

Reliability and technology scaling: men	us of foes?
Hardware and Environment Failur	es
Moving parts, high speed, low tolerance, hig complexity: disks, tape drives/libraries	јh
\checkmark Lowest MTBF found in fans and power supp	ies
 ✓ Often fans fail gradually → subtle, sporadic failures in CPU, memory, backplane 	
 Environment: power, cooling, dehumidifying cables, fire, collapsing racks, ventilation, earthquakes,],
₱ D Ger Jevan	6

Reliability and technology scaling: friends or foes?							
тесппоюду коастар							
International Technology Roadmap for Semiconductors 2002							
Yest	2001	2008	2003	2007	2010	2013	2016
DRAM ½ pitch [nus]	130	100	80	65	45	32	22
MPU tugasistous/chip	97M	1536	243M	386M	77384	1,296	3,09G
Wining levels		8	10	10	10	11	11
High-perf. phys. gate [nm]		45	32	25	18	13	9
High-perf, VDD [V]	1,2	1,9	0,9	0,7	D,6	0,5	4,4
Local clock [GHz] 1.7 3.1 5.2 6.7 11.5 19.3					28.8		
High-perf. power [W]	130	150	170	190	218	251	288
Low-parter phys. gets [mn]	90	65	45	32	22	16	11
Low-power VDD [V]	1.2	1.1	0.1	0.9	0.6	0.7	9.6
Lon-paner power [#]	2,4	2,8	3,2	3,5	3,册	3,0	3,8

Industry Scaling Trends & Reliability Considerations

Reduced gate oxide thicknesses

7

- Increased thermal/power densities
- Reduced interconnect dimensions
- Higher device operating temperatures
- Increased sensitivity to defects and statistical process variations
- Introduction of new materials with each new generation, replacing proven materials
 - e.g. Cu and low K inter-level dielectrics for Al and SiO2

19

	Reliability and technology scaling: friends or foes?
Industry Scaling Trer Reliability Considerat	ıds & ions
Significant rise in th proprietary technolo by manufacturers, r information with hi-	e amount of ogy and data developed reluctance to share rel. customers
 e.g. process recipes flows, design margin 	, process controls, process is, MTTF
 Next generation mic the performance ne customer, with little extreme needs 	croelectronics focus on eds of the commercial or no emphasis on the
 e.g. extended life, ex reliability 	xtreme environments, high
Increasingly difficult due to device comp	t testability challenges lexity
© Gert Jervan	

Reliability and technology scaling: friends or fo	es?
Implications to Design	
Design fabric will be Regular	
 Will look like Sea-of-transistors interconnected with regular interconnect fabric 	
 Shift in the design efficiency metric From Transistor Density to Balanced Design 	
*	22

		Pa	liability and technolog	ny scaling: friends or foes?
		NC.	mability and technolog	gy scaling. menus or locs:
	Product Tech	nnical	Trends	5
		1990	2000	2010
	Operating temperature, *C	-55 to 125	-40 to +85	0 to 70
	Supply voltage	5v	1.5v	0.6v
	Max. power (high perf.)	5	100	170
	No. of package types	<10	<60	??
	Design support life	>10 yrs.	1-5 yrs.	<1yr.
	Production life	>10 yrs.	3-5 yrs.	<3yrs.
	Service life	<u>>20 yrs.</u>	<u>5-10 yrs.</u>	<u><5yrs.</u>
				*MRQW-2002, Bernstein
1				
© Gert Jervan				23

	Reliability and technology scaling: friends or foes?					
	Sour	rces (cont.)			
	Four main sources:					
	Low-energy alpha particles					
	High-energy cosmic particles					
	Th	ermal neutrons				
	■ Po	or system desig	jn			
	SER type	Source	Mechanism	Trend		
	Alpha	Thorium and uranium contam- ination in-mold compound, silicon, or lead bumps	 to 9-MeV alpha particle creating electron-hole funnel traveling microns in silicon 	Exponential increase with scaling		
	Cosmic	Intergalactic sources modulated by solar flares	High-energy neutrons/protons (10 MeV to 1 GeV) colliding with silicon nuclei	Decrease in failures in time per megabit		
	Thermal neutron	Boron present in BPSG25-meV neutrons	Collision with B10 in BPSG	Highest, always dominates if present		
1	20			30		

Reliability and technology s	caling: friends or foes?						
Fault Tolerance Technique	S						
Re-execution							
N ₁ $P_{1/1}$ $P_{1/2}$ Recovery overhead μ	α						
Rollback recovery with checkpointing							
Checkpointing overhead χ N ₁ P_1^1 P_1^2 N ₁ P_1^1 $P_{1/1}^2$	$P_{1/2}^{2}$						
Active replication							
N ₁ P ₁₍₁₎ N ₁ P ₁₍₁₎							
N2 P1(2) N2 P1(2)							

	Reliability and technology scaling: friends or foes?
New Architectu	res
 Massively parallel Neuman is dead (millions) of (non- Multiple Input stre machines 	architectures (Von) based on hundreds)reliable components am, Multiple Data stream
Wide use of netwo (Networks-on-Chip Ruit In Solf Densi	rk infrastructures)) r will become a wideenrood
Eulit-In Sell-Repair technology Oynamic reconfigur	r will become a widespread
4	50

THE TAREDRAMA TRONKASICALIAN Adalahas faratalian for totalianasity	Arvutitehnika instituut ati.ttu.ee	1
Thank You!		
Gert Jervan		
Department of Computer Engineering Tallinn University of Technology ati.ttu.ee		