
ACHIEVING PERFORMANCE 
AND AVAILABILITY 

GUARANTEES WITH AMAZON 
SPOT INSTANCES 

MICHELE MAZZUCCO* 

UNIVERSITY OF TARTU 

* And Marlon Dumas. Thanks to Madeline Gonzalez for the useful discussions. 



INTRODUCTION (1) 

•  Cloud computing = pay-as-you go + “unlimited” capacity 
•  Amazon Elastic Cloud Compute (EC2) 

•  Web service providing resizable compute capacity 
•  Different instance types, e.g., small, large, xlarge servers 
•  Different purchasing options 

1.  On-Demand Instances 
•  Pay for resources by the hour 
•  No long-term commitments 

2.  Reserved Instances 
•  Upfront payment for reserving instances 
•  Discounted usage rate 

2 



INTRODUCTION (2) 

3.  Spot Instances 
•  Users bid for unused resources at a “limit price” (the 

maximum price the bidder is willing to pay) 
•  Amazon gathers the bids and determines a clearing 

price (“spot price”) based on the bids and the available 
capacity 

•  A bidder gets the required instances if his/her limit price 
is above the clearing price. In this case, the bidder pays 
the clearing price (not his/her limit price) 

•  The clearing price is updated as new bids arrive. If the 
clearing price goes above the bidder’s limit price, the 
bidder’s running spot instances are terminated. 

3 



INTRODUCTION (3) 

•  In this presentation I will focus on “spot 
instances” 
•  They allow IaaS providers to sell spare capacity 

(via auctions), thus improving resource utilization  
•  At the same time they enable IaaS users to 

acquire resources at a price lower than on-
demand price 

•  However, spot instances are terminated any time the 
“clearing price” goes above the user’s “limit price” 

4 



PROBLEM STATEMENT 

“Can we use spot instances to run 
paid web services while achieving 

performance and availability 
guarantees?”!

5 



TALK OUTLINE 

6 

Bidding 
strategy 

• Decides how much to 
bid on the spot market 

Server 
allocation 

• Decides how many 
servers to use 

Admission 
control 

• Decides how many 
jobs to admit 

Mission 
accomplished Meet performance 

targets 

Meet availability 
goals 



PART 1: SPOT PRICE 
PREDICTION 

•  We must determine the optimal “limit price” that the SaaS 
provider should bid on the spot market 
•  The goal is to bid the lowest possible price capable of 

achieving the desired level of availability 

•  Let’s see how some spot prices look like… 

7 



SPOT PRICES (M1.SMALL) 

8 

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

25/12 01/01 08/01 15/01 22/01 29/01 05/02 12/02 19/02 26/02

P
ri

ce
 (

$
/h

)

m1.small (Linux/UNIX)

 0.029

 0.0295

 0.03

 0.0305

 0.031

11/Fri 12/Sat 13/Sun 14/Mon 15/Tue

P
ri

ce
 (

$
/h

)



SPOT PRICES (M1.LARGE) 

9 

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

25/12 01/01 08/01 15/01 22/01 29/01 05/02 12/02 19/02 26/02

P
ri

ce
 (

$/
h)

m1.large (Linux/UNIX)

 0.113

 0.116

 0.119

 0.122

 0.125

 0.128

11/Fri 12/Sat 13/Sun 14/Mon 15/Tue

P
ri

ce
 (

$
/h

)



SPOT PRICES (M1.XLARGE) 

10
 

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

25/12 01/01 08/01 15/01 22/01 29/01 05/02 12/02 19/02 26/02

P
ri

ce
 (

$/
h)

m1.xlarge (Linux/UNIX)

 0.24

 0.27

 0.3

 0.33

 0.36

 0.39

11/Fri 12/Sat 13/Sun 14/Mon 15/Tue

P
ri

ce
 (

$
/h

)



1ST ATTEMPT 
•  Assume that prices follow patterns, e.g., day/night, week 

days/week ends, etc. 
•  Use triple exponential smoothing (“Holt-Winters”) for 

predicting future prices 

11
 

St =!
yt
It
+ (1!!)(St!1 + bt!1)

bt = " (St ! St!1)+ (1!" )bt!1

It = #
yt
St
+ (1!#)It!L

Ft+m = (St +mbt )It!L+m

Updates the trend 

Updates the smoothed value 

Updates the seasonal 
component 

m periods ahead’s forecast 

C
on

st
an

ts
 m

in
im

iz
in

g 
th

e 
M

S
E

 



WIKIPEDIA TRAFFIC 

Time [hours]

Ar
r. 

ra
te

 [r
eq

./h
ou

r]

0 100 200 300 400 500 600 700

2.
0e

+0
7

2.
5e

+0
7

3.
0e

+0
7

3.
5e

+0
7

12
 

~ 10,000 req./sec at peak 



WIKIPEDIA TRAFFIC: TIME 
SERIES DECOMPOSITION 

13
 

2.
0e
+0
7

3.
0e
+0
7

da
ta

−6
e+
06

−2
e+
06

2e
+0
6

se
as
on
al

2.
3e
+0
7

2.
6e
+0
7

2.
9e
+0
7

tre
nd

−1
e+
07

−4
e+
06

2e
+0
6

0 5 10 15 20 25 30

re
m
ai
nd
er

time

The max irregular 
component is ~11% of 
the data 

= 
da

ta
 –

 (t
re

nd
 +

 s
ea

so
na

l) 



PREDICTING WIKIPEDIA 
TRAFFIC WITH HOLT WINTERS 

Predicting Wikipedia traffic with Holt−Winters

Time [days]

Ar
r. 

ra
te

 [r
eq

./h
ou

r]

0 5 10 15 20 25 30

2.
0e

+0
7

2.
5e

+0
7

3.
0e

+0
7

3.
5e

+0
7 Observed

Predicted

14
 



PREDICTING SPOT PRICES 
WITH HOLT WINTERS (1) 

m1.small

Time [~ days]

Pr
ic

e 
[$

/h
]

10 20 30 40

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

Observed
Predicted

15
 

Days [5−9]

Time [hours]

Pr
ic

e 
[$

/h
]

0 20 40 60 80 100 120

0.
03

0
0.

03
5

0.
04

0
0.

04
5

0.
05

0

Observed
Predicted



PREDICTING SPOT PRICES 
WITH HOLT WINTERS (2) 

m1.large

Time [~ days]

Pr
ic

e 
[$

/h
]

10 20 30 40

0.
15

0.
20

0.
25

0.
30

Observed
Predicted

16
 

Days [5−9]

Time [hours]

Pr
ic

e 
[$

/h
]

0 20 40 60 80 100 120

0.
15

0.
20

0.
25

0.
30

Observed
Predicted



PREDICTING SPOT PRICES 
WITH HOLT WINTERS (3) 

m1.xlarge

Time [~ days]

Pr
ic

e 
[$

/h
]

10 20 30 40

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8 Observed

Predicted

17
 

Days [5−9]

Time [hours]

Pr
ic

e 
[$

/h
]

0 20 40 60 80 100 120

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8 Observed

Predicted



XLARGE PRICES: TIME 
SERIES DECOMPOSITION 

m1.xlarge

0.
3

0.
5

0.
7

da
ta

−0
.0
3

−0
.0
1

0.
01

0.
03

se
as
on
al

0.
25

0.
35

0.
45

tre
nd

−0
.2

0.
0

0.
2

0.
4

5 10 15

re
m
ai
nd
er

time

18
 

The max irregular 
component is ~50% of 
the data 



2ND ATTEMPT (1) 
•  What about employing the distribution of the relative 

errors to correct the prediction? 

19
 

Histogram of errors

Relative error [(observed − predicted)/observed]

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2

0
1

2
3

4
5

6

m1.large 

We are interested in this part 



2ND ATTEMPT (2) 

20
 

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF rel. error (Wikipedia)

Relative error [(observed − predicted)/observed]

Fn
(x

)

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●● ●●●●●●●●

●●●●● ●●●●●● ● ●● ●●● ● ● ● ● ● ●● ● ●● ● ● ● ●

All the arrival rates can be 
estimated with 83% accuracy 



2ND ATTEMPT (3) 

21
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
4

0.
6

0.
8

1.
0

CDF rel. error. (xlarge)

Relative error [(observed − predicted)/observed]

Fn
(x

)

It does not really 
work, does it? 



ONE MORE THING… 
Dec. 25, 2010 − Feb. 23, 2011

Time [hours]

Pr
ic

e 
[$

/h
]

0 200 400 600 800 1000

0.
03

0.
05

0.
07

Jun. 22, 2011 − Sept. 23, 2011

Time [hours]

Pr
ic

e 
[$

/h
]

0 100 200 300 400 500

0.
03

0.
05

0.
07

22
 

•  ... they look quite different, don’t they? 



ACF(l) =
(xt ! x )(xt+l ! x )

t=1

N

"

(xt ! x )
2

t=1

N

"

3RD ATTEMPT 

1.  Employ the autocorrelation function (ACF) to determine the 
similarity between prices as a function of the time difference 
between them (lag) 

23
 

Average value 

Value at time t 

No. of observations 

Lag 



2ND ATTEMPT 

•  The autocorrelation function (ACF) of the prices confirms the lack 
of any relationship between prices over the time 

2.  Use a normal approximation to model prices 
•  There is some evidence that prices in similar markets are 

approximately normally distributed 24
 

0 50 100 150

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG (hours)

AC
F

m1.small 



2ND ATTEMPT 

•  The autocorrelation function (ACF) of the prices confirms the lack 
of any relationship between prices over the time 

2.  Use a normal approximation to model prices 
•  There is some evidence that prices in similar markets are 

approximately normally distributed 25
 

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG (hours)

AC
F

m1.large 



0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LAG (hours)

AC
F

2ND ATTEMPT 

•  The autocorrelation function (ACF) of the prices confirms the lack 
of any relationship between prices over the time 

2.  Use a normal approximation to model prices 
•  There is some evidence that prices in similar markets are 

approximately normally distributed 26
 

m1.xlarge 



SPOT PRICE DISTRIBUTION 

Data Normal Approx. 
Minimum 0.029 0.02098 
1st Quartile 0.029 0.02877 
Median 0.031 0.03020 
3rd Quartile 0.031 0.03163 
Maximum 0.085 0.04010 
Mean (1st moment) 0.0302 0.03025 
Variance (2nd moment) 4.503941 × 10-6 4.515323 × 10-6 

Skewness (3rd moment) 1.877202 × 10  1.659259 × 10-2  
Kurtosis (4th moment) 4.700735 × 102  3.004374 

27
 

m1.small (Linux/Unix), us-east1 region. Dec. 25, 
2010 – Feb. 23, 2011 

Th
e 

di
st

rib
ut

io
n 

of
 th

e 
pr

ic
es

 is
 m

or
e 

he
av

y 
ta

ile
d 

 
(c

on
fir

m
ed

 a
ls

o 
by

 Q
-Q

 p
lo

ts
 a

nd
 S

ha
pi

ro
-W

ilk
 te

st
) 



PRICE PREDICTION 
ALGORITHM 
①  Collect price statistics, and compute mean and variance 
②  Compute ACF of the prices for lag l, with l being the prediction 

horizon 
③  If ACF(l) > 0.4,  

a)  Predict the future prices using linear regression,  
y = a + bx, otherwise 

b)  Use the quantile function (inverse CDF) of the Normal 
distribution to predict the future prices 

•  The inverse CDF returns the value of x such as 
P(X ≤ x) = p 

④  Use the max value returned by (3) as a “limit price” 

⑤  In case of out-of-bid events, increase the bid by 40% 

28
 



PREDICTION ALGORITHM 
PERFORMANCE 

29
 m1.small (Linux/Unix), us-east1 region. Dec. 25, 2010 – Feb. 23, 2011.  

The price of “on-demand” instances is 0.085$/h 

Prediction 
(hours) 

Target 
availability 

Achieved 
availability 

Avg. big ($/h) 

6 90% 99.673% 0.03170 
6 99% 99.673% 0.03270 
6 99.999% 99.673% 0.03463 
12 90% 99.675% 0.03207 
12 99% 99.675% 0.03307 
12 99.999% 99.675% 0.03499 
24 90% 99.679% 0.03253 
24 99% 99.679% 0.03350 
24 99.999% 99.679% 0.03533 



PART 2: MODEL AND SLA (1) 

The SaaS provider 	


1.  Pays the IaaS for renting computing resources	


2.  Charges its customer for executing WS transactions	


3.  Pays penalties to its customer for failing to meet 
performance and availability objectives	



 

30
 



MODEL AND SLA (2)… 

1.  For each accepted and completed request, the client pays 
a charge of c $ 

2.  Performance: if  the avg. resp. time, β, over an interval of 
length t exceeds the threshold q, then the provider pays a 
penalty of r1 $ for each job executed in the interval 

3.  Availability: the provider should pay a penalty of r2 $ for 
each rejected job 

4.  Disaster: the provider is liable to pay a r3 $ for every 
accepted job that is lost due to resources becoming 
unavailable 

5.  The provider pays r4 $/h  to rent each server 
•  The provider tries to optimize the average net revenue 

earned per unit time 

31
 



… OR 

•  r1 = penalty for “performance” 
•  r2 = penalty for “availability” 
•  r3 = penalty for “disaster” 
•  r4 = server rental cost 
•  γ = rate at which jobs are accepted into the system 

32
 

R =![c! r1P(" > q)]! r2 (# !! )! r3P(lp < sp )L ! r4n

Prob. that the avg. resp. time exceeds 
the threshold  

Rate at which jobs are rejected 

Prob. that spot instances are terminated 

Avg. no. of jobs in the system 



POLICIES 
Resource allocation and admission control 

•  Admission control defined by means of a threshold, K 

1.  “Threshold” policy 

•  The simultaneous optimization of K and n is non trivial 
•  Treats the system as an M/M/n/K queue 
•  Uses a “Hill Climbing” algorithm to find the “best” value of 

n and K 
2.  “Heuristic”: assumes that the response time is dominated 

by the service time (true in “large” systems) 
•  Treats the system as an GI/G/n queue 
•  K = ∞, e.g., no job is rejected 

33
 



PERFORMANCE 
EVALUATION - SETTINGS 

b 0.5 sec. Average service time 
q 1 sec. Performance threshold 
c 2.951 × 10-5 $ Charge per job 

r1 1.5 × c Penalty (performance) 
r2 2 × c Penalty (availability) 
r3 3 × c Penalty (disaster) 
r4 0.085 $/h Rental cost (“on-demand” instances) 
t 1 min. Interval length (SLA evaluation) 

34
 



REVENUE AS FUNCTION OF K AND N 

35
 

-100

-80

-60

-40

-20

 0

 20

 40

 60

 20  40  60  80  100  120  140  160  180  200  220

R
ev

en
u

e,
 $

/h

Admission threshold, K

n=23
n=27
n=30
n=31
n=35

p(lp < cp) = 0 



REVENUE AS FUNCTION OF K AND N 

36
 

-100

-80

-60

-40

-20

 0

 20

 40

 60

 20  40  60  80  100  120  140  160  180  200  220

R
ev

en
u

e,
 $

/h

Admission threshold, K

n=23
n=27
n=30
n=31
n=35

p(lp < cp) = 0.25 



REVENUE AS FUNCTION OF K AND N 

37
 

-100

-80

-60

-40

-20

 0

 20

 40

 60

 20  40  60  80  100  120  140  160  180  200  220

R
ev

en
u

e,
 $

/h

Admission threshold, K

n=23
n=27
n=30
n=31
n=35

p(lp < cp) = 0.5 



REVENUE AS FUNCTION OF R1, R2 
AND K 

38
 n = 10, ρ = 10, p(lp < cp) = 0 (e.g., no disasters occur) 

-4

-3

-2

-1

 0

 1

 2

 10  15  20  25  30  35  40

R
ev

en
u

e,
 $

/h

Admission threshold, K

r1=2.5c, r2=0
r1=2c, r2=0.5c

r1=1.5c, r2=c
r1=c, r2=1.5c

r1=0.5c, r2=2c
r1=0, r2=2.5c

The system is saturated 
•  Have to choose between a 

long queue and rejecting 
many jobs 



REVENUE AS FUNCTION OF THE 
ARRIVAL RATE 

39
 ca2=1, cs2=1, ρ = 7.5,…,25, p(lp < cp) = 0.001 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 15  20  25  30  35  40  45  50

R
ev

en
ue

, $
/h

Arrival rate, λ (req./sec.)

On-Demand (Threshold)
On-Demand (Heuristic)

Spot (Threshold)
Spot (Heuristic)

1.  The revenue increases 
with the load 

2.  The use spot instances 
makes the system more 
profitable 

3.  The “Heuristic” policy 
performs almost as good 
as the “Threshold” 
algorithm 

Each point  represents 
a run lasting 28 days 



CONCLUSIONS 

•  I have discussed an approach aiming at maximizing the net 
revenue earned by a SaaS using spot instances to provide a 
web service to paying customers 
1.  How much to bid for resources on the spot market? 
2.  How many servers should be allocated for a given time 

period, and how many jobs to accept? 

•  The number of running servers, as well as the maximum 
number of jobs admitted into the system, have a significant 
effect on the earned revenues 
•  The optimal queue length is highly dependent on the 

availability level (e.g., shorter queue when the likelihood 
premature termination is high)  

40
 



41
 


