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Secret Shared Databases

I If we need to compute with a dataset in a privacy-preserving
manner, we can share the values between independent
computing nodes using a secret sharing scheme.
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I E.g. Sharemind uses additive secret sharing scheme, where

x1 + x2 + . . .+ xm ≡ x mod 232



Adversary structures

I Let X be the set of computing nodes. The secret sharing
scheme is characterized by the tolerable adversary structure
A ⊆ P(X ); i.e. for any A ∈ A, the nodes of A should not be
able to learn anything about the shared values.

I We assume that the tolerable adversary structure is monotone,
i.e. if A ∈ A and B ⊆ A then B ∈ A.

I A t-threshold adversary structure is defined as

{A ⊆ X : |A| ≤ t}

I Sharemind additive sharing can resist value reconstruction
attacks by m − 1 corrupt parties

I Shamir secret sharing scheme can be tweaked to work for any t



Database shuffle problem
I Many database manipulation operations can leak some

information about the entries
I E.g. their relative order, origin, etc.

I To fight this, the database needs to be shuffled in an oblivious
manner

I One way to do it is to reshare the database among a subset of
nodes and let them shuffle it, then repeat it with other subsets

I Essentially, we have a mix-net
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Security requirements

I We call the set of all reshuffling consortia D ⊆ P(X ) a
defender structure

I No adversarial set should be able to learn all the shares of the
values of the database, i.e.

∀A ∈ A ∀D ∈ D D 6⊆ A (1)

I For t-threshold case this reads as ∀D ∈ D |D| ≥ t + 1

I No adversarial set should learn all the permutations, i.e.

∀A ∈ A ∃D ∈ D A ∩ D = ∅ (2)

I For both requirements, it is enough to consider only maximal
adversarial and minimal defender sets (in terms of set
inclusion)

I However, there can be several different defender structures



Research questions

I Given an adversary structure A, find the least possible
cardinality of the corresponding defender structures D

I Describe the defender structures explicitly if you can

I For m computing nodes and a t-threshold adversary structure
A, let d(m, t) denote this minimal cardinality

I Tabulate as many values of d(m, t) as you can
I Give good bounds for others

I For a given threshold t, find the optimal number m of the
computing nodes so that the overall complexity of the shuffle
protocol would be decreased



Some observations concerning d(m, t)

I d(m, t) is well-defined iff m ≥ 2t + 1
I For m = 2t + 1 we have d(m, t) =

(m
t

)
I d(m, t) is monotonously decreasing as a function of m
I d(m, t) ≥ t + 1
I d((t + 1)2, t) = t + 1
I The last three observations imply

lim
m→∞

d(m, t) = t + 1

I For t = 1, the table looks like

m 1 2 3 4 5 6 . . .
d(m, 1) - - 3 2 2 2 . . .



A lower bound

Theorem

d(m, t) ≥
(m

t

)(m−t−1
t

)
Proof.
There are

(m
t

)
maximal adversarial sets. Each defender set D has at

least t + 1 elements, hence at most m− t − 1 elements are left over
from D. Thus, at most

(m−t−1
t

)
maximal adversarial sets satisfy the

condition (2) for a given D. Consequently, each defender structure

must have at least (mt )
(m−t−1

t )
sets, including the minimal ones.



The case t = 2

I We know d(5, 2) = 10

I From the Theorem we know that d(6, 2) ≥ (62)
(32)

= 15
3 = 5.

Equality would mean that we can cover all the edges of the
graph K6 exactly with 5 triangles, but this is impossible, since

the vertex degrees of K6 are odd. Hence d(6, 2) ≥ 6.

I It is doable with 6 triangles. Just rotate this figure 6 times:

I For t = 2, the table looks like

m 1 2 3 4 5 6 7 8 9 10 . . .
d(m, 2) - - - - 10 6 5 4 3 3 . . .
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On communication complexity of the shuffle protocol

I For t = 2 and m = 5, in total total

2 · 2 · 3 · 10 = 120

messages are sent in 10 rounds (not counting the messages
exchanged between the defenders)

I For t = 2 and m = 6, we have to send

2 · 3 · 3 · 6 = 108

messages in 6 rounds
I Hence we see that increasing the number of computing nodes,

the actual communication complexity may drop!



That’s as far as I’ve got

I You can ask a question and then answer it yourself


