A New Approach to Practical Secure Two-Party Computation

Jesper Buus Nielsen Peter Sebastian Nordholt Claudio Orlandi Sai Sheshank

Secure Two-Party Computation

- Alice has an input $a \in \{0,1\}^*$
- Bob has an input $b \in \{0,1\}^*$
- They agree on a (randomized) function f: $\{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^* \times \{0,1\}^*$
- They want to securely compute
 (x,y) = f(a,b)
- Alice is to learn x and is not allowed to learn any information extra to (a,x)
- Bob is to learn y and is not allowed to learn any information extra to (b,y)

S2C Pictorially

Some Security Flavors

- **Passive**: The protocol is only secure if both parties follow the protocol
- Active: The protocol is secure even if one of the parties deviate from the protocol
- Computational: Security against poly-time adversaries
- **Unconditional**: The security does not depend on the computational power of the parties

Oblivious Transfer

• S2C of OT($(x_0, x_1), y$) = (ε, x_y) where $x_0, x_1 \in \{0, 1\}^k$ and $y \in \{0, 1\}$

OT Extension

• OT is provably a public-key primitive

 OTs can be generated at a rate of 10 to 100 per second depending on the underlying assumption

- OT extension takes a few seed OT and a PRG or hash function and implements any polynomial number of OTs using only a few applications of the symmetric primitive per generated OT
- Like enveloping RSA+AES

OT is Complete

- OTs is complete for cryptography, but most problems in practice are solved using specialized protocols
- Reasons:
 - OT is considered expensive
 - Though there exist practical passive-secure generic protocols based on OT, all active-secure solutions suffer a blowup of k in complexity, where k is the security parameter
 - Thought there exist active-secure protocol asymptotically as efficient as the passive-secure ones, they have enormous constants
- We change this picture

The Result

- We advance the theory of OT-extension, significantly improving the constants
- We implement the improved theory and show that we can generate active-secure OTs at a rate of 500,000 per second
- We improve the theory of basing active-secure two-party computation (S2C) on OTs
 - Asymptotically worse than best previous result
 - Asymptotically better than any result previously implemented
- We implement the theory and show that we can do activesecure S2C at a rate of about 20,000 gates per second
 - Online phase handles 1,000,000 gates per second
 - Online: The part that can only be executed once inputs are known

Our Security

- Our protocols are computationally, active secure in the random oracle model
 - We use a PRG
 - Also need a few seed OTs (160)

Random Oblivious Transfer

• S2C of ROT(ε , ε) = ((r_0, r_1), (s, r_s)) where $r_0, r_1 \in_R \{0, 1\}^k$ and $r \in_R \{0, 1\}$

Random Self-Reducibility ROT→OT

Passive-Secure S2P from OT

- A gate-by-gate evaluation of a Boolean circuit computing the function (using Xor + AND)
 - Computing on secret bits
 - Only the outputs are revealed
- Representation of a secret bit x: A holds $x_A \in \{0,1\}$ B holds $x_B \in \{0,1\}$ $x = x_A \oplus x_B$
- Input of some x from A:
 A sets x_A = x

B sets $x_B = 0$

• Output of some x to A:

B sends x_B to A

Passive-Secure S2P from OT

• Representation of a secret bit x: A holds $x_A \in \{0,1\}$ B holds $x_B \in \{0,1\}$ $x = x_A \oplus x_B$

• $\mathbf{x} \oplus \mathbf{y} = (\mathbf{x}_{\mathsf{A}} \oplus \mathbf{x}_{\mathsf{B}}) \oplus (\mathbf{y}_{\mathsf{A}} \oplus \mathbf{y}_{\mathsf{B}}) = (\mathbf{x}_{\mathsf{A}} \oplus \mathbf{y}_{\mathsf{A}}) \oplus (\mathbf{x}_{\mathsf{B}} \oplus \mathbf{y}_{\mathsf{B}})$

• Xor secure computation of $z=x\oplus y$: A sets $z_A = x_A \oplus y_A$ B sets $z_B = x_B \oplus y_B$

Passive-Secure S2P from OT

- Representation of a secret bit x: A holds $x_A \in \{0,1\}$ B holds $x_B \in \{0,1\}$ $x = x_A \oplus x_B$
- $xy = (x_A \oplus x_B)(y_A \oplus y_B) = x_A y_A \oplus x_B y_A \oplus x_A y_B \oplus x_B y_B$
- AND secure computation of z=xy: A sets $t_A = x_A y_A$ B sets $t_B = x_B y_B$ This is a secure computation of $t = x_A y_A \oplus x_B y_B$
- Then they securely compute $u = x_B y_A$ and $v = x_A y_B$
- Then they securely compute $z = t \oplus u \oplus v$

Secure AND

• S2C of AND(x, y) = (z_A, z_B) where $z_A, z_B \in \{0, 1\}$ and $z_A \oplus z_B = xy$

Passive Security (Only)

- The above protocol is unconditionally passivesecure assuming that all the OTs are unconditionally secure
- The protocol is, however, not active-secure, as a party might deviate at all the points marked with blue with ill effects

Active Security

- To achieve active security, efficiently, we propose to commit both parties to all their shares
- Reminiscent of the notion of committed OT, but we make the crucial difference that we do not base it on (slow) public-key cryptography
- To not confuse with committed OT, we call the technique authenticated OT

Authenticating Alice's Bits

- Alice holds a **global key** $\Delta_A \in {}_{R} \{0,1\}^k$ - k is a security parameter
- For each of Bob's bits x Alice holds a **local key** $K_x \in_R \{0,1\}^k$
- Bob learns only the MAC $M_x = K_x \oplus x\Delta_A$
- Xor-Homomorphic: Alice: K_x Bob: x $M_x = K_x \oplus x\Delta_A$ K_y y $M_y = K_y \oplus y\Delta_A$ $K_z = K_x \oplus K_y$ $z=x \oplus y$ $M_z = M_x \oplus M_y$

Three Little Helpers

- Next step is to efficiently, actively secure implement three little helpers
- **aBit**: Allows Alice and Bob to authenticate a bit of Bob's using a local key chosen by Alice—the global key is fixed
- **aOT**: Allows Alice and Bob to perform an OT of bits which are authenticated and obtain an authentication on the results
- aAND: If Bob holds authenticated x and y, then he can compute z=xy plus an authentication of this result, and only this result
- Similar protocols for the other direction

Authenticated Oblivious Transfer

The protocol outputs *failure* if the MAC are not correct

Authenticated AND

The protocol outputs *failure* if the MAC are not correct

Active-Secure S2P from OT

• **Representation** of a secret bit x:

A holds $x_A \in \{0,1\}$ B holds $x_B \in \{0,1\}$ $x = x_A \oplus x_B$ and both bits are authenticated

- Input of some x from A:
 A calls aBit with x_A = x to get it authenticated
 B calls aBit with x_B = 0 and sends the MAC as proof
- **Output** of some x to A:

B sends x_B to A along with the MAC on x_B

Active-Secure S2P from OT

• Representation of a secret bit x: A holds $x_A \in \{0,1\}$ B holds $x_B \in \{0,1\}$ $x = x_A \oplus x_B$ and both bits are authenticated

• Xor secure computation of $z=x\oplus y$: A sets $z_A = x_A \oplus y_A$ B sets $z_B = x_B \oplus y_B$ They use the Xor-homomorphism to compute MACs on z_A and z_B

Active-Secure S2P from OT

- Representation of a secret bit x: A holds $x_A \in \{0,1\}$ B holds $x_B \in \{0,1\}$ $x = x_A \oplus x_B$
- $xy = (x_A \oplus x_B)(y_A \oplus y_B) = x_A y_A \oplus x_B y_A \oplus x_A y_B \oplus x_B y_B$
- And secure computation of z=xy: A uses aAND to get a MAC on t_A = x_Ay_A B uses aAND to get a MAC on t_B = x_By_B Active-secure computation of t = x_Ay_A ⊕ x_By_B
- They call aOT to securely compute
 - $u = x_B y_A$ and $v = x_A y_B$
- Then they securely compute $z = t \oplus u \oplus v$

Overview of Protocol

- We implement a dealer functionality which serves a lot of random aBits, random aOTs and random aANDs
- Can be used to implement the non-random version of the primitives using simple random self-reducibility protocols *F*_{2PC} |
 Ike ROT→OT

 $\mathcal{F}_{\mathsf{DEAL}}$

аA

Can then implement secure
 2PC as on the previous slides

A Bit More Details

 $\mathcal{F}_{\mathsf{DEAL}}$

aOT

aBit

- We first use a few OTs + a pseudo-random generator and one secure equality check to implements a lot (any polynomial)
 \$\mathcal{F}_{2PC}\$ number of random aBits
- We show how to turn a few aBits into one aOT
 - Uses one more EQ test overall and a few applications of a hash function H per aOT
- We show how to turn a few aBits into one aAND
 - Uses one more EQ test overall and a few applications of H per aOT

Even More Details

Random Authenticated Bits

- First we use a few OTs to generate a few aBits with very long keys
 - They are Leaky in that a few of the authenticated bits might leak to the key holder
- Then we turn our heads and suddenly have a lot of aBits with short keys
 - They are Weak in that a few bits of the global key might leak to the MAC holder
- Then we fix that problem using an extractor

Turning Our Heads

- $N_j = L_j \bigoplus y_j \Gamma$ for Γ , L_j , $N_j \in \{0,1\}^n$ — Think k = 160 and n = 1,000,000,000
- Think k = 160 and n = 1,000,000,000 • Define $\Delta \in \{0,1\}^k$ and x_i and M_i , $K_i \in \{0,1\}^k$...,
- Global key to bits: $x_i = \Gamma_i$
- Bits to global key: $\Delta_j = \gamma_j$
- MAC bits to key bits: $K_{ij} = N_{ji}$
- Key bits to MAC bits: $M_{ij} = L_{ji}$
- $N_{ji} = L_{ji} \oplus y_j \Gamma_i \implies K_{ij} = M_{ij} \oplus \Delta_j x_i$ $\implies K_i = M_i \oplus \Delta x_i \implies M_i = K_i \oplus x_i \Delta$

a	Bit
W	aBit
	↑
L	aBit
EQ	

j~], ,.., k

Extracting

- $M_i = K_i \oplus x_i \Delta$ - Δ few bits of Δ are know to the adv
 - A few bits of Δ are know to the adversary
- Owner of Δ picks a random matrix $X \in \{0,1\}^{k/2 \times k}$
- $\underline{M}_i = X M_i$ (in GF(2))
- $\underline{K}_i = X K_i$
- $\underline{\Delta} = X \Delta$

•
$$\underline{\mathsf{M}}_{\mathsf{i}} = \mathsf{X} \, \mathsf{M}_{\mathsf{i}} = \mathsf{X}(\mathsf{K}_{\mathsf{i}} \oplus \mathsf{x}_{\mathsf{i}}\Delta)$$

= $\mathsf{X}\mathsf{K}_{\mathsf{i}} \oplus \mathsf{x}_{\mathsf{i}}\mathsf{X}\Delta = \underline{\mathsf{K}}_{\mathsf{i}} \oplus \mathsf{x}_{\mathsf{i}}\Delta$

So still correct and now secure as a random matrix is a good extractor

Problem 1 and Hint of the Fix

- Last problem is that Alice might not use the same Δ in all k implementations of aBits from OTs

aBit

 WaBit

LaBit

- Is handled by implementing twice as many aBits as needed and then doing cut-and-choose in which we check that half of them were done with the same Δ
 - Needs a small trick to avoid revealing the value of Δ

Problem 2 and Hint of the Fix

- The cut-and-choose stills lets Alice use a different Δ in a few of the aBits
- Can, however, show that a different ∆ in a given aBit is no worse than letting
 Alice learn the bit being authenticatec aBit

WaBit

LaBit

- An information theoretic simulation argument
- This leaves us with a few aBits of which a few bits have leaked to Alice

Status

Authenticated AND

Problem and a Fix

- If Alice sends an incorrect value, then the response of Bob depends on x
- Instead we do a secure comparison of the response and what Alice expects
- If Alice sends an incorrect value, then the response of Bob depends on x
- So, a cheating Alice will fail to give the right input to the comparison with some constant probability
- So, Alice can learn x in O(k) of the aANDs with probability at most 2^{-k}

Authenticated AND

Combining

- Generate Bn LaAnds (x_i, y_i, z_i)
- Bob divides them randomly into n buckets of size B, where all triples in the same bucket have the same y-value

LaAND

aBit

- For each bucket $(x_1, y, z_1), ..., (x_B, y, z_B)$, securely compute $x = x_1 \oplus ... \oplus x_B$ $z = z_1 \oplus ... \oplus z_B$ and output (x, y, z)
- Correctness: xy = $(x_1 \oplus ... \oplus x_n)y$ = $x_1y \oplus ... \oplus x_ny$ = $z_1 \oplus ... \oplus z_n = z$

Problem and a Fix

- If Bob puts triples with different y-values in a bucket the correctness breaks
- He uses his MACs on the y-values to prove that they are the same
- Specifically he sends $x_1 \oplus x_2$, $x_2 \oplus x_3$, ..., $x_{B-1} \oplus x_B$

aAND

LaAND

- Alice checks that they are all 0
- Bob sends along the MACs of the Xors to prove correctness, which is possible by the Xor-homomorphism

Security

- Probability that there exists a bucket where all triples are leaky can be upper bounded by
 (2n)^{-(B-1)} = 2^{-(1+log(n))(B-1)}
- In particular, for a fixed overhead B, the security increases with n, the number of gates we have to handle
- Example: B=4 and n=1,000,000 gives security around 2⁻⁶³
- Our implementation uses a fixed B=4 as we do massive computations

Status

Authenticated OT

- Same, same, ...
- First the parties run an OT

LaOT

аOТ

- Then they use runs of aBit to get their inputs and outputs authenticated
- Then they do a slightly more involved version of the Xor-of-hash challenge-response technique
- Then we combine to get rid of a few leaked bits
- Only problem is that we actually did not implement OT efficiently yet

Status

Benchmarking

- We implemented the protocol in Java and ran it between two different machines on the intranet of Aarhus university
- We did secure encryption using AES
 - Key is Xor shared between the parties
 - Plaintext is input by Alice
 - Both parties learn the ciphertext
- Circuit of AES is about 34000 gates

- *ℓ*: Number of 128-bit blocks encrypted
- G: # of gates
- σ: Statistical security level
 - a bucket is bad with probability 2- $^\sigma$
- T_{pre}: Seconds for implementing Dealer
 Can be done before inputs arrive
- T_{onl}: Time spend evaluating once random values are dealt
- $T_{tot} = T_{pre} + T_{onl}$

|--|

ℓ	G	σ	$T_{\rm pre}$	$T_{\rm onl}$	$T_{\rm tot}/\ell$	$G/T_{\rm tot}$
256	8,739,200	65	406	16	1.7	20,709
512	17,478,016	68	907	26	1.8	18,733
1,024	34,955,648	71	2,303	52	2.3	$14,\!843$
2,048	69,910,912	74	$5,\!324$	143	2.7	12,788
4,096	139,821,440	77	$11,\!238$	194	2.8	12,231
8,192	279,642,496	80	22,720	258	2.8	$12,\!170$
16,384	559,284,608	83	$46,\!584$	517	2.9	$11,\!874$