Chameleon Hashes in the Forward-Secure ID-Based Setting

 Madeline González Muñiz* and Peeter Laud

 Madeline González Muñiz* and Peeter Laud
 Theory Days
 Tõrve, Estonia

October 8, 2011

MOTIVATION FOR CHAMELEON HASHING

Sanitizable Signature Schemes

» Allow modification to the original message
>Pre-determined deletion
>Pre-determined modification \checkmark Chameleon hashes
» Sender \rightarrow Sanitizer \rightarrow Receiver

Chameleon Hashes

» Introduced by Krawczyk and Rabin in 2000
» Collision-resistant with a trapdoor for finding collisions
» Key exposure problem
» Non-transferable

Key Exposure Problem [KR2000]

» For public key $y=g^{x} \bmod p$
» Hash defined as $h(m, r)=g^{m} y^{r} \bmod p$
» One can solve for x given (m, r) and (m^{\prime}, r^{\prime}) such that $g^{m} y^{r}=g^{m} y^{\prime} y^{r^{\prime}}$

PRELIMINARIES

Identity-Based Cryptography

Authenticate to Key Generator

Has a master public/private key

CYBERNETICA

Bilinear Map (Pairing)

Let $\mathrm{G}_{1}(+)$ and $\mathrm{G}_{2}(\cdot)$ be two groups of prime order q
$e: \mathrm{G}_{1} \mathrm{X} \mathrm{G}_{1} \rightarrow \mathrm{G}_{2}$ a bilinear map:

1. Bilinear:
$e(\alpha P, \beta Q)=e(P, Q)^{\alpha \beta}$
2. Non-degenerate
3. Efficiently computable

Bilinear Computational DiffieHellman Problem

Given $P, \alpha P, \beta P, \gamma P$, compute:

$$
e(P, P)^{\alpha \beta \gamma}
$$

We will refer to this as BCDH

Bilinear Decisional DiffieHellman Problem

Given $P, \alpha P, \beta P, \gamma P$, decide:
random element in G_{2} or $e(P, P)^{\alpha \beta \gamma}$
We will refer to this as BDDH

Pseudorandom Bit Generator

» Bellare and Yee 2003
» $G=\left(G_{k}, G_{n}, k, T\right)$
$>G_{k}$ takes no input, outputs Seed $_{0}$
$>G_{n}$ deterministically takes input Seed $_{t-1}$, outputs $\left(\right.$ Out $_{t}$, Seed $\left._{t}\right)$ where $O u t_{t}$ is a k-bit block and runs a max of T times
» Indistinguishable from a function that outputs k-bit blocks unif at random

CHAMELEON HASHES IN ID-BASED SETTING W/O KEY EXPOSURE

Chen et al. 2010 Proposed Scheme

» Setup

$$
\begin{aligned}
& e: \mathrm{G}_{1} \times \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \\
& \text { Master Secret key } s \\
& \text { Master Public key } s P
\end{aligned}
$$

$H(I D)$

Key Extraction

Chameleon Hash

Collision (Forgery) by ID

- Select message m^{\prime}
- $a^{\prime} P=a P+\left(m-m^{\prime}\right) H_{1}(L)$
- $r^{\prime}=\left(a^{\prime} P, e\left(a^{\prime} P, s H(I D)\right)\right.$

The proof relies on the difficulty of computing the second component of r^{\prime}

The Problem

» Who can verify the correctness of the second component of r and r^{\prime} ?
$>$ Sender knows discrete log a
>Forger using private key
$>$ BDDH easy
» Solution
>Include a NIZK proof

SECURITY MODEL W/ FORWARD SECURITY

Properties

» Forward-secure collision resistance » Indistinguishability

Forward-Secure Collision Resistance

» Users in the system are honest

$S K_{I D}$ for break-in time t

Collision Forgery

) For $t^{\prime}<t$

Same hash output

Indistinguishability

params
Extraction Oracle

$h($
$h\left(P_{t}, I D, L, m^{*}, r\right)$

PROPOSED CONSTRUCTION

Proposed Forward-Secure KGC Model

$$
\begin{aligned}
& e: \mathrm{G}_{1} \mathrm{X} \mathrm{G}_{1} \rightarrow \mathrm{G}_{2} \\
& G=\left(G_{k}, G_{n}, k, T\right) \\
& \text { At time } t=0
\end{aligned}
$$

Master secret key $S_{0}=\left(s_{0}\right.$, Seed $\left._{0}\right)$
Master public key $P_{0}=s_{0} P$

Given $S_{t-1}=\left(s_{t-1}\right.$, Seed $\left._{t-1}\right)$
$G_{n}\left(\right.$ Seed $\left._{t-1}\right)=\left(\right.$ Out $_{t}$, Seed $\left._{t}\right)$
Compute $s_{t}=H\left(\right.$ Out $\left._{t}\right) s_{t-1}$
Master secret key $S_{\mathrm{t}}=\left(s_{t}\right.$, Seed $\left._{t}\right)$
Master public key $P_{t}=s_{t} P$

Master
Key
Update

Key Extraction and Identity Update

Authenticate as ID
 $$
s_{t} H(I D), P_{t}
$$

Given $S_{t-1}=\left(s_{t-1} H(I D)\right.$, Seed $\left._{t-1}\right), P_{t-1}$
$G_{n}\left(\right.$ Seed $\left._{t-1}\right)=\left(\right.$ Out $_{t}$, Seed $\left._{t}\right)$
User secret key $S_{t}=\left(H\left(\right.\right.$ Out $\left._{t}\right) s_{t-1} H(I D)$, Seed $\left.{ }_{t}\right)$ $=\left(s_{t} H(I D)\right.$, Seed $\left._{t}\right)$

User
 Key
 Update

Master public key $P_{t}=H\left(\right.$ Out $\left._{t}\right) P_{t-1}$

Hashing Algorithm

Sender

- Select a uniformly at
 random
$\cdot r=\left(a P, e\left(a P_{t}, H(I D)\right)\right)$
- $h=a P+m H_{1}(L)$ and

NIZK π that r was
correctly formed

Collision (Forging) Algorithm

Receiver

- Select message m^{\prime}
- $a^{\prime} P=a P+\left(m-m^{\prime}\right) H_{1}(L)$
- $r^{\prime}=\left(a^{\prime} P, e\left(a^{\prime} P, s_{t} H(I D)\right)\right)$
- NIZK π^{\prime} that r^{\prime} was correctly formed

SECURITY OF PROPOSED CONSTRUCTION

BCDH Reduction

A can create a collision in the hash

B interacts
 with A to solve BCDH

Collision Resistance

» Assumption that BCDH is hard
» Using the second component of r and r^{\prime} we have the following:
$>e\left(a^{\prime} P, s_{t} H(I D)\right)$
$=e\left(a P+\left(m-m^{\prime}\right) H_{1}(L), s_{t} H(I D)\right)$
$=e\left(a P, s_{t} H(I D)\right) e\left(H_{1}(L), s_{t} H(I D)\right)^{m-m^{\prime}}$
$>e\left(a^{\prime} P, s_{t} H(I D)\right) / e\left(a P, s_{t} H(I D)\right)$
$=e\left(s_{t} H(I D), H_{1}(L)\right)^{m-m^{\prime}}$
$>e\left(s_{t} H(I D), H_{1}(L)\right)$ used in simulation to introduce challenge

BCDH Challenge

Given P

$$
\begin{aligned}
& \alpha P=P_{t}=s_{t} P \\
& \beta P=H(I D) \\
& \gamma P=H_{1}(L)
\end{aligned}
$$

compute:

$$
e\left(s_{t} H(I D), H_{1}(L)\right)=e(P, P)^{\alpha \beta \gamma}
$$

Open Problem

» Attribute-based setting
$>$ User with threshold number of attributes can compute collision
>Sahai and Waters
\checkmark Public parameter for each attribute
$>$ Chameleon hash with the following condition:
\checkmark Hash depends on message, attributes, and attribute authority's public key
\checkmark User and attribute authority interact once

THANKS

