Secure Information Flow Analysis for a
Distributed OO Language

Martin Pettai
University of Tartu / Cybernetica AS

October 8, 2011

Introduction

We analyze a language with objects, asynchronous method
calls and futures

We use an information-flow type system to prevent insecure
flows in the programs written in this language

Synchronization creates additional flows

We consider both direct and indirect flows and also flows
through non-termination

The language

A simplified version of the concurrent object level of Core ABS
No synchronous method calls
No boolean guards

No interfaces

Syntax (1)

Pr:=Cl B program
Cl ::= class C{T f M} class definition

x|n|lo|b|f
M ::

B

Syntax (2)

= (m: (1, 7)™ emd (M) () B
= {T x s;x}

x | this | this.f
.=1]01]...

t=ep| e

s=v|null|i|e, = e

= eplim(&,) | ep.get, | new C | new cog C

= v := e e|skip|suspend, | await; g
|if (ep) s else s | while; (ep) 5| s;s

n=v?

m=L|H

n=1i

w=Int | G | Fut{(T) | Guard]

local variable | task | object | cog | field name

method definition

method body

variable

integer

expression

pure expression

expression with side effects

statement

guard
security level
security level or integer

security type

Operational semantics (1)

e The run-time configurations consist of cogs (b), objects (o),
and tasks (n).

P ::= b[n1, n2] | o[b, C,o]| n{b,0,0,s) | P| P

e Creating new tasks, objects, cogs:

n’ fresh body(m) = s(x); x’
Stask = graby; s[a/X]; releases; x’
o'[b,C,d'] || n(b,o0,0, Ri[0o"\m(3)]; s) ~
~ o'[b, C,0'] || n{b, 0,0, Ri[n'];s) || n’ (b, 0, Tinit, Stask)

(acall)

o’ fresh
n(b,o,0, Ri[new CJ|;s) ~» n(b, 0,0, Ri[0'];s) || o'[b, C, Tinit] (
b’ fresh o’ fresh
n{b, 0,0, Ri[new cog CJ;s) ~»
~ n{b,0,0,Ri[0'];s) || b'[L, L] || o'[F, C, Tinit]

new)

(newcog)

Operational semantics (2)

e Synchronization:

(suspend)

n({b,0,0,suspend;; s) ~» n(b, 0,0, releases; grab,; s)

(graby)

b[L, LT[l n{b,0,0,grab;s) ~ b[n,n] || n{b,0,0,s)
> (grabp)

b[n', L] || n{b, 0,0, graby;s) ~» b[n’,n] || n(b,o0,0,s

|
b][7 (b, 0.0, releaser s) < B{L, L] [n (b o.o,s) Teeaser)

I
b[n’, n] || n{b, 0, 0,releasey;s) ~ b[n’, L] || n(b,0,0,s) (releasey)

n(b, 0,0’ await;/(n'?);s) || n (b, 0',0,x) ~ n(b,0,0',s) || n' (b0, 0, x)

it
n (b, 0,0 await/(n'?);s) | W/ (b, 0, 0,5 x) ~ (awaitp)

~> n (b, 0,0, suspend;; await;(n’?);s) || n’ (b, o', 0, s'; x)

Locks

e Every cog has a high and a low lock
e A task can execute only when it has the high lock

e A task can change the low (publicly visible) part of the state
only when it also has the low lock (this is checked statically by

the type system)

Security types

The types in the type system are the following:

T ==1Int; | G | Fut{(T) | Guard! | Exp/(T) | Cmd/|

cmd!(T) | (1, T) ™ cmd' (1)
lw:=L|H
The possible types of futures are Fut:(T) (corresponding to a

low task), Futk,(T) (high-low task), and Futf(T) (high-high
task)

Both low and high tasks can await for high-low tasks
Only low tasks can await for low tasks

Only high-high tasks can await for high-high tasks

Subtyping rules

1< L<H Guard};, < Guardk,

h<h U3 < Uy h<h b3 <ty Ts < Tg
Guardff < Guardi4 Futff(T5) < Futi“(T6)
/1§/2 /1§/2 ’y,/I—EZT

C, <G, Int;, < Int, v,1+ e : Expt(T)
v lFe: Ty T1<T v, Fs: Cmdh h<bh

v ke T, v,lF s : Cmd"?

v hFs:Cmd L >h
v, b Fs:Cmd

Some type rules

v, I+e: v, lFe: T fy(C.m):lo,T—l>Cmd/1(T2)
o> 1 T>1 h=1

/ (ACally)
v, 1 = e!/m(é) : Fut/l(l VhV T2)

7,1+ e : Guard!
7,1+ await,(e) : Cmd"

v, e :Int, v,1+s: Cmd'
v, 1+ while; (e) s : Cmd/

(Awaitl)

(While)

Low-equivalence

~,I+s: Cmd" v,HrFs:Cmd" 4 HFSs :Cmd"

S~ey S s~y s

~, 1 Fs:CmdH(T) v, HEs:Cmd?(T) ~,HF s :Cmd"(T)

S~~~y S s~y s
. H / . H / /
v,HF sp: Cmd S2 ey Sy v,HF sp: Cmd S~y Sy S~y Sy
SIS~y S) 5~y 513 5) 51552~y 515 S)

O~y o’ = dom(c) = dom(c’) A Vv € dom(c). level(v(v)) = L = o(v) = o’ (v)

’
bln1, m] ~~ b[my, 5]
o~y o’ o~y ol s~y s Py ~y P] Py ~~ P}

o[b, C, o] ~~ o[b, C,0'] n{b,0,0,5) ~~ n(b,0,0,5) PLI P2~y PP

v HEs:Cmd1(T) P~y P v, HFs:Cmd1(T2) P~y P
n(b,0,0,s) || P~y P’ P~y n(b,o,0,s) || P’

High and low steps and locks

e A high step cannot change the low-equivalence class of a
configuration, a low step may change it
e Each cog has two locks for synchronization of its tasks

e The high lock is needed to make a high step
e Both locks are needed to make a low step
e Suspending in high context releases only the high lock

Insecure information flows

e Within one task, there can be direct flows, indirect flows, and
flows through non-termination

e Security of these flows is easily enforced by the type system
v, F s :Cmdh ~, IV F s : Cmd? (Seq)
1
v, I s1;80: Cmd"Vk q

v, F s : Cmdh v, IV hFs: Cmd’Z(T)
v, 1+ s1; 8 : CmdVE(T)

e Synchronization between tasks introduces additional flows

(Squ)

Flows through synchronization (1)

e An example
e A high task ny in cog by makes a high while loop (e.g.
while h do skip) whose termination depends on secret data
o A low task ny in cog by is about to make a low side effect (e.g.
call a method in cog b, that does 1 := 0)
e The low side effect can be blocked by a non-terminating high
loop

e To prevent this, while and await loops suspend after each
iteration

n{b,o,0,while; (e) s1;s) ~ (while)

~> n(b,o0,0,if (e) (s1;suspend;; while; (e) s1) else skip; sp)

it
n<b70,0’,await/(n’?);5> || n/ <b/’0/’0_’X> — (aWaI 1)

~n(b,o,0',s) || n" (b, 0, 0, x)

it
n (b, 0,0 await;(n'?);s) | W/ (b, 0, 0,5 x) ~ (awaitp)

~> n (b, 0,0, suspend;; await;(n’?);s) || n’ (b/, o', 0, s'; x)

Flows through synchronization (2)

e For a high-low task ng4, non-termination must not be allowed,
as it can leak secret information to any low task awaiting for
Ny

e |t is not enough to disallow loops, infinite recursion must also
be prevented

v, ik e: Guard;1 ih<i
7,1, i F await(e) : Cmd*

(Awaity)

Flows through synchronization (3)

e An example
e Low task nj in cog b; is in high context and awaits for a
high-low task n, in cog b,
e The high lock of b, is held by a low task n3 in cog by
e Here it may depend on the high variables in n; whether low
steps must be made in n3 before the next low step in ny or not

e The following rule removes this dependency
the next step of s; is low and the task n’ is high-low
n{b,0,c’ awaity(n'?);s) || n" (b, 0,0, graby;s’; x) ||
|[ny (b, 01,01,5) || b'[n1, nmi] ~ n{b, 0,0’ suspend; awaity(n’?); s) ||
[In" (b, 0’ 0,5 x) || ny (b, 01,01, graby; s1) || b'[ny, ']

(awaits

Non-interference

e We have proved concurrent non-interference

Definition (Non-interference)

A program C/ {T x s;xp} is non-interferent if for any three states
09, oy and oy satisfying og ~ . 01,

bo[no, nol || no (bo, null, oo, s; releaser ; xo) 5 o (bo, null, og, xo) || - -
implies that there exists a state o} with o5 (x0) = 03(xo) and

bo[no, nol||no (bo, null, o1, s; releaser; xo) % g (b, null, o7, x0)||- - -

Theorem (Subject reduction)

If Py and P are well typed under vy and Py ~., P> then if Py ~~ P;
then there exists P} such that P, ~* P) and Pj ~. Pj.

Conclusion

e We have demonstrated a type-based information flow analysis
for a language with several features

e We saw that synchronization between tasks can create some
interesting flows

e We have a non-interference proof

«Or aFor o

Q>

