Compositional Transfinite
Semantics of While

Harmel Nestra

Institute of Computer Science
University of Tartu
e-mail: har nel . nestra@ut . ee

1 Motivation: Semantic Anomaly of Program Slicing

Motivation: Semantic Anomaly of
Program Slicing

1 Motivation: Semantic Anomaly of Program Slicing 3

Program slicing

Program slicing is program transformation where parts of progr
are left out so that the computation of the interesting \deisat inter-
esting program points would not be affected.

— Applications in debugging and elsewhere in software erggin
ing.

1 Motivation: Semantic Anomaly of Program Slicing

Example 1

Slicing w.r.t. variablesumat the end point:

n:=input() ; n:=input() ;

i =0 ; i =0

sum:= 0 ; sum:= 0 ;

prod := 1 ;

while i < n do vahilei<ndo

((
=0 o+ 1 =0 o+ 1
sum:= sum+ i ; sum:= sum+ i ;

1 Motivation: Semantic Anomaly of Program Slicing 5

Algorithms

Classic algorithms for program slicing are based on corilioal and
data flow analysis.

— Relevant Sets (backward).

— Reaching Definitions (forward).

1 Motivation: Semantic Anomaly of Program Slicing

Example 2

Irrelevant loops can be sliced away:

n:=input() ; n:=input() ;
i :=0; sum:= 0 ; i :=0; sum:= 0 ;
while i < n do while i < n do
((

i =i+ 1 ; =0 o+ 1 ;
sum:= sum+ i ; sum ;= sum + i
) -)

i :=0; prod :=1;

while not (i == n) do

(

=i o+ 1 ;

prod := prod * i
)

1 Motivation: Semantic Anomaly of Program Slicing 7

Semantic anomaly

Problem: the sequence of values observed at some prograndesi
pends on the termination status of the loops.

— Undecidable.

2 Solutions: Transfinite Semantics vs Trajectories 8

Solutions: Transfinite Semantics vs
Trajectories

2 Solutions: Transfinite Semantics vs Trajectories 9

Subject to change: Algorithms, definition, semantics

e Changing algorithms may keep slices too big and is unneeBs:
practice.

e Changing the definition tend to allow too many subsets asslic

e Change the semantics!

2 Solutions: Transfinite Semantics vs Trajectories 10

Transfinite semantics

In transfinite semantics, execution of programs can continue after
infinite loops from some limit states.

— Loop bodies are run at mosttimes during each execution of
the loop.

— Semantic anomaly vanishes.

— Problem: How to define limit states?

2 Solutions: Transfinite Semantics vs Trajectories 11

Attempts

— Giacobazzi and Mastroeni 2003.
— Nestra 2004—-2006: Without assuming structured control. flow

— Nestra 2007-2009: In the greatest fixpoint form.

Lack of natural properties such as compositionality.

2 Solutions: Transfinite Semantics vs Trajectories 12

Compositionality, substitutivity

In compositional semantics, the meaning of composed statements is
expressed in terms of the semantics of their immediate itoests
solely.

— Impliessubstitutivity: any substatement may be replaced with
a semantically equivalent statement without changing tearn
ing of the whole statement.

2 Solutions: Transfinite Semantics vs Trajectories 13

Trajectory semantics

In trajectory semantics, the number of times a loop body is run
during one execution of the loop is limited by a natural numbeen
as a parameter.

— Proposed by Danicic et al. (2010) for addressing semantic
anomaly.

— Semantic anomaly vanishes since no loop is infinite.

2 Solutions: Transfinite Semantics vs Trajectories 14

Relationship with standard semantics

e From transfinite semantics of a program, standard semaraicin
principle be deduced directly by truncating the transfipaet.

e From trajectory semantics of an infinite loop, standard sdits
must be collected from infinitely many finite beginnings.

3 Our Contribution

15

Our Contribution

3 Our Contribution 16

General characterization
e Compositional transfinite semantics w.r.t. which clas$uirgy al-
gorithms are correct.

e Relationships with standard semantics and transfinite sgcsan
the form of greatest fixpoint.

3
3.1

Our Contribution
Shape of Traces

17

Shape of Traces

3 Our Contribution 18
3.1 Shape of Traces

Ordinal semantics

Intermediate states on execution traces are indexed byadmlimbers
0,1,2,...,0w,w+1,w+2,......).

— The desired transfinite semantics cannot be representdu
form of least or greatest fixpoint that is standard in thisare

x Greatest fixpoint would involve traces that include garb
after infinite loops. (Explained in our previous wo
(2007-2009).)

— Loop semantics can still be expressed naively via finite afid
nite iterations.

nt

age
rk

3 Our Contribution 19
3.1 Shape of Traces

Fractional semantics

Intermediate states on execution traces are indexed lmynehthum-
bers betweef and1.

— Traces develop into depth rather than into length.

— Each part of computation has its own interval of indicesi-stat
cally associated to it. (No space is left for garbage.)

— Introduced for expressing transfinite semantics in thedstah
fixpoint form.

— Studied by us previously (2006, 2007—-2009).

3 Our Contribution 20
3.1 Shape of Traces

Fractional semantics: Example 1

Fractional trace of program
(z:=x,;, xX:=y),y:=12z

X—1
in the initial state{ y—2 } is
z—0

X—1 X—1 X+—2
y 2 y 2 y -2
z—0 z—1 z—1

X2
y—1
z—1

0 1

3 Our Contribution
3.1 Shape of Traces

21

Fractional semantics: Example 2

Fractional trace of program

Z =X ; X:=y,;,y:.:=2

X+—1
in the initial state{ y—2 } is

z—0
X—1 X—1 X+—2
y—2 y—2 Y2
z—0 z—1 zZ—1

X2
y—1
z—1

0

3 Our Contribution
3.2 Limit States

22

Limit States

3 Our Contribution 23
3.2 Limit States

Limit state restriction

Limit statet where the computation falls after infinite computati
(s; : i € N) must satisfy the following:

Let sy, sk, . . . be all states observed while passing through the |
condition test point. Then

lim(sy, 17 € N) ¢

where:

— Cis flat order on values; is obtained by pointwise lifting, an

T _Ju ifIneNVI>nvy=u)
hm(vl'ZEN)_{L otherwise }

on

oop

3 Our Contribution 24
3.2 Limit States

Recognition of states that influence the limit

How to recognize states observed at the loop condition teéetd

— In the iteration form, we just take the first state of eaclatien.
(Fractional shape of traces not needed.)

— In the fixpoint form (fractional shape assumed), we may take

L 1
states that are observed at indites 70 for: e N,

— Otherwise, program points must be traced in semantics (snake
description of semantics more complicated).

3 Our Contribution
3.3 Program Points

25

Program Points

3 Our Contribution 26
3.3 Program Points

Correpondence of program points and slice points

How can the correspondence be established and traced?

— In ordinal semantics: Program points must be traced exigtici
— In fractional semantics: Trivial injection of indices ddes job!

*x Assumes that statements are replaced with p rather
than removed. (Standard alternative.)

3 Our Contribution
3.3 Program Points

27

Correspondence of program points: Example

Slicing w.r.t. the value ok after the last assignment xo

((
y :=1; y 1=
while true do x :=x + 1 skip
))
((
X 1=y ; X 1=
y:=2; z :=13) ski p
))

The index sets for these programs are the following:

0

—_ 4+

3 Our Contribution
3.4 Technical Part

28

Technical Part

3 Our Contribution
3.4 Technical Part

29

Types

Val
State = Var — Val
Conf = Stmt x State

Elem,. O State
Base,,

Sem, ©(Base,,)

s, € Stmt — Sem,,

set of all values
set of variable evaluations
set of configurations

set of elements of semantic objects
set of all semantic objects (traces)
set of all meanings of programs

semantics of statements

3 Our Contribution 30
3.4 Technical Part

Structure of semantics

s.(ski p)

= axm’ {s — s: s € State}
s.(X 1= F)

= axm’ {s — s[X — e(E)(s)] : s € State}
se(T1 5 T3)

= rull (s,,(T1) x $.(T2))
s.(if F then T, else T5)

= ruli(iftrueH(E) x 8,.(T7)) U ruli(iffalseH(E) X 8,.(12))
s.(while E do T)

= U iteru(E, s.(T))(0)

oeOv

4 Conclusion

31

Conclusion

4 Conclusion 32

Conclusion about transfinite semantics

It is too early to write off transfinite semantics!

— Itis closerly related to standard semantics than othercgmbhres
proposed for program slicing theory.

4 Conclusion 33

Conclusion about fractional semantics

Fractional semantics is useful!

— Enables transfinite semantics in the form of greatest fixpoin

— Without having to trace program points, enables recogmitib
significant states on loop execution traces.

— Without having to trace program points, provides meansifpr

orously dealing with program point correspondence in thg-g
inal program and its slice.

— In comparison with tree semantics:

« Fractional semantics shows the order of steps explicitly;

x Fractional semantics simplifies some proofs.

= =

