On optimal threshold defender structures of resharing-based oblivious shuffle protocols for secret-shared secure multi-party computations

Jan Willemson

Cybernetica

Tõrve Theory Days
October 7th-9th, 2011

Secret Shared Databases

- If we need to compute with a dataset in a privacy-preserving manner, we can share the values between independent computing nodes using a secret sharing scheme.

- E.g. Sharemind uses additive secret sharing scheme, where

$$
x_{1}+x_{2}+\ldots+x_{m} \equiv x \bmod 2^{32}
$$

Adversary structures

- Let X be the set of computing nodes. The secret sharing scheme is characterized by the tolerable adversary structure $\mathcal{A} \subseteq \mathcal{P}(X)$; i.e. for any $A \in \mathcal{A}$, the nodes of A should not be able to learn anything about the shared values.
- We assume that the tolerable adversary structure is monotone, i.e. if $A \in \mathcal{A}$ and $B \subseteq A$ then $B \in \mathcal{A}$.
- A t-threshold adversary structure is defined as

$$
\{A \subseteq X:|A| \leq t\}
$$

- Sharemind additive sharing can resist value reconstruction attacks by $m-1$ corrupt parties
- Shamir secret sharing scheme can be tweaked to work for any t

Database shuffle problem

- Many database manipulation operations can leak some information about the entries
- E.g. their relative order, origin, etc.
- To fight this, the database needs to be shuffled in an oblivious manner
- One way to do it is to reshare the database among a subset of nodes and let them shuffle it, then repeat it with other subsets
- Essentially, we have a mix-net

Database shuffle problem

- Many database manipulation operations can leak some information about the entries
- E.g. their relative order, origin, etc.
- To fight this, the database needs to be shuffled in an oblivious manner
- One way to do it is to reshare the database among a subset of nodes and let them shuffle it, then repeat it with other subsets
- Essentially, we have a mix-net

Database shuffle problem

- Many database manipulation operations can leak some information about the entries
- E.g. their relative order, origin, etc.
- To fight this, the database needs to be shuffled in an oblivious manner
- One way to do it is to reshare the database among a subset of nodes and let them shuffle it, then repeat it with other subsets
- Essentially, we have a mix-net

Security requirements

- We call the set of all reshuffling consortia $\mathcal{D} \subseteq \mathcal{P}(X)$ a defender structure
- No adversarial set should be able to learn all the shares of the values of the database, i.e.

$$
\begin{equation*}
\forall A \in \mathcal{A} \forall D \in \mathcal{D} D \nsubseteq A \tag{1}
\end{equation*}
$$

- For t-threshold case this reads as $\forall D \in \mathcal{D}|D| \geq t+1$
- No adversarial set should learn all the permutations, i.e.

$$
\begin{equation*}
\forall A \in \mathcal{A} \exists D \in \mathcal{D} A \cap D=\emptyset \tag{2}
\end{equation*}
$$

- For both requirements, it is enough to consider only maximal adversarial and minimal defender sets (in terms of set inclusion)
- However, there can be several different defender structures

Research questions

- Given an adversary structure \mathcal{A}, find the least possible cardinality of the corresponding defender structures \mathcal{D}
- Describe the defender structures explicitly if you can
- For m computing nodes and a t-threshold adversary structure \mathcal{A}, let $d(m, t)$ denote this minimal cardinality
- Tabulate as many values of $d(m, t)$ as you can
- Give good bounds for others
- For a given threshold t, find the optimal number m of the computing nodes so that the overall complexity of the shuffle protocol would be decreased

Some observations concerning $d(m, t)$

- $d(m, t)$ is well-defined iff $m \geq 2 t+1$
- For $m=2 t+1$ we have $d(m, t)=\binom{m}{t}$
- $d(m, t)$ is monotonously decreasing as a function of m
- $d(m, t) \geq t+1$
- $d\left((t+1)^{2}, t\right)=t+1$
- The last three observations imply

$$
\lim _{m \rightarrow \infty} d(m, t)=t+1
$$

- For $t=1$, the table looks like

m	1	2	3	4	5	6	\ldots
$d(m, 1)$	-	-	3	2	2	2	\ldots

A lower bound

Theorem

$$
d(m, t) \geq \frac{\binom{m}{t}}{\binom{m-t-1}{t}}
$$

Proof.

There are $\binom{m}{t}$ maximal adversarial sets. Each defender set D has at least $t+1$ elements, hence at most $m-t-1$ elements are left over from D. Thus, at most $\binom{m-t-1}{t}$ maximal adversarial sets satisfy the condition (2) for a given D. Consequently, each defender structure must have at least $\frac{\binom{m}{t}}{\binom{m-t-1}{t}}$ sets, including the minimal ones.

The case $t=2$

- We know $d(5,2)=10$
- From the Theorem we know that $d(6,2) \geq \frac{\binom{6}{2}}{\binom{3}{2}}=\frac{15}{3}=5$.

Equality would mean that we can cover all the edges of the graph K_{6} exactly with 5 triangles, but this is impossible, since

The case $t=2$

- We know $d(5,2)=10$
- From the Theorem we know that $d(6,2) \geq \frac{\binom{6}{2}}{\binom{3}{2}}=\frac{15}{3}=5$. Equality would mean that we can cover all the edges of the graph K_{6} exactly with 5 triangles, but this is impossible, since the vertex degrees of K_{6} are odd. Hence $d(6,2) \geq 6$.

The case $t=2$

- We know $d(5,2)=10$
- From the Theorem we know that $d(6,2) \geq \frac{\binom{6}{2}}{\binom{3}{2}}=\frac{15}{3}=5$. Equality would mean that we can cover all the edges of the graph K_{6} exactly with 5 triangles, but this is impossible, since the vertex degrees of K_{6} are odd. Hence $d(6,2) \geq 6$.
- It is doable with 6 triangles. Just rotate this figure 6 times:

The case $t=2$

- We know $d(5,2)=10$
- From the Theorem we know that $d(6,2) \geq \frac{\binom{6}{2}}{\binom{3}{2}}=\frac{15}{3}=5$. Equality would mean that we can cover all the edges of the graph K_{6} exactly with 5 triangles, but this is impossible, since the vertex degrees of K_{6} are odd. Hence $d(6,2) \geq 6$.
- It is doable with 6 triangles. Just rotate this figure 6 times:

- For $t=2$, the table looks like

m	1	2	3	4	5	6	7	8	9	10	\ldots
$d(m, 2)$	-	-	-	-	10	6	5	4	3	3	\ldots

On communication complexity of the shuffle protocol

- For $t=2$ and $m=5$, in total total

$$
2 \cdot 2 \cdot 3 \cdot 10=120
$$

messages are sent in 10 rounds (not counting the messages exchanged between the defenders)

- For $t=2$ and $m=6$, we have to send

$$
2 \cdot 3 \cdot 3 \cdot 6=108
$$

messages in 6 rounds

- Hence we see that increasing the number of computing nodes, the actual communication complexity may drop!

That's as far as I've got

- You can ask a question and then answer it yourself

