An Elementary Proof of a 3n - o(n) Lower Bound on Circuit Complexity of Affine Dispersers

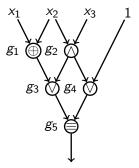
E. Demenkov and A. Kulikov

Steklov Institute of Mathematics at St. Petersburg

Estonian Theory Days 08 October 2011

Inputs:	
$x_1, x_2, \ldots, x_n, 0, 1$	
Gates:	
binary functions	
Fan-out:	
unbounded	

g_1	=	$x_1 \oplus x_2$
g 2	=	$x_2 \wedge x_3$
g ₃	=	$g_1 \lor g_2$
g 4	=	$g_2 \vee 1$
g 5	=	$g_3 \equiv g4$



• Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.

- Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n, t) of circuits of size ≤ t with n input variables does not exceed

$$(16(t+n+2)^2)^t$$
.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

- Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n, t) of circuits of size ≤ t with n input variables does not exceed

$$(16(t+n+2)^2)^t$$
.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

• For
$$t = 2^n/(10n)$$
, $F(n, t)$ is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.

- Shannon counting argument: count how many different Boolean functions in *n* variables can be computed by circuits with *t* gates and compare this number with the total number 2^{2^n} of all Boolean functions.
- The number F(n, t) of circuits of size ≤ t with n input variables does not exceed

$$(16(t+n+2)^2)^t$$
.

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n + 2$ choices).

• For $t = 2^n/(10n)$, F(n, t) is approximately $2^{2^n/5}$, which is $\ll 2^{2^n}$.

• Thus, the circuit complexity of almost all Boolean functions on *n* variables is exponential in *n*. Still, we do not know any explicit function with super-linear circuit complexity.

Known Lower Bounds

	circuit size	formula size
full binary basis B_2	3n - o(n)	$n^{2-o(1)}$
	[Blum]	[Nechiporuk]
basis $U_2 = B_2 \setminus \{\oplus, \equiv\}$	5n-o(n)	$n^{3-o(1)}$
	[lwama et al.]	[Hastad]
	exponential	
monotone basis $M_2 = \{\lor, \land\}$	$\langle , \wedge \}$ [Razborov; Alon, Boppana;	
	Andreev; Karch	nmer, Wigderson]

Known Lower Bounds for Circuits over B_2

Known Lower Bounds

nd Malyshev, 65]
, 74]
']
eyer, 77]
4]

Known Lower Bounds for Circuits over B_2

Known Lower Bounds

2 <i>n</i> – <i>c</i>	[Kloss and Malyshev, 65]
2 <i>n</i> – <i>c</i>	[Schnorr, 74]
2.5n - o(n)	[Paul, 77]
2.5 <i>n</i> − <i>c</i>	[Stockmeyer, 77]
3n - o(n)	[Blum, 84]

This Talk

In this talk, we will present a new proof of a 3n - o(n) lower. The proof is much simpler than Blum's proof, however the function used is much more complicated.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

• Take an optimal circuit for the function in question.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Gate Elimination

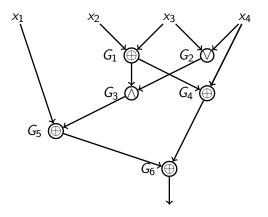
All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

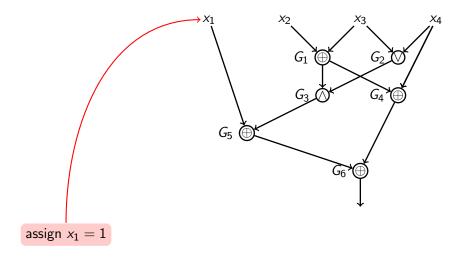
The main idea

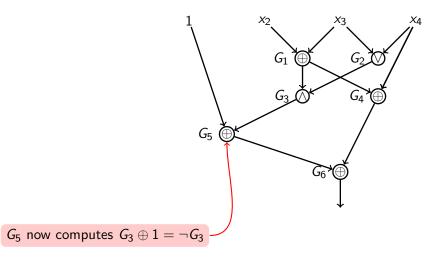
- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

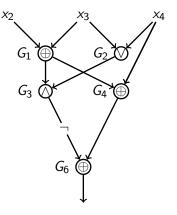
Remark

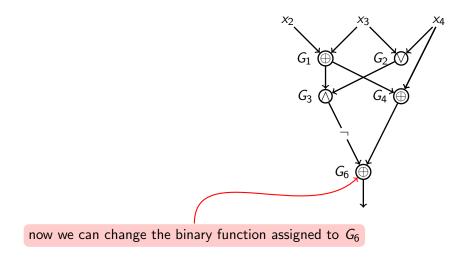
This method is very unlikely to produce non-linear lower bounds.

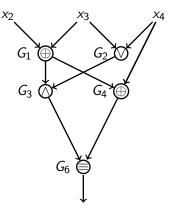


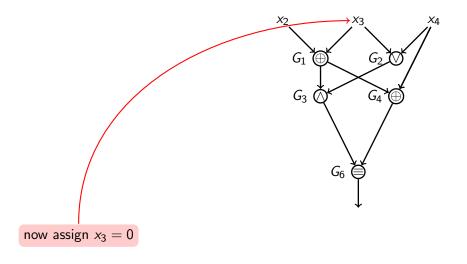


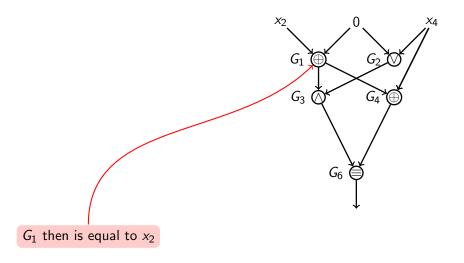


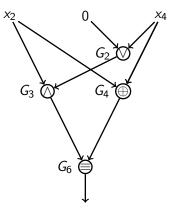


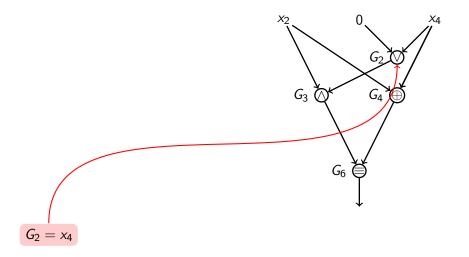


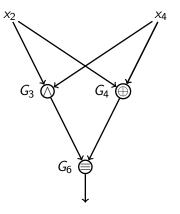


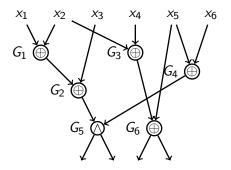




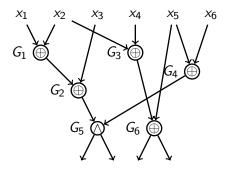






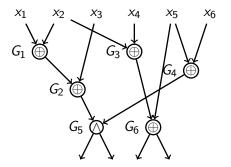


this is how a typical bottleneck case looks like



this is how a typical bottleneck case looks like

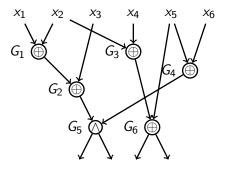
by assigning a variable we cannot kill more than 2 gates



this is how a typical bottleneck case looks like

by assigning a variable we cannot kill more than 2 gates

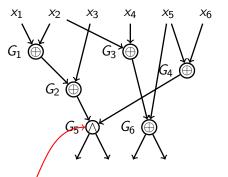
at the same time we cannot exclude that a top of a circuit looks like this



this is how a typical bottleneck case looks like

by assigning a variable we cannot kill more than 2 gates

at the same time we cannot exclude that a top of a circuit looks like this



consider a substitution $x_1 \oplus x_2 \oplus x_3 = 0$: under it G_5 trivializes

• OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?

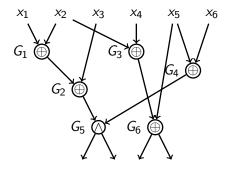
- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any n − o(n) linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after n/2 linear substitutions: x₁ ⊕ x₂ = 1, x₃ ⊕ x₄ = 1,....

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any n − o(n) linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after n/2 linear substitutions: x₁ ⊕ x₂ = 1, x₃ ⊕ x₄ = 1,....
- An object that we are looking for is called an affine disperser.

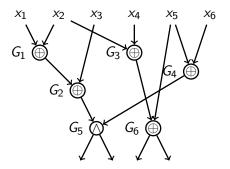
- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any n − o(n) linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after n/2 linear substitutions: x₁ ⊕ x₂ = 1, x₃ ⊕ x₄ = 1,....
- An object that we are looking for is called an affine disperser.
- Formally, an affine disperser for dimension d is a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that is not constant on any affine subspace of $\{0,1\}^n$ of dimension at least d.

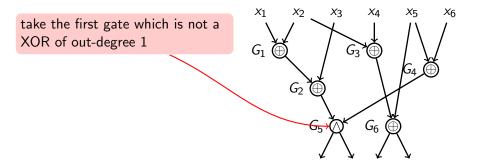
Affine Dispersers

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any n − o(n) linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after n/2 linear substitutions: x₁ ⊕ x₂ = 1, x₃ ⊕ x₄ = 1,....
- An object that we are looking for is called an affine disperser.
- Formally, an affine disperser for dimension d is a function $f: \{0,1\}^n \rightarrow \{0,1\}$ that is not constant on any affine subspace of $\{0,1\}^n$ of dimension at least d.
- Only recently, an explicit affine disperser for d = o(n) was constructed [Ben-Sasson and Kopparty, 09].



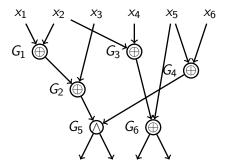
take the first gate which is not a XOR of out-degree 1





take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions



take the first gate which is not a XOR of out-degree 1

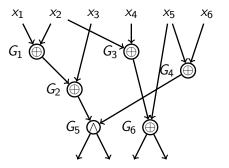
both its inputs compute linear functions



take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions

make a substitution $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

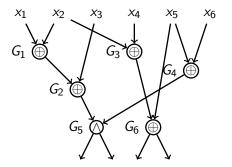


take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions

make a substitution $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

this kills the considered gate and all its successors

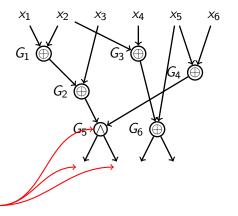


take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions

make a substitution $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

this kills the considered gate and all its successors



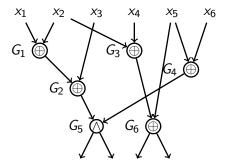
take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions

make a substitution $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

this kills the considered gate and all its successors

moreover, all its predecessors are not needed any more



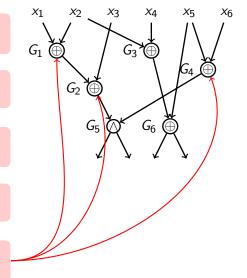
take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions

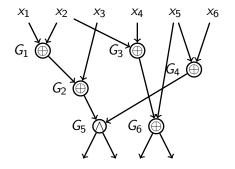
make a substitution $x_1 \oplus x_2 \oplus x_3 \oplus x_5 \oplus x_6 = 1$

this kills the considered gate and all its successors

moreover, all its predecessors are not needed any more



by a short case analysis it is possible to show that this way one can always eliminate 3 gates; since we can make n - o(n) such substitutions a lower bound 3n - o(n) follows



Thank you for your attention!