
1

Compositional Transfinite
Semantics of While

Härmel Nestra

Institute of Computer Science

University of Tartu

e-mail:harmel.nestra@ut.ee

1 Motivation: Semantic Anomaly of Program Slicing 2

Motivation: Semantic Anomaly of
Program Slicing

1 Motivation: Semantic Anomaly of Program Slicing 3

Program slicing

Program slicing is program transformation where parts of program
are left out so that the computation of the interesting variables at inter-
esting program points would not be affected.

– Applications in debugging and elsewhere in software engineer-
ing.

1 Motivation: Semantic Anomaly of Program Slicing 4

Example 1

Slicing w.r.t. variablesum at the end point:

n := input() ;
i := 0 ;
sum := 0 ;
prod := 1 ;
while i < n do
(

i := i + 1 ;
sum := sum + i ;
prod := prod * i

)

→

n := input() ;
i := 0 ;
sum := 0 ;

while i < n do
(

i := i + 1 ;
sum := sum + i ;

)

1 Motivation: Semantic Anomaly of Program Slicing 5

Algorithms

Classic algorithms for program slicing are based on controlflow and
data flow analysis.

– Relevant Sets (backward).

– Reaching Definitions (forward).

1 Motivation: Semantic Anomaly of Program Slicing 6

Example 2

Irrelevant loops can be sliced away:

n := input() ;
i := 0 ; sum := 0 ;
while i < n do
(

i := i + 1 ;
sum := sum + i ;

)

i := 0 ; prod := 1 ;
while not (i == n) do
(

i := i + 1 ;
prod := prod * i

)

→

n := input() ;
i := 0 ; sum := 0 ;
while i < n do
(

i := i + 1 ;
sum := sum + i ;

)

1 Motivation: Semantic Anomaly of Program Slicing 7

Semantic anomaly

Problem: the sequence of values observed at some program point de-
pends on the termination status of the loops.

– Undecidable.

2 Solutions: Transfinite Semantics vs Trajectories 8

Solutions: Transfinite Semantics vs
Trajectories

2 Solutions: Transfinite Semantics vs Trajectories 9

Subject to change: Algorithms, definition, semantics

• Changing algorithms may keep slices too big and is unnecessary in
practice.

• Changing the definition tend to allow too many subsets as slices.

• Change the semantics!

2 Solutions: Transfinite Semantics vs Trajectories 10

Transfinite semantics

In transfinite semantics, execution of programs can continue after
infinite loops from some limit states.

– Loop bodies are run at mostω times during each execution of
the loop.

– Semantic anomaly vanishes.

– Problem: How to define limit states?

2 Solutions: Transfinite Semantics vs Trajectories 11

Attempts

– Giacobazzi and Mastroeni 2003.

– Nestra 2004–2006: Without assuming structured control flow.

– Nestra 2007–2009: In the greatest fixpoint form.

Lack of natural properties such as compositionality.

2 Solutions: Transfinite Semantics vs Trajectories 12

Compositionality, substitutivity

In compositional semantics, the meaning of composed statements is
expressed in terms of the semantics of their immediate constituents
solely.

– Impliessubstitutivity: any substatement may be replaced with
a semantically equivalent statement without changing the mean-
ing of the whole statement.

2 Solutions: Transfinite Semantics vs Trajectories 13

Trajectory semantics

In trajectory semantics, the number of times a loop body is run
during one execution of the loop is limited by a natural number, given
as a parameter.

– Proposed by Danicic et al. (2010) for addressing semantic
anomaly.

– Semantic anomaly vanishes since no loop is infinite.

2 Solutions: Transfinite Semantics vs Trajectories 14

Relationship with standard semantics

• From transfinite semantics of a program, standard semanticscan in
principle be deduced directly by truncating the transfinitepart.

• From trajectory semantics of an infinite loop, standard semantics
must be collected from infinitely many finite beginnings.

3 Our Contribution 15

Our Contribution

3 Our Contribution 16

General characterization

• Compositional transfinite semantics w.r.t. which classic slicing al-
gorithms are correct.

• Relationships with standard semantics and transfinite semantics in
the form of greatest fixpoint.

3 Our Contribution

3.1 Shape of Traces

17

Shape of Traces

3 Our Contribution

3.1 Shape of Traces

18

Ordinal semantics

Intermediate states on execution traces are indexed by ordinal numbers
(0, 1, 2, . . . , ω, ω + 1, ω + 2,).

– The desired transfinite semantics cannot be represented in the
form of least or greatest fixpoint that is standard in this area.

∗ Greatest fixpoint would involve traces that include garbage
after infinite loops. (Explained in our previous work
(2007–2009).)

– Loop semantics can still be expressed naively via finite and infi-
nite iterations.

3 Our Contribution

3.1 Shape of Traces

19

Fractional semantics

Intermediate states on execution traces are indexed by rational num-
bers between0 and1.

– Traces develop into depth rather than into length.

– Each part of computation has its own interval of indices stati-
cally associated to it. (No space is left for garbage.)

– Introduced for expressing transfinite semantics in the standard
fixpoint form.

– Studied by us previously (2006, 2007–2009).

3 Our Contribution

3.1 Shape of Traces

20

Fractional semantics: Example 1

Fractional trace of program

(z := x ; x := y) ; y := z

in the initial state







x 7→ 1

y 7→ 2

z 7→ 0







is

0 1







x 7→ 1

y 7→ 2

z 7→ 0













x 7→ 1

y 7→ 2

z 7→ 1













x 7→ 2

y 7→ 2

z 7→ 1













x 7→ 2

y 7→ 1

z 7→ 1







3 Our Contribution

3.1 Shape of Traces

21

Fractional semantics: Example 2

Fractional trace of program

z := x ; (x := y ; y := z)

in the initial state







x 7→ 1

y 7→ 2

z 7→ 0







is

0 1







x 7→ 1

y 7→ 2

z 7→ 0













x 7→ 1

y 7→ 2

z 7→ 1













x 7→ 2

y 7→ 2

z 7→ 1













x 7→ 2

y 7→ 1

z 7→ 1







3 Our Contribution

3.2 Limit States

22

Limit States

3 Our Contribution

3.2 Limit States

23

Limit state restriction

Limit state t where the computation falls after infinite computation
(si : i ∈ N) must satisfy the following:

Let sk1
, sk2

, . . . be all states observed while passing through the loop
condition test point. Then

lim(ski
: i ∈ N) ⊑̇ t

where:

– ⊑ is flat order on values,̇⊑ is obtained by pointwise lifting, and

– lim(vi : i ∈ N) =
{

u if ∃n ∈ N ∀i ≥ n (vi = u)

⊥ otherwise

}

.

3 Our Contribution

3.2 Limit States

24

Recognition of states that influence the limit

How to recognize states observed at the loop condition test point?

– In the iteration form, we just take the first state of each iteration.
(Fractional shape of traces not needed.)

– In the fixpoint form (fractional shape assumed), we may take

states that are observed at indices1 −
1

22i
for i ∈ N.

– Otherwise, program points must be traced in semantics (makes
description of semantics more complicated).

3 Our Contribution

3.3 Program Points

25

Program Points

3 Our Contribution

3.3 Program Points

26

Correpondence of program points and slice points

How can the correspondence be established and traced?

– In ordinal semantics: Program points must be traced explicitly;

– In fractional semantics: Trivial injection of indices doesthe job!

∗ Assumes that statements are replaced withskip rather
than removed. (Standard alternative.)

3 Our Contribution

3.3 Program Points

27

Correspondence of program points: Example

Slicing w.r.t. the value ofx after the last assignment tox:

(

y := 1 ;
while true do x := x + 1

) ;
(

x := y ;
(y := 2 ; z := 3)

)

→

(

y := 1 ;
skip

) ;
(

x := y ;
skip

)

The index sets for these programs are the following:

0 1

3 Our Contribution

3.4 Technical Part

28

Technical Part

3 Our Contribution

3.4 Technical Part

29

Types

Val set of all values

State = Var → Val set of variable evaluations

Conf = Stmt × State set of configurations

Elemκ ⊇ State set of elements of semantic objects

Baseκ set of all semantic objects (traces)

Semκ = ℘(Baseκ) set of all meanings of programssκ ∈ Stmt → Semκ semantics of statements

3 Our Contribution

3.4 Technical Part

30

Structure of semanticssκ(skip)

= axm♯
κ {s → s : s ∈ State}sκ(X := E)

= axm♯
κ {s → s[X 7→ e (E)(s)] : s ∈ State}sκ(T1 ; T2)

= rul♯κ(sκ(T1) × sκ(T2))sκ(if E then T1 else T2)

= rul♯κ(iftrueκ(E) × sκ(T1)) ∪ rul♯κ(iffalseκ(E) × sκ(T2))sκ(while E do T)

=
⋃o∈Oω

iterκ(E, sκ(T))(o)

4 Conclusion 31

Conclusion

4 Conclusion 32

Conclusion about transfinite semantics

It is too early to write off transfinite semantics!

– It is closerly related to standard semantics than other approaches
proposed for program slicing theory.

4 Conclusion 33

Conclusion about fractional semantics

Fractional semantics is useful!

– Enables transfinite semantics in the form of greatest fixpoint.

– Without having to trace program points, enables recognition of
significant states on loop execution traces.

– Without having to trace program points, provides means for rig-
orously dealing with program point correspondence in the orig-
inal program and its slice.

– In comparison with tree semantics:

∗ Fractional semantics shows the order of steps explicitly;

∗ Fractional semantics simplifies some proofs.

