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Boolean Circuits

Inputs:
x1, x2, . . . , xn, 0, 1
Gates:
binary functions
Fan-out:
unbounded

g1 = x1 ⊕ x2

g2 = x2 ∧ x3

g3 = g1 ∨ g2

g4 = g2 ∨ 1

g5 = g3 ≡ g4

x1 x2 x3 1

⊕g1 ∧g2

∨g3 ∨g4

≡g5
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Random Functions are Complex

Shannon counting argument: count how many different Boolean
functions in n variables can be computed by circuits with t gates and
compare this number with the total number 22

n
of all Boolean

functions.

The number F (n, t) of circuits of size ≤ t with n input variables does
not exceed (

16(t + n + 2)2
)t

.

Each of t gates is assigned one of 16 possible binary Boolean
functions that acts on two previous nodes, and each previous node
can be either a previous gate (≤ t choices) or a variables or a
constant (≤ n + 2 choices).

For t = 2n/(10n), F (n, t) is approximately 22
n/5, which is � 22

n
.

Thus, the circuit complexity of almost all Boolean functions on n
variables is exponential in n. Still, we do not know any explicit
function with super-linear circuit complexity.
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Known Lower Bounds

circuit size formula size

full binary basis B2 3n − o(n) n2−o(1)

[Blum] [Nechiporuk]

basis U2 = B2 \ {⊕,≡} 5n − o(n) n3−o(1)

[Iwama et al.] [Hastad]

exponential
monotone basis M2 = {∨,∧} [Razborov; Alon, Boppana;

Andreev; Karchmer, Wigderson]
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Known Lower Bounds for Circuits over B2

Known Lower Bounds

2n − c [Kloss and Malyshev, 65]
2n − c [Schnorr, 74]
2.5n − o(n) [Paul, 77]
2.5n − c [Stockmeyer, 77]
3n − o(n) [Blum, 84]

This Talk

In this talk, we will present a new proof of a 3n − o(n) lower. The proof is
much simpler than Blum’s proof, however the function used is much more
complicated.
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Gate Elimination Method

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is
essentially the only known method for proving lower bounds on circuit
complexity.

The main idea

Take an optimal circuit for the function in question.

Setting some variables to constants obtain a subfunction of the same
type (in order to proceed by induction) and eliminate several gates.

A gate is eliminated if it computes a constant or a variable.

By repeatedly applying this process, conclude that the original circuit
must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.
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Example

x1 x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6
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Example

x1 x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6

assign x1 = 1
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G5

⊕G6

1

G5 now computes G3 ⊕ 1 = ¬G3
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G6

¬
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

⊕G6

¬

now we can change the binary function assigned to G6
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6
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Example

x2 x3 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6

now assign x3 = 0
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Example

x2 x4

⊕G1 ∨G2

∧G3 ⊕G4

≡G6

0

G1 then is equal to x2
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Example

x2 x4

∨G2

∧G3 ⊕G4

≡G6

0
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Example

x2 x4

∨G2

∧G3 ⊕G4

≡G6

0

G2 = x4
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Example

x2 x4

∧G3 ⊕G4

≡G6
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A Typical Bottleneck

x1 x2 x3 x4 x5 x6

⊕G1

⊕G2

⊕G3

⊕G4

∧G5 ⊕G6
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A Typical Bottleneck

x1 x2 x3 x4 x5 x6

⊕G1

⊕G2

⊕G3

⊕G4

∧G5 ⊕G6

this is how a typical bottleneck
case looks like

by assigning a variable we cannot
kill more than 2 gates

at the same time we cannot ex-
clude that a top of a circuit looks
like this

consider a substitution x1 ⊕ x2 ⊕
x3 = 0: under it G5 trivializes

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)3n Lower Bound 8 / 11



Affine Dispersers

OK, linear substitutions do help in gate elimination, but where is a
function that survives under such substitutions?

Constructing a function that does not become a constant after any
n − o(n) linear substitutions is non-trivial. E.g., any symmetric
function may be turned into a constant after n/2 linear substitutions:
x1 ⊕ x2 = 1, x3 ⊕ x4 = 1, . . . .

An object that we are looking for is called an affine disperser.

Formally, an affine disperser for dimension d is a function
f : {0, 1}n → {0, 1} that is not constant on any affine subspace of
{0, 1}n of dimension at least d .

Only recently, an explicit affine disperser for d = o(n) was
constructed [Ben-Sasson and Kopparty, 09].
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Proof Idea

x1 x2 x3 x4 x5 x6

⊕G1

⊕G2

⊕G3

⊕G4

∧G5 ⊕G6
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XOR of out-degree 1
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Proof Idea

x1 x2 x3 x4 x5 x6

⊕G1

⊕G2

⊕G3

⊕G4

∧G5 ⊕G6

by a short case analysis it
is possible to show that
this way one can always
eliminate 3 gates; since we
can make n − o(n) such
substitutions a lower bound
3n − o(n) follows

A. Kulikov (Steklov Institute of Mathematics at St. Petersburg)3n Lower Bound 10 / 11



Thank you for your attention!
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