An Elementary Proof of a $3 n-o(n)$ Lower Bound on Circuit Complexity of Affine Dispersers

E. Demenkov and A. Kulikov

Steklov Institute of Mathematics at St. Petersburg

Estonian Theory Days
08 October 2011

Boolean Circuits

Inputs:
$x_{1}, x_{2}, \ldots, x_{n}, 0,1$ Gates:
binary functions Fan-out:
unbounded

$$
\begin{aligned}
g_{1} & =x_{1} \oplus x_{2} \\
g_{2} & =x_{2} \wedge x_{3} \\
g_{3} & =g_{1} \vee g_{2} \\
g_{4} & =g_{2} \vee 1 \\
g_{5} & =g_{3} \equiv g 4
\end{aligned}
$$

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.
- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

$$
\left(16(t+n+2)^{2}\right)^{t}
$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n+2$ choices).

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.
- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

$$
\left(16(t+n+2)^{2}\right)^{t}
$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n+2$ choices).

- For $t=2^{n} /(10 n), F(n, t)$ is approximately $2^{2^{n} / 5}$, which is $\ll 2^{2^{n}}$.

Random Functions are Complex

- Shannon counting argument: count how many different Boolean functions in n variables can be computed by circuits with t gates and compare this number with the total number $2^{2^{n}}$ of all Boolean functions.
- The number $F(n, t)$ of circuits of size $\leq t$ with n input variables does not exceed

$$
\left(16(t+n+2)^{2}\right)^{t}
$$

Each of t gates is assigned one of 16 possible binary Boolean functions that acts on two previous nodes, and each previous node can be either a previous gate ($\leq t$ choices) or a variables or a constant ($\leq n+2$ choices).

- For $t=2^{n} /(10 n), F(n, t)$ is approximately $2^{2^{n} / 5}$, which is $\ll 2^{2^{n}}$.
- Thus, the circuit complexity of almost all Boolean functions on n variables is exponential in n. Still, we do not know any explicit function with super-linear circuit complexity.

Known Lower Bounds

	circuit size	formula size
full binary basis B_{2}	$3 n-o(n)$ $[B l u m]$	$n^{2-o(1)}$ [Nechiporuk]
basis $U_{2}=B_{2} \backslash\{\oplus, \equiv\}$	$5 n-o(n)$	$n^{3-o(1)}$
[Hastad]		
monotone basis $M_{2}=\{\vee, \wedge\}$	exponential [Razborov; Alon, Boppana; Andreev; Karchmer, Wigderson]	

Known Lower Bounds for Circuits over B_{2}

Known Lower Bounds
$2 n-c \quad[K l o s s ~ a n d ~ M a l y s h e v, ~ 65] ~$
$2 n-c \quad$ [Schnorr, 74]
$2.5 n-o(n) \quad[P a u l, 77]$
$2.5 n-c$
[Stockmeyer, 77]
$3 n-o(n) \quad[B l u m, 84]$

Known Lower Bounds for Circuits over B_{2}

```
Known Lower Bounds
    2n-c [Kloss and Malyshev, 65]
    2n-c [Schnorr, 74]
    2.5n-o(n) [Paul, 77]
    2.5n-c [Stockmeyer, 77]
    3n-o(n) [Blum, 84]
```


This Talk

In this talk, we will present a new proof of a $3 n-o(n)$ lower. The proof is much simpler than Blum's proof, however the function used is much more complicated.

Gate Elimination Method

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

Gate Elimination Method

Gate Elimination
All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

- Take an optimal circuit for the function in question.

Gate Elimination Method

Gate Elimination
All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.

Gate Elimination Method

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.

Gate Elimination Method

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Gate Elimination Method

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Gate Elimination Method

Gate Elimination

All the proofs are based on the so-called gate elimination method. This is essentially the only known method for proving lower bounds on circuit complexity.

The main idea

- Take an optimal circuit for the function in question.
- Setting some variables to constants obtain a subfunction of the same type (in order to proceed by induction) and eliminate several gates.
- A gate is eliminated if it computes a constant or a variable.
- By repeatedly applying this process, conclude that the original circuit must have had many gates.

Remark

This method is very unlikely to produce non-linear lower bounds.

Example

Example

Example

Example

Example

now we can change the binary function assigned to G_{6}

Example

Example

Example

G_{1} then is equal to x_{2}

Example

Example

Example

A Typical Bottleneck

A Typical Bottleneck

this is how a typical bottleneck case looks like

A Typical Bottleneck

this is how a typical bottleneck case looks like
by assigning a variable we cannot kill more than 2 gates

A Typical Bottleneck

this is how a typical bottleneck case looks like
by assigning a variable we cannot kill more than 2 gates
at the same time we cannot exclude that a top of a circuit looks like this

A Typical Bottleneck

this is how a typical bottleneck case looks like
by assigning a variable we cannot kill more than 2 gates
at the same time we cannot exclude that a top of a circuit looks like this
consider a substitution $x_{1} \oplus x_{2} \oplus$ $x_{3}=0$: under it G_{5} trivializes

Affine Dispersers

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?

Affine Dispersers

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any $n-o(n)$ linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after $n / 2$ linear substitutions: $x_{1} \oplus x_{2}=1, x_{3} \oplus x_{4}=1, \ldots$.

Affine Dispersers

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any $n-o(n)$ linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after $n / 2$ linear substitutions:
$x_{1} \oplus x_{2}=1, x_{3} \oplus x_{4}=1, \ldots$.
- An object that we are looking for is called an affine disperser.

Affine Dispersers

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any $n-o(n)$ linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after $n / 2$ linear substitutions:
$x_{1} \oplus x_{2}=1, x_{3} \oplus x_{4}=1, \ldots$.
- An object that we are looking for is called an affine disperser.
- Formally, an affine disperser for dimension d is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that is not constant on any affine subspace of $\{0,1\}^{n}$ of dimension at least d.

Affine Dispersers

- OK, linear substitutions do help in gate elimination, but where is a function that survives under such substitutions?
- Constructing a function that does not become a constant after any $n-o(n)$ linear substitutions is non-trivial. E.g., any symmetric function may be turned into a constant after $n / 2$ linear substitutions: $x_{1} \oplus x_{2}=1, x_{3} \oplus x_{4}=1, \ldots$.
- An object that we are looking for is called an affine disperser.
- Formally, an affine disperser for dimension d is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that is not constant on any affine subspace of $\{0,1\}^{n}$ of dimension at least d.
- Only recently, an explicit affine disperser for $d=o(n)$ was constructed [Ben-Sasson and Kopparty, 09].

Proof Idea

Proof Idea

take the first gate which is not a XOR of out-degree 1

Proof Idea

Proof Idea

take the first gate which is not a XOR of out-degree 1
both its inputs compute linear functions

Proof Idea

Proof Idea

take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions
make a substitution
$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}=1$

Proof Idea

take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions
make a substitution
$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}=1$

this kills the considered gate and all its successors

Proof Idea

> take the first gate which is not a XOR of out-degree 1
both its inputs compute linear functions
make a substitution
$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}=1$
this kills the considered gate and all its successors

Proof Idea

take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions
make a substitution
$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}=1$

this kills the considered gate and all its successors
moreover, all its predecessors are not needed any more

Proof Idea

take the first gate which is not a XOR of out-degree 1

both its inputs compute linear functions
make a substitution
$x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{5} \oplus x_{6}=1$
this kills the considered gate and all its successors
moreover, all its predecessors are not needed any more

Proof Idea

by a short case analysis it is possible to show that this way one can always eliminate 3 gates; since we can make $n-o(n)$ such substitutions a lower bound
 $3 n-o(n)$ follows

Thank you for your attention!

