On optimal threshold defender structures of resharing-based oblivious shuffle protocols for secret-shared secure multi-party computations

Jan Willemson

Cybernetica

Tõrve Theory Days October 7th-9th, 2011

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Secret Shared Databases

If we need to compute with a dataset in a privacy-preserving manner, we can share the values between independent computing nodes using a secret sharing scheme.

E.g. Sharemind uses additive secret sharing scheme, where

$$x_1 + x_2 + \ldots + x_m \equiv x \mod 2^{32}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Adversary structures

- Let X be the set of computing nodes. The secret sharing scheme is characterized by the *tolerable adversary structure* $\mathcal{A} \subseteq \mathcal{P}(X)$; i.e. for any $A \in \mathcal{A}$, the nodes of A should not be able to learn anything about the shared values.
 - We assume that the tolerable adversary structure is monotone, i.e. if A ∈ A and B ⊆ A then B ∈ A.
 - A t-threshold adversary structure is defined as

$$\{A \subseteq X : |A| \le t\}$$

- ► Sharemind additive sharing can resist value reconstruction attacks by *m* − 1 corrupt parties
- Shamir secret sharing scheme can be tweaked to work for any t

Database shuffle problem

- Many database manipulation operations can leak some information about the entries
 - E.g. their relative order, origin, etc.
- To fight this, the database needs to be shuffled in an oblivious manner
- One way to do it is to reshare the database among a subset of nodes and let them shuffle it, then repeat it with other subsets
 - Essentially, we have a mix-net

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Database shuffle problem

- Many database manipulation operations can leak some information about the entries
 - E.g. their relative order, origin, etc.
- To fight this, the database needs to be shuffled in an oblivious manner
- One way to do it is to reshare the database among a subset of nodes and let them shuffle it, then repeat it with other subsets
 - Essentially, we have a mix-net

Database shuffle problem

- Many database manipulation operations can leak some information about the entries
 - E.g. their relative order, origin, etc.
- To fight this, the database needs to be shuffled in an oblivious manner
- One way to do it is to reshare the database among a subset of nodes and let them shuffle it, then repeat it with other subsets
 - Essentially, we have a mix-net

Security requirements

- We call the set of all reshuffling consortia D ⊆ P(X) a defender structure
- No adversarial set should be able to learn all the shares of the values of the database, i.e.

$$\forall A \in \mathcal{A} \ \forall D \in \mathcal{D} \ D \not\subseteq A \tag{1}$$

▶ For *t*-threshold case this reads as $\forall D \in D \ |D| \ge t+1$

No adversarial set should learn all the permutations, i.e.

$$\forall A \in \mathcal{A} \exists D \in \mathcal{D} \ A \cap D = \emptyset$$
(2)

- For both requirements, it is enough to consider only maximal adversarial and minimal defender sets (in terms of set inclusion)
- However, there can be several different defender structures

Research questions

- Given an adversary structure A, find the least possible cardinality of the corresponding defender structures D
 - Describe the defender structures explicitly if you can
- ▶ For *m* computing nodes and a *t*-threshold adversary structure A, let d(m, t) denote this minimal cardinality
 - Tabulate as many values of d(m, t) as you can
 - Give good bounds for others
- For a given threshold t, find the optimal number m of the computing nodes so that the overall complexity of the shuffle protocol would be decreased

Some observations concerning d(m, t)

- d(m, t) is well-defined iff $m \ge 2t + 1$
- For m = 2t + 1 we have $d(m, t) = \binom{m}{t}$
- d(m, t) is monotonously decreasing as a function of m
- ▶ $d(m,t) \ge t+1$
- $d((t+1)^2, t) = t+1$
- The last three observations imply

$$\lim_{m\to\infty}d(m,t)=t+1$$

• For t = 1, the table looks like

т	1	2	3	4	5	6	
d(m,1)	-	-	3	2	2	2	

A lower bound

Theorem

$$d(m,t) \geq rac{\binom{m}{t}}{\binom{m-t-1}{t}}$$

Proof.

There are $\binom{m}{t}$ maximal adversarial sets. Each defender set D has at least t+1 elements, hence at most m-t-1 elements are left over from D. Thus, at most $\binom{m-t-1}{t}$ maximal adversarial sets satisfy the condition (2) for a given D. Consequently, each defender structure must have at least $\frac{\binom{m}{t}}{\binom{m-t-1}{t}}$ sets, including the minimal ones.

- ▶ We know *d*(5, 2) = 10
- From the Theorem we know that d(6,2) ≥ (⁶₂)/(³₂) = ¹⁵/₃ = 5.
 Equality would mean that we can cover all the edges of the graph K₆ exactly with 5 triangles, but this is impossible, since

▶ We know *d*(5, 2) = 10

From the Theorem we know that $d(6,2) \ge \frac{\binom{6}{2}}{\binom{3}{2}} = \frac{15}{3} = 5$. Equality would mean that we can cover all the edges of the graph K_6 exactly with 5 triangles, but this is impossible, since the vertex degrees of K_6 are odd. Hence $d(6,2) \ge 6$.

- ▶ We know *d*(5, 2) = 10
- From the Theorem we know that $d(6,2) \ge \frac{\binom{0}{2}}{\binom{3}{2}} = \frac{15}{3} = 5$. Equality would mean that we can cover all the edges of the graph K_6 exactly with 5 triangles, but this is impossible, since the vertex degrees of K_6 are odd. Hence $d(6,2) \ge 6$.
- It is doable with 6 triangles. Just rotate this figure 6 times:

- ▶ We know *d*(5, 2) = 10
- From the Theorem we know that $d(6,2) \ge \frac{\binom{6}{2}}{\binom{2}{2}} = \frac{15}{3} = 5$. Equality would mean that we can cover all the edges of the graph K_6 exactly with 5 triangles, but this is impossible, since the vertex degrees of K_6 are odd. Hence $d(6,2) \ge 6$.
- It is doable with 6 triangles. Just rotate this figure 6 times:

• For t = 2, the table looks like

On communication complexity of the shuffle protocol

For
$$t = 2$$
 and $m = 5$, in total total

```
2\cdot 2\cdot 3\cdot 10=120
```

messages are sent in 10 rounds (not counting the messages exchanged between the defenders)

For t = 2 and m = 6, we have to send

 $2\cdot 3\cdot 3\cdot 6=108$

messages in 6 rounds

Hence we see that increasing the number of computing nodes, the actual communication complexity may drop! That's as far as I've got

You can ask a question and then answer it yourself