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Secure Two-Party Computation 

• Alice has an input  a{0,1}* 

• Bob has an input  b{0,1}* 

• They agree on a (randomized) function  
    f: {0,1}*{0,1}*  {0,1}*{0,1}* 

• They want to securely compute  
    (x,y) = f(a,b) 

• Alice is to learn x and is not allowed to learn any 
information extra to (a,x)  

• Bob is to learn y and is not allowed to learn any 
information extra to (b,y) 



S2C Pictorially 
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Some Security Flavors 

• Passive: The protocol is only secure if both 
parties follow the protocol 

• Active: The protocol is secure even if one of 
the parties deviate from the protocol 

 

• Computational: Security against poly-time 
adversaries 

• Unconditional: The security does not depend 
on the computational power of the parties 



Oblivious Transfer 

• S2C of OT((x0,x1), y) = (, xy) 
 where x0, x1{0,1}k and y{0,1} 

OT 
x0 

x1 

y 

xy 



OT Extension 

• OT is provably a public-key primitive 

– OTs can be generated at a rate of 10 to 100 per 
second depending on the underlying assumption 

• OT extension takes a few seed OT and a PRG 
or hash function and implements any 
polynomial number of OTs using only a few 
applications of the symmetric primitive per 
generated OT  

• Like enveloping RSA+AES 

 



OT is Complete 

• OTs is complete for cryptography, but most problems in 
practice are solved using specialized protocols 

• Reasons: 
– OT is considered expensive 

– Though there exist practical passive-secure generic 
protocols based on OT, all active-secure solutions suffer a 
blowup of k in complexity, where k is the security 
parameter 

– Thought there exist active-secure protocol asymptotically 
as efficient as the passive-secure ones, they have 
enormous constants  

• We change this picture  



The Result 

• We advance the theory of OT-extension, significantly 
improving the constants 

• We implement the improved theory and show that we can 
generate active-secure OTs at a rate of 500,000 per second 

• We improve the theory of basing active-secure two-party 
computation (S2C) on OTs 
– Asymptotically worse than best previous result 
– Asymptotically better than any result previously implemented 

• We implement the theory and show that we can do active-
secure S2C at a rate of about 20,000 gates per second  
– Online phase handles 1,000,000 gates per second 
– Online: The part that can only be executed once inputs are known 



Our Security 

• Our protocols are computationally, active 
secure in the random oracle model 

– We use a PRG 

– Also need a few seed OTs (160) 



Random Oblivious Transfer 

• S2C of ROT(, ) = ((r0,r1), (s, rs)) 
 where r0, r1R{0,1}k and rR{0,1} 
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Random Self-Reducibility ROTOT 
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Passive-Secure S2P from OT 

• A gate-by-gate evaluation of a Boolean circuit 
computing the function (using Xor + AND) 
– Computing on secret bits 
– Only the outputs are revealed 

• Representation of a secret bit x: 
 A holds xA{0,1}   B holds xB{0,1} 
          x = xAxB    

• Input of some x from A:  
 A sets xA = x  B sets xB = 0  

• Output of some x to A: 
     B sends xB to A  
 
 



Passive-Secure S2P from OT 

• Representation of a secret bit x: 
 A holds xA{0,1}  B holds xB{0,1} 
          x = xAxB    

 

• xy = (xAXB)(yAyB) = (xAyA)(xByB) 

 

• Xor secure computation of z=xy:  
 A sets zA = xAyA  B sets zB = xByB  



Passive-Secure S2P from OT 

• Representation of a secret bit x: 
 A holds xA{0,1}  B holds xB{0,1} 
          x = xAxB    

• xy = (xAxB)(yAyB) = xAyA  xByA  xAyB   xByB 

• AND secure computation of z=xy:  
 A sets tA = xAyA  B sets tB = xByB  
This is a secure computation of t = xAyA  xByB 

• Then they securely compute u = xByA and v = xAyB 

• Then they securely compute z = tuv 



Secure AND 

• S2C of AND(x, y) = (zA, zB) 
 where zA, zBR{0,1} and zAzB= xy 
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Passive Security (Only) 

• The above protocol is unconditionally passive-
secure assuming that all the OTs are 
unconditionally secure 

• The protocol is, however, not active-secure, as 
a party might deviate at all the points marked 
with blue with ill effects    



Active Security 

• To achieve active security, efficiently, we 
propose to commit both parties to all their 
shares 

• Reminiscent of the notion of committed OT, 
but we make the crucial difference that we do 
not base it on (slow) public-key cryptography 

• To not confuse with committed OT, we call the 
technique authenticated OT 



Authenticating Alice’s Bits 

• Alice holds a global key AR{0,1}k 

– k is a security parameter  

• For each of Bob’s bits x Alice holds a local key 
KxR{0,1}k 

• Bob learns only the MAC  Mx = Kx  xA  

• Xor-Homomorphic: 
Alice:  Kx  Bob:  x    Mx = Kx  xA 

   Ky   y    My = Ky  yA 

   Kz = KxKy    z=xy  Mz = MxMy 

 

 



Three Little Helpers 
• Next step is to efficiently, actively secure implement 

three little helpers 
• aBit: Allows Alice and Bob to authenticate a bit of 

Bob’s using a local key chosen by Alice–the global 
key is fixed 

• aOT: Allows Alice and Bob to perform an OT of bits 
which are authenticated and obtain an 
authentication on the results  

• aAND: If Bob holds authenticated x and y, then he 
can compute z=xy plus an authentication of this 
result, and only this result 

• Similar protocols for the other direction 



Authenticating a Bit 
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Authenticated Oblivious Transfer 
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• The protocol outputs failure if the MAC are 
not correct 



Authenticated AND 
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• The protocol outputs failure if the MAC are 
not correct 



Active-Secure S2P from OT 

• Representation of a secret bit x: 
 A holds xA{0,1}   B holds xB{0,1} 
          x = xAxB    
and both bits are authenticated 

• Input of some x from A:  
A calls aBit with xA = x to get it authenticated  
B calls aBit with xB = 0 and sends the MAC as proof  

• Output of some x to A: 
 B sends xB to A along with the MAC on xB 

 



Active-Secure S2P from OT 

• Representation of a secret bit x: 
 A holds xA{0,1}  B holds xB{0,1} 
          x = xAxB    
and both bits are authenticated 

 

• Xor secure computation of z=xy:  
 A sets zA = xAyA  B sets zB = xByB  
They use the Xor-homomorphism to compute 
MACs on zA and zB 



Active-Secure S2P from OT 

• Representation of a secret bit x: 
 A holds xA{0,1}  B holds xB{0,1} 
          x = xAxB    

• xy = (xAxB)(yAyB) = xAyA  xByA  xAyB   xByB 
• And secure computation of z=xy:  

A uses aAND to get a MAC on tA = xAyA   
B uses aAND to get a MAC on tB = xByB  
Active-secure computation of t = xAyA  xByB 

• They call aOT to securely compute  
     u = xByA and v = xAyB 

• Then they securely compute z = tuv 



Overview of Protocol 

• We implement a dealer functionality which 
serves a lot of random aBits, random aOTs and 
random aANDs 

• Can be used to implement the non-random 
version of the primitives using simple  
random self-reducibility protocols  
like ROTOT 

• Can then implement secure  
2PC as on the previous slides 



A Bit More Details 

• We first use a few OTs + a pseudo-random 
generator and one secure equality check to 
implements a lot (any polynomial)  
number of random aBits 

• We show how to turn a few aBits into 
one aOT 
– Uses one more EQ test overall and a few 

applications of a hash function H per aOT  

• We show how to turn a few aBits  
into one aAND 
– Uses one more EQ test overall and a few 

applications of H per aOT 



Even More Details 



Random Authenticated Bits 

• First we use a few OTs to generate a few aBits 
with very long keys 
– They are Leaky in that a few of the authenticated bits 

might leak to the key holder 

• Then we turn our heads and suddenly  
have a lot of aBits with short keys  
– They are Weak in that a few bits of the  

global key might leak to the MAC holder 

• Then we fix that problem using an 
extractor 



Turning Our Heads 

• Nj = Lj  yj  for , Lj, Nj {0,1}n 

– Think k = 160 and n = 1,000,000,000 

• Define {0,1}k and xi and Mi, Ki{0,1}k 

• Global key to bits: xi = i 

• Bits to global key: j = yj 

• MAC bits to key bits: Kij = Nji 

• Key bits to MAC bits: Mij = Lji 

• Nji = Lji  yji  Kij = Mij  jxi 

 Ki = Mi  xi  Mi = Ki  xi 



Extracting 

• Mi = Ki  xi 
– A few bits of  are know to the adversary 

• Owner of  picks a random matrix X{0,1}k/2k 

• Mi = X Mi  (in GF(2)) 

• Ki = X Ki 

•  = X  

• Mi  = X Mi = X(Ki  xi)  
 = XKi  xiX = Ki  xi 

• So still correct and now secure as a  
random matrix is a good extractor 



OT  aBit 

OT 
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Problem 1 and Hint of the Fix 

• Last problem is that Alice might not use the 
same  in all k implementations of aBits from 
OTs 

• Is handled by implementing twice as  
many aBits as needed and then doing a 
cut-and-choose in which we check 
that half of them were done with 
the same  

– Needs a small trick to avoid revealing 
the value of  



Problem 2 and Hint of the Fix 

• The cut-and-choose stills lets Alice use a 
different  in a few of the aBits 

• Can, however, show that a different  in a 
given aBit is no worse than letting  
Alice learn the bit being authenticated 
in that aBit 
– An information theoretic simulation  

argument 

• This leaves us with a few aBits of 
which a few bits have leaked to Alice 



Status 



Authenticated AND 
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Problem and a Fix 

• If Alice sends an incorrect value, then the 
response of Bob depends on x 

• Instead we do a secure comparison of the 
response and what Alice expects 

• If Alice sends an incorrect value, then the 
response of Bob depends on x 

• So, a cheating Alice will fail to give the  
right input to the comparison with some  
constant probability 

• So, Alice can learn x in O(k) of the aANDs  
with probability at most 2-k 

 

 

 



Authenticated AND 
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Combining 

• Generate Bn LaAnds (xi, yi, zi) 
• Bob divides them randomly into n buckets of size 

B, where all triples in the same bucket have the 
same y-value 

• For each bucket (x1,y,z1), …, (xB,y,zB), securely 
compute   x = x1…xB 
   z = z1…zB 
and output (x,y,z) 

• Correctness: xy  = (x1…xn)y  
    = x1y…xny  
    = z1…zn = z 

• Secure if just one xi was not leaked 



Problem and a Fix 

• If Bob puts triples with different y-values in a 
bucket the correctness breaks 

• He uses his MACs on the y-values to prove 
that they are the same 

• Specifically he sends x1x2 , x2x3 , …, xB-1xB  

• Alice checks that they are all 0 

• Bob sends along the MACs of the Xors 
to prove correctness, which is possible  
by the Xor-homomorphism 



Security 

• Probability that there exists a bucket where all 
triples are leaky can be upper bounded by  
      (2n)-(B-1)= 2-(1+log(n))(B-1) 

• In particular, for a fixed overhead B, the 
security increases with n, the number of gates 
we have to handle 

• Example: B=4 and n=1,000,000 gives 
security around 2-63 

• Our implementation uses a fixed B=4  
as we do massive computations   



Status 



Authenticated OT 

• Same, same, … 

• First the parties run an OT 

• Then they use runs of aBit to get their inputs and 
outputs authenticated 

• Then they do a slightly more involved version of 
the Xor-of-hash challenge-response technique 

• Then we combine to get rid of a few leaked bits 

• Only problem is that we actually did not 
implement OT efficiently yet 



aBit  OT 
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Status 



Benchmarking 

• We implemented the protocol in Java and ran 
it between two different machines on the 
intranet of Aarhus university 

• We did secure encryption using AES 

– Key is Xor shared between the parties 

– Plaintext is input by Alice 

– Both parties learn the ciphertext 

• Circuit of AES is about 34000 gates 



• l: Number of 128-bit blocks encrypted 

• G: # of gates 

• : Statistical security level  
– a bucket is bad with probability 2-  

• Tpre: Seconds for implementing Dealer 
– Can be done before inputs arrive 

• Tonl: Time spend evaluating once random values are 
dealt 

• Ttot = Tpre + Tonl  

 


