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When does a structured recursion diagram define a

function?

We are interested defining (= definitely desribing) a function
f : A— B by an equation of the form:

FA<*— A  F —branching type of recursive call [core-
,__fi if cursive return] trees (an endofunctor)
« —marshals arguments for recursive calls
FB—3>B  (an F-coalgebra)
[ — collects recursive call results (an F-
algebra)



Some good cases (1): Initial algebra

[nil,cons]—1

1+ El x List <— List
1+E|xfl lf
1+El xB 3 B

E.g., for B = List, § = ins, we get f = isort.

A unique f exists for any (B, 3) because (List, [nil, cons]) is
the initial algebra of 1+ El x (—).

f is the fold of (B, 3).



Some good cases (2): Recursive coalgebras

gsplit

1 + List x El x List List

1+f><EI><fi lf

1+-BxElxB 3 B

gsplitnil = inl*;  gsplit (cons (x, xs)) = inr (xs|<x, X, Xs|>x)
E.g., for B = List, 3 = app o (List x cons), we get f = gsort.

(List, gsplit) is not the inverse of the initial algebra of
14 (=) x El x (=), but we still have a unique f for any (B, 3).

We say that (List, gsplit) is a recursive coalgebra of
14+ (=) x El x (—).

[The inverse of the initial F-algebra is the final recursive
F-coalgebra.]



Some good cases (3): Final coalgebra

El x A = A

1+EI><f\L lf

El x Str W) Str

E.g., for A= Str, @ = (hd,tl o tl), we get f = dropeven.

A unique f exists for any (A, «) because (Str, (hd, tl)) is the
final coalgebra of El x (—).

f is the unfold of (A, «).



Some good cases (4): Corecursive algebras

AxElx A = A

fxEIxfl J{f

Str x El x Str ————— Str

smerge

hd (smerge(xso, X, xs1)) = x
tl (smerge(xsp, x, xs1)) = smerge(xs;, hd xsp, tl xs1)

(Str, smerge) is not the inverse of the final coalgebra of
(=) x El x (=), but a unique f still exists for any (A, a).

We say that (Str, smerge) is a corecursive algebra of

(=) x El x (—).

[The inverse of the final F-coalgebra is the initial corecursive
F-algebra.]



General case (1): Inductive domain predicate
Bove-Capretta

For given (A, ), define a predicate dom on A inductively by

a:A (Fdom)(aa)
dom a

For any (B, 3), there is f : Algom — B uniquely solving

F(A|dom) Hom A’dom
Ffl lf
FB 3 B

If Ya : A.dom a, which is the same as A|gom = A, then f is a
unique solution of the original equation.



General case (1): Inductive domain predicate ctd
For A = List, a = gsplit, dom is defined inductively by

x:El' xs:List dom(xs|<x) dom (xs|sx)

dom nil dom (cons (x, xs))
We can prove that Vxs : List. dom xs.

Hence (List, gsplit) is recursive.



Wellfounded induction
If Algom = A, the coalgebra (A, «) is said to be wellfounded.

Wellfoundedness gives an induction principle on A: For any
predicate P on A, we have

We have seen that wellfoundedness suffices for recursiveness.
In fact, it is also necessary.



Wellfounded induction ctd
For A = List, a = gsplit, we get this induction principle:

x:El xs':List P(xs'|<x) P(xs'|sx)

xs : List P nil P(cons.(x,xs’))
P xs




General case (2): Inductive graph relation

Bove

For given (A, «), (B, 3), define a relation | between A, B
inductively by
a:A bs:FB (aa) (F|) bs
a | (B bs)

Further, define a predicate Dom on A by
Doma=4db:B.a| b

It is easy that Va: A,b,b' : B.al]bAa|b — b=".

Moreover, Va : A.Dom a < dom a.

So, Dom does not really depend on the given (B, 3)!



General case (2): Inductive graph relation ctd

We know that there is f : A|pom — B uniquely solving
@|pom
F(A|D0m) > A|Dom

Ffl lf

FB 3 B

And, if Ya : A.Dom a, which is the same as A|pom = A, then f
is a unique solution of the original equation.

As a matter of fact, recursiveness and wellfoundedness are
equivalent exactly because Va : A. Dom a <+ dom a.



General case (2): Inductive graph relation ctd

For A = List, a = gsplit, B = List, 5 = app o (List x cons),
the relation | is defined inductively by

x:El xs:List xs|<x|yso xs|sxlysi

nil | nil cons (x, xs) | app (yso, cons(x, ys1))




Trouble: Inductive domain/graph don't work for
corecursion

Unfortunately, for our dropeven example,

hd,tlotl
El x Str<—a™® o

1+E|Xdropevenl idropeven

El x Str W Str

we get dom = 0!

Now, surely there is a unique function from 0 — Str. But this
is uninteresting!
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General case (3): Coinductive bisimilarity relation
Capretta, Uustalu, Vene

For given (B, 3), define a relation ~ on B coinductively by

bs,bs' : FB (3 bs ~ (3 bs

bs (F ~*) bs'

If Vb, b' : B.b~ b — b = b, which is the same as
B/~ = B, we say that (B, [3) is antifounded.

This does not suffice for existence of f satisfying
FA<—"—A

A

but it suffices for uniqueness!



General case (3): Coinductive bisimilarity relation

For B = Str, 3 = qmerge, the relation = is defined
coinductively by

XSg, X1 © Str, smerge(xsp, X, Xs1)
x,x" 1 El, xs}, xsy : Str ~ smerge(xsp, x', xs1)

~ / — —~ i
xso ~* xsp A x = x" N\ xs1 &* xs1
It turns out that Vxs, xs’ : Str. xs &~ xs’ — xs = xs'.

Based on this knowledge, we know that solutions are unique,
but need not exist.



Antifounded coinduction

We saw that antifoundedness of (B, ) does not suffice for
corecursion from A to B for any (A, «).

The converse also fails: not every corecursive algebra (B, (3) is
antifounded.

However, for an antifounded algebra (B, 3), we do get an
interesting coinduction principle on B: For any relation R on
B, we have

bs,bs' : FB (3 bs) R (3 bs’)

bt :B bRY bs (F R*) bs’
b=b




Antifounded coinduction ctd

For B = Str, 3 = qmerge, we get this coinduction principle:

XSg, XS1 : Str, smerge(xsp, X, X51)
x,x"  El, xs§, xs{ : Str R smerge(xs§, x', xs1)

xs,xs' :Str xsRxs'  xsop R* xsy A x = x' N\ xs; R* xs|

Xxs = xs’



General case (4): Coinductive graph relation

For given (A, «), (B, 3), define a relation | between A, B
coinductively by
a:A bs:FB a|>(0bs)
(aa) (F 1) bs

Define a predicate Dom™ on A by
Dom>*a=3b:B.a|*b
and a relation = on B by

b=b=Fa:Aal*bra|™b



General case (4): Coinductive graph relation ctd

Now we have f : A|pom> — B/=+ uniquely solving
0“ om
F(A|Dom ) = A|Dom

rr| |s

F(B/=)/ ——B/=

If both Va: A.Dom*aand Vb, b': B.b=b"— b= ",
which are the same as A|pom> = A resp. B/« =
then f uniquely solves the original equation.

Notice, however, that we get a unique solution only for our
given (A, «): We have not obtained that (B, [3) is corecursive.



General case (4): Coinductive graph relation ctd

For B = Str, 3 = smerge and any fixed A, «, the relation |*
is defined coinductively by

a:A xsp:Str,x:El xs;:Str a]* smerge(xsg, x, x51)
fsta | xsp A fst (snd a) = x A snd (snd a) |*>° xs;

It turns out that Va : A. Dom™ a and
Vxs, xs' : Str. xs = xs' — xs = xs’ no matter what A, « are.

So in this case we do have a unique solution f for any A, a,
i.e., (Str,smerge) is corecursive.



Conclusion

There are two kinds of partiality: some arguments may be not
in the domain, some values not crisp.

Bove-Capretta method extends to recursive equations where
unique solvability is not due to termination, but productivity or
a combination.

Instead of one condition to check by ad-hoc means, there are
two in the general case.

The theory of corecursion/coinduction is not as simple and
clean as that of recursion/induction — admitting coinduction
is different from admitting corecursion.



