A New Approach to Practical
Secure Two-Party Computation

Jesper Buus Nielsen

Peter Sebastian Nordholt
Claudio Orlandi
Sai Sheshank

Secure Two-Party Computation

- Alice has an input $a \in\{0,1\}^{*}$
- Bob has an input $b \in\{0,1\}^{*}$
- They agree on a (randomized) function

$$
f:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*} \times\{0,1\}^{*}
$$

- They want to securely compute

$$
(x, y)=f(a, b)
$$

- Alice is to learn x and is not allowed to learn any information extra to (a, x)
- Bob is to learn y and is not allowed to learn any information extra to (b, y)

S2C Pictorially

Alice

Bob

Some Security Flavors

- Passive: The protocol is only secure if both parties follow the protocol
- Active: The protocol is secure even if one of the parties deviate from the protocol
- Computational: Security against poly-time adversaries
- Unconditional: The security does not depend on the computational power of the parties

Oblivious Transfer

- S2C of OT $\left(\left(x_{0}, x_{1}\right), y\right)=\left(\varepsilon, x_{y}\right)$ where $x_{0}, x_{1} \in\{0,1\}^{k}$ and $y \in\{0,1\}$

OT Extension

- OT is provably a public-key primitive
- OTs can be generated at a rate of 10 to 100 per second depending on the underlying assumption
- OT extension takes a few seed OT and a PRG or hash function and implements any polynomial number of OTs using only a few applications of the symmetric primitive per generated OT
- Like enveloping RSA+AES

OT is Complete

- OTs is complete for cryptography, but most problems in practice are solved using specialized protocols
- Reasons:
- OT is considered expensive
- Though there exist practical passive-secure generic protocols based on OT, all active-secure solutions suffer a blowup of k in complexity, where k is the security parameter
- Thought there exist active-secure protocol asymptotically as efficient as the passive-secure ones, they have enormous constants
- We change this picture

The Result

- We advance the theory of OT-extension, significantly improving the constants
- We implement the improved theory and show that we can generate active-secure OTs at a rate of 500,000 per second
- We improve the theory of basing active-secure two-party computation (S2C) on OTs
- Asymptotically worse than best previous result
- Asymptotically better than any result previously implemented
- We implement the theory and show that we can do activesecure S2C at a rate of about 20,000 gates per second
- Online phase handles 1,000,000 gates per second
- Online: The part that can only be executed once inputs are known

Our Security

- Our protocols are computationally, active secure in the random oracle model
- We use a PRG
- Also need a few seed OTs (160)

Random Oblivious Transfer

- S2C of ROT $(\varepsilon, \varepsilon)=\left(\left(r_{0}, r_{1}\right),\left(s, r_{s}\right)\right)$ where $r_{0}, r_{1} \in_{R}\{0,1\}^{k}$ and $r \in_{R}\{0,1\}$

Random Self-Reducibility ROT \rightarrow OT

Passive-Secure S2P from OT

- A gate-by-gate evaluation of a Boolean circuit computing the function (using Xor + AND)
- Computing on secret bits
- Only the outputs are revealed
- Representation of a secret bit x:

$$
\text { A holds } x_{A} \in\{0,1\} \quad B \text { holds } x_{B} \in\{0,1\}
$$

- Input of some x from A :

$$
\text { A sets } x_{A}=x \quad B \text { sets } x_{B}=0
$$

- Output of some x to A :
B sends x_{B} to A

Passive-Secure S2P from OT

- Representation of a secret bit x :

$$
\begin{gathered}
A \text { holds } x_{A} \in\{0,1\} \quad B \text { holds } x_{B} \in\{0,1\} \\
x=x_{A} \oplus x_{B}
\end{gathered}
$$

- $x \oplus y=\left(x_{A} \oplus x_{B}\right) \oplus\left(y_{A} \oplus y_{B}\right)=\left(x_{A} \oplus y_{A}\right) \oplus\left(x_{B} \oplus y_{B}\right)$
- Xor secure computation of $\mathrm{z}=\mathrm{x} \oplus \mathrm{y}$:

$$
\text { A sets } z_{A}=x_{A} \oplus y_{A} \quad B \text { sets } z_{B}=x_{B} \oplus y_{B}
$$

Passive-Secure S2P from OT

- Representation of a secret bit x :
A holds $x_{A} \in\{0,1\} \quad B$ holds $x_{B} \in\{0,1\}$

$$
x=x_{A} \oplus X_{B}
$$

- $x y=\left(x_{A} \oplus x_{B}\right)\left(y_{A} \oplus y_{B}\right)=x_{A} y_{A} \oplus x_{B} y_{A} \oplus x_{A} y_{B} \oplus x_{B} y_{B}$
- AND secure computation of $z=x y$:

$$
\text { A sets } t_{A}=x_{A} y_{A} \quad B \text { sets } t_{B}=x_{B} y_{B}
$$

This is a secure computation of $t=x_{A} y_{A} \oplus X_{B} y_{B}$

- Then they securely compute $u=x_{B} y_{A}$ and $v=x_{A} y_{B}$
- Then they securely compute $z=t \oplus u \oplus v$

Secure AND

- S2C of AND $(x, y)=\left(z_{A}, z_{B}\right)$ where $z_{A}, z_{B} \in_{R}\{0,1\}$ and $z_{A} \oplus z_{B}=x y$

X
 x

y

Passive Security (Only)

- The above protocol is unconditionally passivesecure assuming that all the OTs are unconditionally secure
- The protocol is, however, not active-secure, as a party might deviate at all the points marked with blue with ill effects

Active Security

- To achieve active security, efficiently, we propose to commit both parties to all their shares
- Reminiscent of the notion of committed OT, but we make the crucial difference that we do not base it on (slow) public-key cryptography
- To not confuse with committed OT, we call the technique authenticated OT

Authenticating Alice's Bits

- Alice holds a global key $\Delta_{A} \in_{R}\{0,1\}^{k}$
$-k$ is a security parameter
- For each of Bob's bits x Alice holds a local key $K_{x} \in_{R}\{0,1\}^{k}$
- Bob learns only the MAC $\mathrm{M}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}} \oplus \mathrm{x} \Delta_{\mathrm{A}}$
- Xor-Homomorphic:
Alice:
K_{x}
K_{y}
$K_{z}=K_{x} \oplus K_{y}$
Bob: x
$M_{x}=K_{x} \oplus x \Delta_{A}$
y
$M_{y}=K_{y} \oplus y \Delta_{A}$
$\mathrm{z}=\mathrm{x} \oplus \mathrm{y} \quad \mathrm{M}_{\mathrm{z}}=\mathrm{M}_{\mathrm{x}} \oplus \mathrm{M}_{\mathrm{y}}$

Three Little Helpers

- Next step is to efficiently, actively secure implement three little helpers
- aBit: Allows Alice and Bob to authenticate a bit of Bob's using a local key chosen by Alice-the global key is fixed
- aOT: Allows Alice and Bob to perform an OT of bits which are authenticated and obtain an authentication on the results
- aAND: If Bob holds authenticated x and y, then he can compute $z=x y$ plus an authentication of this result, and only this result
- Similar protocols for the other direction

Authenticating a Bit

Authenticated Oblivious Transfer

- The protocol outputs failure if the MAC are not correct

Authenticated AND

- The protocol outputs failure if the MAC are not correct

Active-Secure S2P from OT

- Representation of a secret bit x:
A holds $x_{A} \in\{0,1\} \quad B$ holds $x_{B} \in\{0,1\}$

$$
\mathrm{X}=\mathrm{x}_{\mathrm{A}} \oplus \mathrm{X}_{\mathrm{B}}
$$

and both bits are authenticated

- Input of some x from A :

A calls aBit with $x_{A}=x$ to get it authenticated
B calls aBit with $x_{B}=0$ and sends the MAC as proof

- Output of some x to A :
B sends x_{B} to A along with the MAC on x_{B}

Active-Secure S2P from OT

- Representation of a secret bit x :
A holds $x_{A} \in\{0,1\} \quad B$ holds $x_{B} \in\{0,1\}$

$$
x=x_{A} \oplus X_{B}
$$

and both bits are authenticated

- Xor secure computation of $\mathrm{z}=\mathrm{x} \oplus \mathrm{y}$:
A sets $z_{A}=x_{A} \oplus y_{A}$
B sets $z_{B}=x_{B} \oplus y_{B}$

They use the Xor-homomorphism to compute MACs on z_{A} and z_{B}

Active-Secure S2P from OT

- Representation of a secret bit x :
A holds $x_{A} \in\{0,1\}$ B holds $x_{B} \in\{0,1\}$

$$
\mathrm{X}=\mathrm{x}_{\mathrm{A}} \oplus \mathrm{X}_{\mathrm{B}}
$$

- $x y=\left(x_{A} \oplus x_{B}\right)\left(y_{A} \oplus y_{B}\right)=x_{A} y_{A} \oplus x_{B} y_{A} \oplus x_{A} y_{B} \oplus x_{B} y_{B}$
- And secure computation of $z=x y$:

A uses aAND to get a MAC on $t_{A}=x_{A} y_{A}$
B uses aAND to get a MAC on $t_{B}=x_{B} Y_{B}$
Active-secure computation of $t=x_{A} y_{A} \oplus X_{B} y_{B}$

- They call aOT to securely compute

$$
u=x_{B} y_{A} \text { and } v=x_{A} y_{B}
$$

- Then they securely compute $z=t \oplus u \oplus v$

Overview of Protocol

- We implement a dealer functionality which serves a lot of random aBits, random aOTs and random aANDs
- Can be used to implement the non-random version of the primitives using simple random self-reducibility protocols $\quad \mathcal{F}_{2 \text { PC }}$ like ROT \rightarrow OT
- Can then implement secure 2PC as on the previous slides

A Bit More Details

- We first use a few OTs + a pseudo-random generator and one secure equality check to implements a lot (any polynomial) number of random aBits
- We show how to turn a few aBits into one aOT
- Uses one more EQ test overall and a few applications of a hash function H per aOT
- We show how to turn a few aBits into one aAND
- Uses one more EQ test overall and a few applications of H per aOT

Even More Details

EQ

Random Authenticated Bits

- First we use a few OTs to generate a few aBits with very long keys
- They are Leaky in that a few of the authenticated bits might leak to the key holder
- Then we turn our heads and suddenly have a lot of aBits with short keys
- They are Weak in that a few bits of the global key might leak to the MAC holder
- Then we fix that problem using an extractor

Turning Our Heads

- $\mathrm{N}_{\mathrm{j}}=\mathrm{L}_{\mathrm{j}} \oplus \mathrm{y}_{\mathrm{j}} \Gamma$ for $\Gamma, \mathrm{L}_{\mathrm{j}}, \mathrm{N}_{\mathrm{j}} \in\{0,1\}^{\mathrm{n}}$
- Think $\mathrm{k}=160$ and $\mathrm{n}=1,000,000,000$
- Define $\Delta \in\{0,1\}^{k}$ and x_{i} and $M_{i}, K_{i} \in\{0,1\}^{k}$, \because, , n
- Global key to bits: $x_{i}=\Gamma_{i}$
- Bits to global key: $\Delta_{j}=y_{j}$
- MAC bits to key bits: $\mathrm{K}_{\mathrm{ij}}=\mathrm{N}_{\mathrm{ji}}$
- Key bits to MAC bits: $\mathrm{M}_{\mathrm{ij}}=\mathrm{L}_{\mathrm{ji}}$
- $\mathrm{N}_{\mathrm{ji}}=\mathrm{L}_{\mathrm{ji}} \oplus \mathrm{y}_{\mathrm{j}} \Gamma_{\mathrm{i}} \Rightarrow \mathrm{K}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ij}} \oplus \Delta_{\mathrm{j}} \mathrm{x}_{\mathrm{i}}$
$\Rightarrow \mathrm{K}_{\mathrm{i}}=\mathrm{M}_{\mathrm{i}} \oplus \Delta \mathrm{x}_{\mathrm{i}} \Rightarrow \mathrm{M}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \oplus \mathrm{x}_{\mathrm{i}} \Delta$

Extracting

- $\mathrm{M}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \oplus \mathrm{x}_{\mathrm{i}} \Delta$
- A few bits of Δ are know to the adversary

- Owner of Δ picks a random matrix $X \in\{0,1\}^{\mathrm{k} / 2 \times \mathrm{k}}$
- $\underline{M}_{i}=X M_{i}$
(in GF(2))
- $\underline{K}_{i}=X K_{i}$
- $\underline{\Delta}=\mathrm{X} \Delta$
- $\underline{M}_{i}=X M_{i}=X\left(\mathrm{~K}_{\mathrm{i}} \oplus \mathrm{x}_{\mathrm{i}} \Delta\right)$

$$
=X K_{i} \oplus x_{i} X \Delta=\underline{K}_{i} \oplus x_{i} \underline{\Delta}
$$

- So still correct and now secure as a random matrix is a good extractor

LaBit
EQ
OT

OT \rightarrow aBit

$\Delta, \mathrm{K}_{\mathrm{i}}$

$\operatorname{prg}\left(\mathrm{s}_{0}\right) \oplus\left(\mathrm{K}_{\mathrm{i}}\right), \operatorname{prg}\left(\mathrm{s}_{1}\right) \oplus\left(\mathrm{K}_{\mathrm{i}} \oplus \Delta\right)$
WaBit
LaBit
EQ

Problem 1 and Hint of the Fix

- Last problem is that Alice might not use the same Δ in all k implementations of aBits from OTs
- Is handled by implementing twice as many aBits as needed and then doing cut-and-choose in which we check that half of them were done with the same Δ
- Needs a small trick to avoid revealing the value of Δ

Problem 2 and Hint of the Fix

- The cut-and-choose stills lets Alice use a different Δ in a few of the aBits
- Can, however, show that a different Δ in a given aBit is no worse than letting Alice learn the bit being authenticatec aBit in that aBit
- An information theoretic simulation argument
- This leaves us with a few aBits of which a few bits have leaked to Alice

Status

Authenticated AND

Problem and a Fix

- If Alice sends an incorrect value, then the response of Bob depends on x
- Instead we do a secure comparison of the response and what Alice expects
- If Alice sends an incorrect value, then the response of Bob depends on x
- So, a cheating Alice will fail to give the right input to the comparison with some constant probability
- So, Alice can learn x in $O(k)$ of the aANDs with probability at most $2^{-\mathrm{k}}$

Authenticated AND

Combining

- Generate Bn LaAnds ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}$)
- Bob divides them randomly into n buckets of size B, where all triples in the same bucket have the same y-value
- For each bucket $\left(x_{1}, y, z_{1}\right), \ldots,\left(x_{B}, y, z_{B}\right)$, securely compute $\quad x=x_{1} \oplus \ldots \oplus x_{B}$

$$
\mathrm{z}=\mathrm{z}_{1} \oplus \ldots \oplus \mathrm{z}_{\mathrm{B}}
$$

and output ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)

- Correctness: xy

$$
\begin{aligned}
& =\left(x_{1} \oplus \ldots \oplus x_{n}\right) y \\
& =x_{1} y \oplus \ldots \oplus x_{n} y \\
& =z_{1} \oplus \ldots \oplus z_{n}=z
\end{aligned}
$$

- Secure if just one x_{i} was not leaked

Problem and a Fix

- If Bob puts triples with different y-values in a bucket the correctness breaks
- He uses his MACs on the y-values to prove that they are the same
- Specifically he sends $\mathrm{X}_{1} \oplus \mathrm{X}_{2}, \mathrm{X}_{2} \oplus \mathrm{X}_{3}, \ldots, \mathrm{X}_{\mathrm{B}-1} \oplus \mathrm{X}_{\mathrm{B}}$
- Alice checks that they are all 0
- Bob sends along the MACs of the Xors to prove correctness, which is possible by the Xor-homomorphism

Security

- Probability that there exists a bucket where all triples are leaky can be upper bounded by

$$
(2 n)^{-(B-1)}=2^{-(1+\log (n))(B-1)}
$$

- In particular, for a fixed overhead B, the security increases with n, the number of gates we have to handle
- Example: $B=4$ and $n=1,000,000$ gives security around 2^{-63}
- Our implementation uses a fixed $B=4$ as we do massive computations

Status

Authenticated OT

- Same, same, ...
- First the parties run an OT
- Then they use runs of aBit to get their inputs and outputs authenticated
- Then they do a slightly more involved version of the Xor-of-hash challenge-response technique
- Then we combine to get rid of a few leaked bits
- Only problem is that we actually did not implement OT efficiently yet

aBit \rightarrow OT

$H(K) \oplus x_{0} \quad H(K \oplus \Delta) \oplus X_{1}$
aBit EQ

Status

Benchmarking

- We implemented the protocol in Java and ran it between two different machines on the intranet of Aarhus university
- We did secure encryption using AES
- Key is Xor shared between the parties
- Plaintext is input by Alice
- Both parties learn the ciphertext
- Circuit of AES is about 34000 gates
- ℓ : Number of 128 -bit blocks encrypted
- G: \# of gates
- σ : Statistical security level
- a bucket is bad with probability $2^{-\sigma}$
- $\mathrm{T}_{\text {pre }}$: Seconds for implementing Dealer
- Can be done before inputs arrive
- $T_{\text {onl }}$: Time spend evaluating once random values are dealt
- $\mathrm{T}_{\text {tot }}=\mathrm{T}_{\text {pre }}+\mathrm{T}_{\text {onl }}$

ℓ	G	σ	$T_{\text {pre }}$	$T_{\text {onl }}$	$T_{\text {tot }} / \ell$	$G / T_{\text {tot }}$
1	34,520	55	38	4	44	822
27	922,056	55	38	5	1.6	21,545
54	$1,842,728$	58	79	6	1.6	21,623
81	$2,765,400$	60	126	10	1.7	20,405
108	$3,721,208$	61	170	12	1.7	20,541
135	$4,642,880$	62	210	15	1.7	20,637

ℓ	G	σ	$T_{\text {pre }}$	$T_{\text {onl }}$	$T_{\text {tot }} / \ell$	$G / T_{\text {tot }}$
256	$8,739,200$	65	406	16	1.7	20,709
512	$17,478,016$	68	907	26	1.8	18,733
1,024	$34,955,648$	71	2,303	52	2.3	14,843
2,048	$69,910,912$	74	5,324	143	2.7	12,788
4,096	$139,821,440$	77	11,238	194	2.8	12,231
8,192	$279,642,496$	80	22,720	258	2.8	12,170
16,384	$559,284,608$	83	46,584	517	2.9	11,874

