY

18 of 33

» Forward-secure collision resistance » Indistinguishability

Forward-Secure Collision Resistance

>> Users in the system are honest

Collision Forgery

» For *t*'< *t*

 $P_{t'}, ID', L, m, r$

 $P_{t'}, ID', L, m', r'$

Same hash output

Indistinguishability

PROPOSED CONSTRUCTION

23 of 33

Proposed Forward-Secure KGC Model

e: $G_1 X G_1 \rightarrow G_2$ $G=(G_k, G_n, k, T)$ At time t=0 Master secret key $S_0=(s_0, Seed_0)$ Master public key $P_0=s_0P$

Given $S_{t-1} = (s_{t-1}, Seed_{t-1})$ $G_n (Seed_{t-1}) = (Out_t, Seed_t)$ Compute $s_t = H(Out_t)s_{t-1}$ Master secret key $S_t = (s_t, Seed_t)$ Master public key $P_t = s_t P$

Master Key Update

Key Extraction and Identity Update

Given $S_{t-1} = (s_{t-1}H(ID), Seed_{t-1}), P_{t-1}$ $G_n (Seed_{t-1}) = (Out_t, Seed_t)$ User secret key $S_t = (H(Out_t)s_{t-1}H(ID), Seed_t)$ $= (s_tH(ID), Seed_t)$ Master public key $P_t = H(Out_t)P_{t-1}$

User Key Update

Hashing Algorithm

Sender

•Select *a* uniformly at random • $r=(aP, e(aP_t, H(ID)))$ • $h=aP+mH_1(L)$ and NIZK π that *r* was correctly formed

Collision (Forging) Algorithm

Receiver

•Select message m'• $a'P=aP+(m-m') H_1(L)$ • $r'=(a'P, e(a'P, s_t H(ID)))$ •NIZK π' that r' was correctly formed

SECURITY OF PROPOSED CONSTRUCTION

28 of 33

BCDH Reduction

Challenger

 $e(P, P)^{\alpha\beta\gamma}$

 $P, \alpha P, \beta P, \gamma P$

A can create a collision in the hash

B interacts with *A* to solve BCDH

B

Collision Resistance

- » Assumption that BCDH is hard
- Substitution States and States and States and States and the second component of r and r' we have the following:
 - $\ge e(a'P, s_t H(ID))$ $= e(aP + (m-m') H_1(L), s_t H(ID))$ $= e(aP, s_t H(ID)) e(H_1(L), s_t H(ID))^{m-m'}$ $\ge e(a'P, s_t H(ID)) / e(aP, s_t H(ID))$ $= e(s_t H(ID), H_1(L))^{m-m'}$

 $\succ e(s_t H(ID), H_1(L))$ used in simulation to introduce challenge

BCDH Challenge

Given P $\alpha P = P_t = s_t P$ $\beta P = H(ID)$ $\gamma P = H_1(L)$

compute: $e(s_t H(ID), H_1(L)) = e(P, P)^{\alpha\beta\gamma}$

Open Problem

- » Attribute-based setting User with threshold number of attributes can compute collision Sahai and Waters Public parameter for each attribute Chameleon hash with the following condition:
 - Hash depends on message, attributes, and attribute authority's public key
 - ✓ User and attribute authority interact once

THANKS

