
A New Approach to Practical
Secure Two-Party Computation

Jesper Buus Nielsen
Peter Sebastian Nordholt

Claudio Orlandi
Sai Sheshank

Secure Two-Party Computation

• Alice has an input a{0,1}*

• Bob has an input b{0,1}*

• They agree on a (randomized) function
 f: {0,1}*{0,1}*  {0,1}*{0,1}*

• They want to securely compute
 (x,y) = f(a,b)

• Alice is to learn x and is not allowed to learn any
information extra to (a,x)

• Bob is to learn y and is not allowed to learn any
information extra to (b,y)

S2C Pictorially

f
a

x

b

y

Alice Bob

Some Security Flavors

• Passive: The protocol is only secure if both
parties follow the protocol

• Active: The protocol is secure even if one of
the parties deviate from the protocol

• Computational: Security against poly-time
adversaries

• Unconditional: The security does not depend
on the computational power of the parties

Oblivious Transfer

• S2C of OT((x0,x1), y) = (, xy)
 where x0, x1{0,1}k and y{0,1}

OT
x0

x1

y

xy

OT Extension

• OT is provably a public-key primitive

– OTs can be generated at a rate of 10 to 100 per
second depending on the underlying assumption

• OT extension takes a few seed OT and a PRG
or hash function and implements any
polynomial number of OTs using only a few
applications of the symmetric primitive per
generated OT

• Like enveloping RSA+AES

OT is Complete

• OTs is complete for cryptography, but most problems in
practice are solved using specialized protocols

• Reasons:
– OT is considered expensive

– Though there exist practical passive-secure generic
protocols based on OT, all active-secure solutions suffer a
blowup of k in complexity, where k is the security
parameter

– Thought there exist active-secure protocol asymptotically
as efficient as the passive-secure ones, they have
enormous constants

• We change this picture

The Result

• We advance the theory of OT-extension, significantly
improving the constants

• We implement the improved theory and show that we can
generate active-secure OTs at a rate of 500,000 per second

• We improve the theory of basing active-secure two-party
computation (S2C) on OTs
– Asymptotically worse than best previous result
– Asymptotically better than any result previously implemented

• We implement the theory and show that we can do active-
secure S2C at a rate of about 20,000 gates per second
– Online phase handles 1,000,000 gates per second
– Online: The part that can only be executed once inputs are known

Our Security

• Our protocols are computationally, active
secure in the random oracle model

– We use a PRG

– Also need a few seed OTs (160)

Random Oblivious Transfer

• S2C of ROT(, ) = ((r0,r1), (s, rs))
 where r0, r1R{0,1}k and rR{0,1}

ROT
r0

r1

s

rs

Random Self-Reducibility ROTOT

ROT
r0

r1

s

rs

x0

x1

r0x0, r1x1

rs(rsxs)

Passive-Secure S2P from OT

• A gate-by-gate evaluation of a Boolean circuit
computing the function (using Xor + AND)
– Computing on secret bits
– Only the outputs are revealed

• Representation of a secret bit x:
 A holds xA{0,1} B holds xB{0,1}
 x = xAxB

• Input of some x from A:
 A sets xA = x B sets xB = 0

• Output of some x to A:
 B sends xB to A

Passive-Secure S2P from OT

• Representation of a secret bit x:
 A holds xA{0,1} B holds xB{0,1}
 x = xAxB

• xy = (xAXB)(yAyB) = (xAyA)(xByB)

• Xor secure computation of z=xy:
 A sets zA = xAyA B sets zB = xByB

Passive-Secure S2P from OT

• Representation of a secret bit x:
 A holds xA{0,1} B holds xB{0,1}
 x = xAxB

• xy = (xAxB)(yAyB) = xAyA  xByA  xAyB  xByB

• AND secure computation of z=xy:
 A sets tA = xAyA B sets tB = xByB
This is a secure computation of t = xAyA  xByB

• Then they securely compute u = xByA and v = xAyB

• Then they securely compute z = tuv

Secure AND

• S2C of AND(x, y) = (zA, zB)
 where zA, zBR{0,1} and zAzB= xy

OT
zAR{0,1}

zAx

y

zB

x y

zA zB

Passive Security (Only)

• The above protocol is unconditionally passive-
secure assuming that all the OTs are
unconditionally secure

• The protocol is, however, not active-secure, as
a party might deviate at all the points marked
with blue with ill effects

Active Security

• To achieve active security, efficiently, we
propose to commit both parties to all their
shares

• Reminiscent of the notion of committed OT,
but we make the crucial difference that we do
not base it on (slow) public-key cryptography

• To not confuse with committed OT, we call the
technique authenticated OT

Authenticating Alice’s Bits

• Alice holds a global key AR{0,1}k

– k is a security parameter

• For each of Bob’s bits x Alice holds a local key
KxR{0,1}k

• Bob learns only the MAC Mx = Kx  xA

• Xor-Homomorphic:
Alice: Kx Bob: x Mx = Kx  xA

 Ky y My = Ky  yA

 Kz = KxKy z=xy Mz = MxMy

Three Little Helpers
• Next step is to efficiently, actively secure implement

three little helpers
• aBit: Allows Alice and Bob to authenticate a bit of

Bob’s using a local key chosen by Alice–the global
key is fixed

• aOT: Allows Alice and Bob to perform an OT of bits
which are authenticated and obtain an
authentication on the results

• aAND: If Bob holds authenticated x and y, then he
can compute z=xy plus an authentication of this
result, and only this result

• Similar protocols for the other direction

Authenticating a Bit

aBit
Kx x

Mx = Kx  xA

A

Authenticated Oblivious Transfer

aOT
x0 , M0

x1 , M1

A B

K0

z=xy , Mz=Kzz

K1

Kz

• The protocol outputs failure if the MAC are
not correct

Authenticated AND

aAND y , My

A

Kx

Kz Mz=KzxyB

Ky

x , Mx

• The protocol outputs failure if the MAC are
not correct

Active-Secure S2P from OT

• Representation of a secret bit x:
 A holds xA{0,1} B holds xB{0,1}
 x = xAxB
and both bits are authenticated

• Input of some x from A:
A calls aBit with xA = x to get it authenticated
B calls aBit with xB = 0 and sends the MAC as proof

• Output of some x to A:
 B sends xB to A along with the MAC on xB

Active-Secure S2P from OT

• Representation of a secret bit x:
 A holds xA{0,1} B holds xB{0,1}
 x = xAxB
and both bits are authenticated

• Xor secure computation of z=xy:
 A sets zA = xAyA B sets zB = xByB
They use the Xor-homomorphism to compute
MACs on zA and zB

Active-Secure S2P from OT

• Representation of a secret bit x:
 A holds xA{0,1} B holds xB{0,1}
 x = xAxB

• xy = (xAxB)(yAyB) = xAyA  xByA  xAyB  xByB
• And secure computation of z=xy:

A uses aAND to get a MAC on tA = xAyA
B uses aAND to get a MAC on tB = xByB
Active-secure computation of t = xAyA  xByB

• They call aOT to securely compute
 u = xByA and v = xAyB

• Then they securely compute z = tuv

Overview of Protocol

• We implement a dealer functionality which
serves a lot of random aBits, random aOTs and
random aANDs

• Can be used to implement the non-random
version of the primitives using simple
random self-reducibility protocols
like ROTOT

• Can then implement secure
2PC as on the previous slides

A Bit More Details

• We first use a few OTs + a pseudo-random
generator and one secure equality check to
implements a lot (any polynomial)
number of random aBits

• We show how to turn a few aBits into
one aOT
– Uses one more EQ test overall and a few

applications of a hash function H per aOT

• We show how to turn a few aBits
into one aAND
– Uses one more EQ test overall and a few

applications of H per aOT

Even More Details

Random Authenticated Bits

• First we use a few OTs to generate a few aBits
with very long keys
– They are Leaky in that a few of the authenticated bits

might leak to the key holder

• Then we turn our heads and suddenly
have a lot of aBits with short keys
– They are Weak in that a few bits of the

global key might leak to the MAC holder

• Then we fix that problem using an
extractor

Turning Our Heads

• Nj = Lj  yj for , Lj, Nj {0,1}n

– Think k = 160 and n = 1,000,000,000

• Define {0,1}k and xi and Mi, Ki{0,1}k

• Global key to bits: xi = i

• Bits to global key: j = yj

• MAC bits to key bits: Kij = Nji

• Key bits to MAC bits: Mij = Lji

• Nji = Lji  yji  Kij = Mij  jxi

 Ki = Mi  xi  Mi = Ki  xi

Extracting

• Mi = Ki  xi
– A few bits of  are know to the adversary

• Owner of  picks a random matrix X{0,1}k/2k

• Mi = X Mi (in GF(2))

• Ki = X Ki

•  = X 

• Mi = X Mi = X(Ki  xi)
 = XKi  xiX = Ki  xi

• So still correct and now secure as a
random matrix is a good extractor

OT  aBit

OT
s0R{0,1}k x

, Ki x

sx
 s1R{0,1}k

prg(s0)(Ki) , prg(s1)(Ki)

Problem 1 and Hint of the Fix

• Last problem is that Alice might not use the
same  in all k implementations of aBits from
OTs

• Is handled by implementing twice as
many aBits as needed and then doing a
cut-and-choose in which we check
that half of them were done with
the same 

– Needs a small trick to avoid revealing
the value of 

Problem 2 and Hint of the Fix

• The cut-and-choose stills lets Alice use a
different  in a few of the aBits

• Can, however, show that a different  in a
given aBit is no worse than letting
Alice learn the bit being authenticated
in that aBit
– An information theoretic simulation

argument

• This leaves us with a few aBits of
which a few bits have leaked to Alice

Status

Authenticated AND

aBit
Kz

z=xy

A

H(Kx|Kz)H(KxA|KxKz)

Mx = Kx  xA

Ky

Kx

My = Ky  yA

H(Kx|Kz) , H(KxA|KxKz)

Mz = Kz  zA

Problem and a Fix

• If Alice sends an incorrect value, then the
response of Bob depends on x

• Instead we do a secure comparison of the
response and what Alice expects

• If Alice sends an incorrect value, then the
response of Bob depends on x

• So, a cheating Alice will fail to give the
right input to the comparison with some
constant probability

• So, Alice can learn x in O(k) of the aANDs
with probability at most 2-k

Authenticated AND

aBit
Kz

z=xy

Mz = Kz  zA

A

H(Kx|Kz)H(KxA|KxKz)

Mx = Kx  xA

Ky

Kx

My = Ky  yA

EQ H(Kx|Kz)

H(KxA|KxKz)

H(Kx|Kz)

H(KxA|KxKz)

Combining

• Generate Bn LaAnds (xi, yi, zi)
• Bob divides them randomly into n buckets of size

B, where all triples in the same bucket have the
same y-value

• For each bucket (x1,y,z1), …, (xB,y,zB), securely
compute x = x1…xB
 z = z1…zB
and output (x,y,z)

• Correctness: xy = (x1…xn)y
 = x1y…xny
 = z1…zn = z

• Secure if just one xi was not leaked

Problem and a Fix

• If Bob puts triples with different y-values in a
bucket the correctness breaks

• He uses his MACs on the y-values to prove
that they are the same

• Specifically he sends x1x2 , x2x3 , …, xB-1xB

• Alice checks that they are all 0

• Bob sends along the MACs of the Xors
to prove correctness, which is possible
by the Xor-homomorphism

Security

• Probability that there exists a bucket where all
triples are leaky can be upper bounded by
 (2n)-(B-1)= 2-(1+log(n))(B-1)

• In particular, for a fixed overhead B, the
security increases with n, the number of gates
we have to handle

• Example: B=4 and n=1,000,000 gives
security around 2-63

• Our implementation uses a fixed B=4
as we do massive computations

Status

Authenticated OT

• Same, same, …

• First the parties run an OT

• Then they use runs of aBit to get their inputs and
outputs authenticated

• Then they do a slightly more involved version of
the Xor-of-hash challenge-response technique

• Then we combine to get rid of a few leaked bits

• Only problem is that we actually did not
implement OT efficiently yet

aBit  OT

aBit
KR{0,1}k y

y

M = K  yA

H(K)x0 H(K)x1

A

x0

x1

xy

Status

Benchmarking

• We implemented the protocol in Java and ran
it between two different machines on the
intranet of Aarhus university

• We did secure encryption using AES

– Key is Xor shared between the parties

– Plaintext is input by Alice

– Both parties learn the ciphertext

• Circuit of AES is about 34000 gates

• l: Number of 128-bit blocks encrypted

• G: # of gates

• : Statistical security level
– a bucket is bad with probability 2- 

• Tpre: Seconds for implementing Dealer
– Can be done before inputs arrive

• Tonl: Time spend evaluating once random values are
dealt

• Ttot = Tpre + Tonl

