A New Approach to Practical
Secure Two-Party Computation

Jesper Buus Nielsen
Peter Sebastian Nordholt
Claudio Orlandi
Sai Sheshank

Secure Two-Party Computation

Alice has aninput a<{0,1}
Bob has an input be{0,1}

They agree on a (randomized) function

f: {0,1}'x{0,1} — {0,1}'x{0,1}"
They want to securely compute

(x,y) = f(a,b)
Alice is to learn x and is not allowed to learn any
information extra to (a,x)

Bob is to learn y and is not allowed to learn any
information extra to (b,y)

S2C Pictorially

Alice Bob

Some Security Flavors

Passive: The protocol is only secure if both
parties follow the protocol

Active: The protocol is secure even if one of
the parties deviate from the protocol

Computational: Security against poly-time
adversaries

Unconditional: The security does not depend
on the computational power of the parties

Oblivious Transfer

* S2C of OT((xq,%4),) = (¢,)
where x,, x,€{0,1} and y<{0,1}

Xo

 OT

OT Extension

* OT is provably a public-key primitive
— OTs can be generated at a rate of 10 to 100 per
second depending on the underlying assumption
e OT extension takes a few seed OT and a PRG
or hash function and implements any
polynomial number of OTs using only a few
applications of the symmetric primitive per
generated OT

* Like enveloping RSA+AES

OT is Complete

* QOTs is complete for cryptography, but most problems in
practice are solved using specialized protocols

e Reasons:

— OT is considered expensive

— Though there exist practical passive-secure generic
protocols based on OT, all active-secure solutions suffer a
blowup of k in complexity, where k is the security
parameter

— Thought there exist active-secure protocol asymptotically
as efficient as the passive-secure ones, they have
enormous constants

* We change this picture

The Result

We advance the theory of OT-extension, significantly
improving the constants

We implement the improved theory and show that we can
generate active-secure OTs at a rate of 500,000 per second

We improve the theory of basing active-secure two-party
computation (S2C) on OTs

— Asymptotically worse than best previous result

— Asymptotically better than any result previously implemented

We implement the theory and show that we can do active-
secure S2C at a rate of about 20,000 gates per second

— Online phase handles 1,000,000 gates per second

— Online: The part that can only be executed once inputs are known

Our Security

* Our protocols are computationally, active
secure in the random oracle model
— We use a PRG
— Also need a few seed OTs (160)

Random Oblivious Transfer

* S2C of ROT (g, €) = ((ro,rq), (s, 1))
where r,, r;€:{0,1}* and re;{0,1}

- ROT

VU)

Random Self-Reducibility ROT—0T

I S
& >
r I { I I
<L 3
X
0 >
X
1 >
ro®Xg, M1®X4
>
r O(r OX,)

>

Passive-Secure S2P from OT

* A gate-by-gate evaluation of a Boolean circuit
computing the function (using Xor + AND)

— Computing on secret bits
— Only the outputs are revealed

* Representation of a secret bit x:

A holds x,€{0,1} B holds x;€{0,1}
X = X, ®Xg
* Input of some x from A:
A sets x, = X Bsetsxg=0

 Output of some x to A:
B sends x; to A

Passive-Secure S2P from OT

* Representation of a secret bit x:
A holds x,{0,1} B holds x;€10,1}
X = X,®Xg

* X®Y = (X,®X5)®(Ya®Yg) = (X,®YA)D(XDY5)

e Xor secure computation of z=xay:
A sets z, = x,®y, B sets z; = X;®Y,

Passive-Secure S2P from OT

Representation of a secret bit x:
A holds x,€{0,1} B holds x;{0,1}
X = X, ®Xp

XY = (Xo®Xg)(YaA®Yg) = XaYa @ XgYa © XaYg © XY
AND secure computation of z=xy:

A sets t, = X Y, B sets t; = XgYp
nis is a secure computation of t = x,y, ® XY,

nen they securely compute u = xgy, and v = x,y,

nen they securely compute z = teuav

Secure AND

* S2C of AND(X, y) = (z,, zg)
where z,, z;€:{0,1} and z,®z,= xy

>

z,€:{0,1}

m OT

Passive Security (Only)

* The above protocol is unconditionally passive-
secure assuming that all the OTs are
unconditionally secure

 The protocol is, however, not active-secure, as
a party might deviate at all the points marked
with blue with ill effects

Active Security

* To achieve active security, efficiently, we
propose to commit both parties to all their

shares

 Reminiscent of the notion of committed OT,
but we make the crucial difference that we do
not base it on (slow) public-key cryptography

* To not confuse with committed OT, we call the
technique authenticated OT

Authenticating Alice’s Bits

Alice holds a global key A, e.{0,1}*

— k is a security parameter

For each of Bob’s bits x Alice holds a local key
K, €:{0,1}

Bob learns only the MAC M, =K, @ xA,
Xor-Homomorphic:

Alice:

K Bob: x M, =K, ® xA,
Yy M, =K, ® YA,

X

N

z=xey M,=MeM,

N
X

7\
I
=~
@D
D

Three Little Helpers

Next step is to efficiently, actively secure implement
three little helpers

aBit: Allows Alice and Bob to authenticate a bit of
Bob’s using a local key chosen by Alice—the global
key is fixed

aO0T: Allows Alice and Bob to perform an OT of bits
which are authenticated and obtain an
authentication on the results

aAND: If Bob holds authenticated x and y, then he
can compute z=xy plus an authentication of this
result, and only this result

Similar protocols for the other direction

Authenticating a Bit

M, =K, @ xA,
>

Authenticated Oblivious Transfer

* The protocol outputs failure if the MAC are
not correct

Authenticated AND

* The protocol outputs failure if the MAC are
not correct

Active-Secure S2P from OT

* Representation of a secret bit x:
A holds x,<{0,1} B holds x;€1{0,1}
X = X, ®Xp
and both bits are authenticated
* Input of some x from A:

A calls aBit with x, = x to get it authenticated
B calls aBit with x; = 0 and sends the MAC as proof

 Output of some x to A:
B sends x; to A along with the MAC on x,

Active-Secure S2P from OT

* Representation of a secret bit x:
A holds x,{0,1} B holds x;€10,1}
X = X, ®Xp
and both bits are authenticated

e Xor secure computation of z=xay:
A sets z, = X, @Y, B sets z; = Xz®Y,
They use the Xor-homomorphism to compute
MACs on z, and z,

Active-Secure S2P from OT

Representation of a secret bit x:
A holds x,€{0,1} B holds x;{0,1}
X = X, ®Xp
XY = (Xa®Xg)(YA®YR) = X\YA ® XgY A ® XpYg D XpYp
And secure computation of z=xy:
A uses aAND to get a MAC on t, = X,¥,

B uses aAND to get a MAC on t; = XgYg
Active-secure computation of t = x,y, ® XzY;

They call aOT to securely compute
U=Xgy,and v =X,y

Then they securely compute z = teuav

Overview of Protocol

 We implement a dealer functionality which
serves a lot of random aBits, random aOTs and
random aANDs

* Can be used to implement the non-random
version of the primitives using simple
random self-reducibility protocols /F2pc
like ROT—OT T

e Can then implement secure FDEaL

2PC as on the previous slides / ‘ \
aBit aOT aAND

A Bit More Details

* We first use a few OTs + a pseudo-random
generator and one secure equality check to
implements a lot (any polynomial) Fope
number of random aBits T

e We show how to turn a few aBits into T
DEAL

OoT
one a /‘\

— Uses one more EQ test overallandafew [)
applications of a hash function H per aOT (aOT aAND

e We show how to turn a few aBits \ T Y;"’
. /
Into one aAND aBit | /

/
— Uses one more EQ test overallandafew / N\ |.{
applications of H per aOT OT EQ

Even More Details

4 Fopc A
FDEAL aBit
__/_| \ J W
aOT aAND
QOT aAND W, ﬂzm T T

1B1}§/ L “lBlT LaOT LaAND
SN / \ / \

OT aBit aBit

Random Authenticated Bits

* First we use a few OTs to generate a few aBits
with very long keys

— They are Leaky in that a few of the authenticated bits
might leak to the key holder

* Then we turn our heads and suddenly Bt
have a lot of aBits with short keys |
— They are Weak in that a few bits of the W
global key might leak to the MAC holder Wabit
* Then we fix that problem using an T
extractor LaBit
/N

EQ OT

Turning Our Heads
N, =L @yl forl, L, N, €{0,1}" /\\,
— Think k =160 and n = 1,000,000,000 /5
Define A€{0,1}* and x; and M,, K;e{0,1}* ~ - ,
Global key to bits: x, =1,

aBit
Bits to global key: A, =y, T
MAC bits to key bits: K;; = N;; [WaBit
Key bits to MAC bits: M;; = L; T
N, =L, ®yl = K =M,; ®Ax D

=K =M Ax, = M. =K @ xA EQ OT

Extracting

M, = K; © x.A S

— A few bits of A are know to the adversary T H

Owner of A picks a random matrix Xe{0,1}k/2xk

M; =X M (in GF(2))

K= XK aBit

A=XA [

M. =X M. = X(K: ® xA) WaDBit
= XK, @ x.XA = K. ® x.A

So still correct and now secure as a LaBit

random matrix is a good extractor /N

EQ O

A, K.

OT — aBit

>
So€r{0,1}¥

SleR{Oil}k OT

pre(sp)o(K;) prg(s,)e(KoA)

Problem 1 and Hint of the Fix

* Last problem is that Alice might not use the
same A in all k implementations of aBits from

OTs
* |s handled by implementing twice as

many aBits as needed and then doing "
cut-and-choose in which we check T |
that half of them were done with “"‘TB“
the same A —_—
: : : LaBit
— Needs a small trick to avoid revealing FARN
the value of A £Q oT,

Problem 2 and Hint of the

Fix

e The cut-and-choose stills lets Alice use a

different A in a few of the aBits

 Can, however, show that a different A
given aBit is no worse than letting
Alice learn the bit being authenticatec
in that aBit

— An information theoretic simulation
argument

 This leaves us with a few aBits of
which a few bits have leaked to Alice

In a

aBi1t

|

WabBit

Status

-

aBi1t

|

\

WabBit

|

LaBit
7N

aOT

LaOT

/\

aBi1t

aAND

LaAND

/\

aBit

Authenticated AND

Ky M, = K, ® XA,
Ky M, =K, ®yA,
K, Z=XY
aAND
| _
[LaAND M, =K, ® 24,
aBit EQJ H(K, K)eH(K @A, | K @K.)

>

- HIKIK,), HK@AL K@K,

Problem and a Fix

If Alice sends an incorrect value, then the
response of Bob depends on x

Instead we do a secure comparison of the
response and what Alice expects

If Alice sends an incorrect value, then the
response of Bob depends on x

So, a cheating Alice will fail to give the LAND
right input to the comparison with some | T
constant probabilit |

P Y [LaAND |

So, Alice can learn x in O(k) of the aANDs / \
with probability at most 2%

(’lBlt E%

Authenticated AND

Ky M, = K, ® XA,
Ky M, =K, ® yA,
K Z=XY
AAND £
| _
[LaAND M, = K @24,
Bt H(K, | K)eH(K @A, | K &K)

>

H(K, | K,) H(K, | K,)
H(K @A, | K. eK,) H(K @A, | K, eK,)

Combining

Generate Bn LaAnds (x,, v, z,)

Bob divides them randomly into n buckets of size
B, where all triples in the same bucket have the
same y-value

For each bucket (x,,y,2,), ..., (Xg,Y,Zg), securely

compute X = X®...0Xg

Z1=2,8..8Z AND)
and output (x,y,z) T
Correctness: xy = (X{®...0X,)y LAND

= X, Y®...0X, Y
=2,0..9Z, =2 / N\

Secure if just one x. was not leaked ~ aBit EQ

Problem and a Fix

f Bob puts triples with different y-values in a
pucket the correctness breaks

He uses his MACs on the y-values to prove
that they are the same

Specifically he sends x;®x, , X,®X5, ..., Xg1®X;

Alice checks that they are all O CUAND)

Bob sends along the MACs of the Xors T

to prove correctness, which is possible (LaAND
by the Xor-homomorphism 7\

aBit EQ

Security

Probability that there exists a bucket where all

triples are leaky can be upper bounded by
(2n)‘(3'1)= 2'(1+|0g(n))(|3_1)

In particular, for a fixed overhead B, the
security increases with n, the number of gates
we have to handle

Example: B=4 and n=1,000,000 gives [aAND
security around 263]

Our implementation uses a fixed B=4 LaAND
as we do massive computations /N

~N

aBit EQ

Status

4 Fopc A
FDEAL 4 aBit)
\ / { A
(aOT aAN WaBit
g éBit LaBit
/N /N
OT EQ E OT
_ \Q J

aOT

LaOT

/ N\

aBit EQ

aAND

LaAND

/N

&Blt %

Aa0T

Authenticated OT I

LaOT
Same, same, ... / \
First the parties run an OT aBit EQ

Then they use runs of aBit to get their inputs and
outputs authenticated

Then they do a slightly more involved version of
the Xor-of-hash challenge-response technique

Then we combine to get rid of a few leaked bits

Only problem is that we actually did not
implement OT efficiently yet

aBit —» OT

Ke{0,1}
XO S
X
— a B M =K® YA,
’a“?T H(K)ex, H(KeA)ex,
>
LaOT

/ N\ "

aBit EQ

Status

aOT

LaOT

/ N\

QBit

EQ "y

aAND

LaAND

/ N\

aBit E%

Benchmarking

 We implemented the protocol in Java and ran
it between two different machines on the
intranet of Aarhus university

* We did secure encryption using AES
— Key is Xor shared between the parties

— Plaintext is input by Alice
— Both parties learn the ciphertext

* Circuit of AES is about 34000 gates

e ¢: Number of 128-bit blocks encrypted
* G: # of gates

e ©: Statistical security level
— a bucket is bad with probability 2-°

* T,.: Seconds for implementing Dealer
— Can be done before inputs arrive

* T,.,: Time spend evaluating once random values are
dealt

° Ttot = Tpre t Tonl

g G Towel Tomt| Tooe /0] G/Tem : i p
51590 7 R “i 1 / 55 256 8.739.200[65| 406] 16| 1.7[20,709
b B R =< 512| 17.478.016/68] 907| 26 1.8] 18.733

27| 922.056(55] 38 5 1.6] 21,545
H5411,842,728|58| 79 6 1.6] 21,623
81|2,765,400(60| 126{ 10 1.7] 20,405
108(3,721,208|61| 170 12 1.7] 20,541
135|4,642.880(162] 2101 15 1 20,637

1,024 34,955,648\ 71| 2,303| 52 2.3 14,843
2,048 69,910,912 74| 5,324 143 2.7 12,788
4,096(139,821,440|77|11,238] 194 2.8 12,231
8,192(279,642,496|80|22,720 258 2.8 12,170

~1

16,3841559,284.608|83|46,584| 517 29 11,874

