
Antifounded corecursion

Tarmo Uustalu, Institute of Cybernetics, Tallinn

Theory Days, Tõrve, 7–9 October 2011

When does a structured recursion diagram define a

function?

We are interested defining (= definitely desribing) a function
f : A → B by an equation of the form:

FA

Ff
��

A
αoo

f
��

FB
β

// B

F – branching type of recursive call [core-
cursive return] trees (an endofunctor)
α – marshals arguments for recursive calls
(an F -coalgebra)
β – collects recursive call results (an F -
algebra)

Some good cases (1): Initial algebra

1 + El× List

1+El×f
��

List
[nil,cons]−1

oo

f
��

1 + El× B
β

// B

E.g., for B = List, β = ins, we get f = isort.

A unique f exists for any (B , β) because (List, [nil, cons]) is
the initial algebra of 1 + El× (−).

f is the fold of (B , β).

Some good cases (2): Recursive coalgebras

1 + List× El× List

1+f×El×f
��

List
qsplitoo

f
��

1 + B × El× B
β

// B

qsplit nil = inl ∗; qsplit (cons (x , xs)) = inr (xs|≤x , x , xs|>x)

E.g., for B = List, β = app ◦ (List× cons), we get f = qsort.

(List, qsplit) is not the inverse of the initial algebra of
1+ (−)×El× (−), but we still have a unique f for any (B , β).

We say that (List, qsplit) is a recursive coalgebra of
1 + (−)× El× (−).

[The inverse of the initial F -algebra is the final recursive
F -coalgebra.]

Some good cases (3): Final coalgebra

El× A

1+El×f
��

A
αoo

f
��

El× Str
〈hd,tl〉−1

// Str

E.g., for A = Str, α = 〈hd, tl ◦ tl〉, we get f = dropeven.

A unique f exists for any (A, α) because (Str, 〈hd, tl〉) is the
final coalgebra of El× (−).

f is the unfold of (A, α).

Some good cases (4): Corecursive algebras

A× El× A

f×El×f
��

A
αoo

f
��

Str × El× Str smerge
// Str

hd (smerge(xs0, x , xs1)) = x
tl (smerge(xs0, x , xs1)) = smerge(xs1, hd xs0, tl xs1)

(Str, smerge) is not the inverse of the final coalgebra of
(−)× El× (−), but a unique f still exists for any (A, α).

We say that (Str, smerge) is a corecursive algebra of
(−)× El× (−).

[The inverse of the final F -coalgebra is the initial corecursive
F -algebra.]

General case (1): Inductive domain predicate
Bove-Capretta

For given (A, α), define a predicate dom on A inductively by

a : A (F̃ dom) (α a)

dom a

For any (B , β), there is f : A|dom → B uniquely solving

F (A|dom)

Ff

��

A|dom
α|domoo

f

��
FB

β
// B

If ∀a : A. dom a, which is the same as A|dom
∼= A, then f is a

unique solution of the original equation.

General case (1): Inductive domain predicate ctd

For A = List, α = qsplit, dom is defined inductively by

dom nil

x : El xs : List dom (xs|≤x) dom (xs|>x)

dom (cons (x , xs))

We can prove that ∀xs : List. dom xs.

Hence (List, qsplit) is recursive.

Wellfounded induction

If A|dom
∼= A, the coalgebra (A, α) is said to be wellfounded.

Wellfoundedness gives an induction principle on A: For any
predicate P on A, we have

a : A

a′ : A (F̃ P) (α a′)....
P a

P a

We have seen that wellfoundedness suffices for recursiveness.
In fact, it is also necessary.

Wellfounded induction ctd

For A = List, α = qsplit, we get this induction principle:

xs : List P nil

x : El xs ′ : List P (xs ′|≤x) P (xs ′|>x)....
P (cons (x , xs ′))

P xs

General case (2): Inductive graph relation
Bove

For given (A, α), (B , β), define a relation ↓ between A, B
inductively by

a : A bs : FB (α a) (F̃ ↓) bs

a ↓ (β bs)

Further, define a predicate Dom on A by

Dom a = ∃b : B . a ↓ b

It is easy that ∀a : A, b, b′ : B .a ↓ b ∧ a ↓ b′ → b = b′.

Moreover, ∀a : A. Dom a ↔ dom a.

So, Dom does not really depend on the given (B , β)!

General case (2): Inductive graph relation ctd

We know that there is f : A|Dom → B uniquely solving

F (A|Dom)

Ff

��

A|Dom
α|Domoo

f

��
FB

β
// B

And, if ∀a : A. Dom a, which is the same as A|Dom
∼= A, then f

is a unique solution of the original equation.

As a matter of fact, recursiveness and wellfoundedness are
equivalent exactly because ∀a : A. Dom a ↔ dom a.

General case (2): Inductive graph relation ctd

For A = List, α = qsplit, B = List, β = app ◦ (List× cons),
the relation ↓ is defined inductively by

nil ↓ nil

x : El xs : List xs|≤x ↓ ys0 xs|>x ↓ ys1
cons (x , xs) ↓ app (ys0, cons(x , ys1))

Trouble: Inductive domain/graph don’t work for

corecursion

Unfortunately, for our dropeven example,

El× Str

1+El×dropeven
��

Str
〈hd,tl◦tl〉oo

dropeven

��
El× Str

〈hd,tl〉−1
// Str

we get dom ∼= 0!

Now, surely there is a unique function from 0 → Str. But this
is uninteresting!

???

General case (3): Coinductive bisimilarity relation
Capretta, Uustalu, Vene

For given (B , β), define a relation ≈ on B coinductively by

bs, bs ′ : FB β bs ≈ β bs ′

bs (F̃ ≈∗) bs ′

If ∀b, b′ : B . b ≈ b′ → b = b′, which is the same as
B/≈∗ ∼= B , we say that (B , β) is antifounded.

This does not suffice for existence of f satisfying

FA

Ff
��

A
αoo

f
��

F (B/≈∗)/
β/≈∗

// B/≈∗

but it suffices for uniqueness!

General case (3): Coinductive bisimilarity relation

For B = Str, β = qmerge, the relation ≈ is defined
coinductively by

xs0, xs1 : Str,
x , x ′ : El, xs ′0, xs

′
1 : Str

smerge(xs0, x , xs1)
≈ smerge(xs ′0, x

′, xs ′1)

xs0 ≈∗ xs ′0 ∧ x = x ′ ∧ xs1 ≈∗ xs ′1

It turns out that ∀xs, xs ′ : Str. xs ≈ xs ′ → xs = xs ′.

Based on this knowledge, we know that solutions are unique,
but need not exist.

Antifounded coinduction

We saw that antifoundedness of (B , β) does not suffice for
corecursion from A to B for any (A, α).

The converse also fails: not every corecursive algebra (B , β) is
antifounded.

However, for an antifounded algebra (B , β), we do get an
interesting coinduction principle on B : For any relation R on
B , we have

b, b′ : B b R b′

bs, bs ′ : FB (β bs) R (β bs ′)....
bs (F̃ R∗) bs ′

b = b′

Antifounded coinduction ctd

For B = Str, β = qmerge, we get this coinduction principle:

xs, xs ′ : Str xs R xs ′

xs0, xs1 : Str,
x , x ′ : El, xs ′0, xs

′
1 : Str

smerge(xs0, x , xs1)
R smerge(xs ′0, x

′, xs ′1)....
xs0 R∗ xs ′0 ∧ x = x ′ ∧ xs1 R∗ xs ′1

xs = xs ′

General case (4): Coinductive graph relation

For given (A, α), (B , β), define a relation ↓∞ between A, B
coinductively by

a : A bs : FB a ↓∞ (β bs)

(α a) (F̃ ↓∞) bs

Define a predicate Dom∞ on A by

Dom∞a = ∃b : B . a ↓∞ b

and a relation ≡ on B by

b ≡ b′ = ∃a : A. a ↓∞ b ∧ a ↓∞ b′

General case (4): Coinductive graph relation ctd

Now we have f : A|Dom∞ → B/≡∗ uniquely solving

F (A|Dom∞)

Ff
��

A|Dom∞
α|Dom∞oo

f
��

F (B/≡∗)/
β/≡∗

// B/≡∗

If both ∀a : A. Dom∞ a and ∀b, b′ : B . b ≡ b′ → b = b′,
which are the same as A|Dom∞

∼= A resp. B/≡∗ ∼= B ,
then f uniquely solves the original equation.

Notice, however, that we get a unique solution only for our
given (A, α): We have not obtained that (B , β) is corecursive.

General case (4): Coinductive graph relation ctd

For B = Str, β = smerge and any fixed A, α, the relation ↓∞
is defined coinductively by

a : A xs0 : Str, x : El, xs1 : Str a ↓∞ smerge (xs0, x , xs1)

fst a ↓∞ xs0 ∧ fst (snd a) = x ∧ snd (snd a) ↓∞ xs1

It turns out that ∀a : A. Dom∞ a and
∀xs, xs ′ : Str. xs ≡ xs ′ → xs = xs ′ no matter what A, α are.

So in this case we do have a unique solution f for any A, α,
i.e., (Str, smerge) is corecursive.

Conclusion

There are two kinds of partiality: some arguments may be not
in the domain, some values not crisp.

Bove-Capretta method extends to recursive equations where
unique solvability is not due to termination, but productivity or
a combination.

Instead of one condition to check by ad-hoc means, there are
two in the general case.

The theory of corecursion/coinduction is not as simple and
clean as that of recursion/induction — admitting coinduction
is different from admitting corecursion.

