Antifounded corecursion

Tarmo Uustalu, Institute of Cybernetics, Tallinn

Theory Days, Tõrve, 7–9 October 2011

When does a structured recursion diagram define a function?

We are interested defining (= definitely desribing) a function $f: A \rightarrow B$ by an equation of the form:

 $\begin{array}{ccc} FA & \stackrel{\alpha}{\longleftarrow} A & F - \text{branching type of recursive call [core-}\\ Ff & & & \\ Ff & & & \\ FB & \stackrel{\rightarrow}{\longrightarrow} B & \\ FB & \stackrel{\rightarrow}{\longrightarrow} B & \\ \end{array} \begin{array}{c} a & - \text{ marshals arguments for recursive calls}\\ (an \ F-\text{coalgebra}) \end{array}$ β – collects recursive call results (an *F*algebra)

Some good cases (1): Initial algebra

E.g., for B = List, $\beta = \text{ins}$, we get f = isort.

A unique f exists for any (B, β) because (List, [nil, cons]) is the *initial algebra* of $1 + EI \times (-)$.

f is the fold of (B,β) .

Some good cases (2): Recursive coalgebras

 $\operatorname{qsplit} \operatorname{nil} = \operatorname{inl} *; \quad \operatorname{qsplit} \left(\operatorname{cons} \left(x, xs \right) \right) = \operatorname{inr} \left(xs|_{\leq x}, x, xs|_{>x} \right)$

E.g., for B = List, $\beta = \text{app} \circ (\text{List} \times \text{cons})$, we get f = qsort.

(List, qsplit) is <u>not</u> the inverse of the initial algebra of $1 + (-) \times El \times (-)$, but we still have a unique f for any (B, β) .

We say that (List, qsplit) is a *recursive coalgebra* of $1 + (-) \times EI \times (-)$.

[The inverse of the initial F-algebra is the final recursive F-coalgebra.]

Some good cases (3): Final coalgebra

E.g., for A = Str, $\alpha = \langle \text{hd}, \text{tl} \circ \text{tl} \rangle$, we get f = dropeven.

A unique f exists for any (A, α) because $(Str, \langle hd, tl \rangle)$ is the final coalgebra of $El \times (-)$.

f is the unfold of (A, α) .

Some good cases (4): Corecursive algebras

 $\begin{aligned} &\mathsf{hd}\left(\mathsf{smerge}(xs_0, x, xs_1)\right) = x\\ &\mathsf{tl}\left(\mathsf{smerge}(xs_0, x, xs_1)\right) = \mathsf{smerge}(xs_1, \mathsf{hd}\, xs_0, \mathsf{tl}\, xs_1)\end{aligned}$

(Str, smerge) is not the inverse of the final coalgebra of $(-) \times El \times (-)$, but a unique f still exists for any (A, α) .

We say that (Str, smerge) is a *corecursive algebra* of $(-) \times EI \times (-)$.

[The inverse of the final *F*-coalgebra is the initial corecursive *F*-algebra.]

General case (1): Inductive domain predicate Bove-Capretta

For given (A, α) , define a predicate dom on A inductively by

$$\frac{a:A\quad (\tilde{F} \operatorname{dom})(\alpha a)}{\operatorname{dom} a}$$

If $\forall a : A$. dom *a*, which is the same as $A|_{\text{dom}} \cong A$, then *f* is a unique solution of the original equation.

General case (1): Inductive domain predicate ctd For A = List, $\alpha = \text{qsplit}$, dom is defined inductively by $\frac{x : \text{El } xs : \text{List } \text{dom}(xs|_{\leq x}) \quad \text{dom}(xs|_{>x})}{\text{dom}(\text{cons}(x, xs))}$

We can prove that $\forall xs$: List. dom xs.

Hence (List, qsplit) is recursive.

Wellfounded induction

If $A|_{dom} \cong A$, the coalgebra (A, α) is said to be *wellfounded*.

Wellfoundedness gives an induction principle on A: For any predicate P on A, we have

$$a': A \quad (\tilde{F} P) (\alpha a')$$
$$\vdots$$
$$\frac{a: A \qquad P a}{P a}$$

We have seen that wellfoundedness suffices for recursiveness. In fact, it is also necessary.

Wellfounded induction ctd

For A = List, $\alpha = \text{qsplit}$, we get this induction principle:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

General case (2): Inductive graph relation Bove

For given (A, α) , (B, β) , define a relation \downarrow between A, B inductively by

$$\frac{a:A \quad bs:FB \quad (\alpha \ a) \ (\tilde{F} \downarrow) \ bs}{a \downarrow (\beta \ bs)}$$

Further, define a predicate Dom on A by

```
Dom a = \exists b : B. a \downarrow b
```

It is easy that $\forall a : A, b, b' : B.a \downarrow b \land a \downarrow b' \rightarrow b = b'$.

Moreover, $\forall a : A$. Dom $a \leftrightarrow \text{dom } a$.

So, Dom does not really depend on the given (B, β) !

General case (2): Inductive graph relation ctd

We know that there is $f : A|_{Dom} \rightarrow B$ uniquely solving

And, if $\forall a : A$. Dom *a*, which is the same as $A|_{\text{Dom}} \cong A$, then *f* is a unique solution of the original equation.

As a matter of fact, recursiveness and wellfoundedness are equivalent exactly because $\forall a : A$. Dom $a \leftrightarrow \text{dom } a$.

General case (2): Inductive graph relation ctd For A = List, $\alpha = \text{qsplit}$, B = List, $\beta = \text{app} \circ (\text{List} \times \text{cons})$, the relation \downarrow is defined inductively by

$$\frac{1}{\mathsf{nil} \downarrow \mathsf{nil}} \qquad \frac{x : \mathsf{El} \quad xs : \mathsf{List} \quad xs|_{\leq x} \downarrow ys_0 \quad xs|_{>x} \downarrow ys_1}{\mathsf{cons}\,(x, xs) \downarrow \mathsf{app}\,(ys_0, \mathsf{cons}(x, ys_1))}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Trouble: Inductive domain/graph don't work for corecursion

Unfortunately, for our dropeven example,

we get dom \cong 0!

Now, surely there is a unique function from $0 \rightarrow Str.$ But this is uninteresting!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

???

General case (3): Coinductive bisimilarity relation Capretta, Uustalu, Vene

For given (B, β) , define a relation \approx on B coinductively by

$$\displaystyle rac{bs, bs': FB \quad eta \ bs pprox eta \ bs'}{bs \ (ilde{F} pprox^*) \ bs'}$$

If $\forall b, b' : B. b \approx b' \rightarrow b = b'$, which is the same as $B/_{\approx^*} \cong B$, we say that (B, β) is *antifounded*.

This does not suffice for existence of f satisfying

but it suffices for uniqueness!

General case (3): Coinductive bisimilarity relation

For B = Str, $\beta = \text{qmerge}$, the relation \approx is defined coinductively by

$$\begin{array}{rl} xs_0, xs_1 : \mathsf{Str}, & \mathsf{smerge}(xs_0, x, xs_1) \\ x, x' : \mathsf{EI}, xs_0', xs_1' : \mathsf{Str} & \approx \mathsf{smerge}(xs_0', x', xs_1') \\ \hline xs_0 \approx^* xs_0' \land x = x' \land xs_1 \approx^* xs_1' \end{array}$$

It turns out that $\forall xs, xs' : \text{Str.} xs \approx xs' \rightarrow xs = xs'$.

Based on this knowledge, we know that solutions are unique, but need not exist.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Antifounded coinduction

We saw that antifoundedness of (B,β) does not suffice for corecursion from A to B for any (A,α) .

The converse also fails: not every corecursive algebra (B, β) is antifounded.

However, for an antifounded algebra (B,β) , we do get an interesting coinduction principle on B: For any relation R on B, we have

$$\frac{bs, bs' : FB \quad (\beta bs) R (\beta bs')}{\underset{b = b'}{\overset{bs' : B \quad b R b' \\ \overset{bs' : B \quad & B \quad & B \\ \overset{bs' : B \quad & B \quad & B \\ \overset{bs' : B \quad & B \quad & B \\ \overset{bs' : B \quad & B \\ \overset{bs' : B \quad & B \\ & B \quad & B \\ \overset{bs' : B \quad & B \\ & B \quad & B \\ &$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Antifounded coinduction ctd

For B = Str, $\beta = \text{qmerge}$, we get this coinduction principle:

$$\frac{xs_0, xs_1 : \mathsf{Str}, \qquad \mathsf{smerge}(xs_0, x, xs_1)}{x, x' : \mathsf{EI}, xs'_0, xs'_1 : \mathsf{Str} \qquad R \, \mathsf{smerge}(xs'_0, x', xs'_1)}{\vdots}$$
$$\frac{xs, xs' : \mathsf{Str} \quad xs \, R \, xs' \qquad xs_0 \, R^* \, xs'_0 \, \wedge \, x = x' \, \wedge \, xs_1 \, R^* \, xs'_1}{xs = xs'}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

General case (4): Coinductive graph relation For given (A, α) , (B, β) , define a relation \downarrow^{∞} between A, B coinductively by

$$rac{m{\mathsf{a}}:m{\mathsf{A}}\ \ m{\mathsf{bs}}:m{\mathsf{FB}}\ \ m{\mathsf{a}}\downarrow^\infty(eta\,m{\mathsf{bs}})}{(lpha\,m{\mathsf{a}})\ (ilde{m{\mathsf{F}}}\downarrow^\infty)\ \ m{\mathsf{bs}}}$$

Define a predicate Dom^∞ on A by

$$\mathsf{Dom}^{\infty}a = \exists b : B. a \downarrow^{\infty} b$$

and a relation \equiv on *B* by

$$b \equiv b' = \exists a : A. a \downarrow^{\infty} b \land a \downarrow^{\infty} b'$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General case (4): Coinductive graph relation ctd

If both $\forall a : A$. Dom^{∞} a and $\forall b, b' : B$. $b \equiv b' \rightarrow b = b'$, which are the same as $A|_{\text{Dom}^{\infty}} \cong A$ resp. $B/_{\equiv^*} \cong B$, then f uniquely solves the original equation.

Notice, however, that we get a unique solution only for our given (A, α) : We have <u>not</u> obtained that (B, β) is corecursive.

General case (4): Coinductive graph relation ctd For B = Str, $\beta = smerge$ and any fixed A, α , the relation \downarrow^{∞}

is defined coinductively by

$$\frac{a:A \quad xs_0: \mathsf{Str}, x: \mathsf{El}, xs_1: \mathsf{Str} \quad a \downarrow^{\infty} \mathsf{smerge}(xs_0, x, xs_1)}{\mathsf{fst} \ a \downarrow^{\infty} xs_0 \land \mathsf{fst}(\mathsf{snd} \ a) = x \land \mathsf{snd}(\mathsf{snd} \ a) \downarrow^{\infty} xs_1}$$

It turns out that $\forall a : A. \text{Dom}^{\infty} a$ and $\forall xs, xs' : \text{Str.} xs \equiv xs' \rightarrow xs = xs'$ no matter what A, α are.

So in this case we do have a unique solution f for any A, α , i.e., (Str, smerge) is corecursive.

Conclusion

There are two kinds of partiality: some arguments may be not in the domain, some values not crisp.

Bove-Capretta method extends to recursive equations where unique solvability is not due to termination, but productivity or a combination.

Instead of one condition to check by ad-hoc means, there are two in the general case.

The theory of corecursion/coinduction is not as simple and clean as that of recursion/induction — admitting coinduction is different from admitting corecursion.