On the computational
soundness of
cryptographically masked
flows

Peeter Laud

peeter.laudQut.ee
http://www.ut.ee/ "peeter_1l

Tartu University & Cybernetica AS

Motivation

Usual non-interference too strong for programs with encryption.
Cryptographic security definitions

[0 use complex domains,
[are notationally heavy.

The definitions for computational non-interference suffer from the

same problems.
Could we abstract from these definitions? |Is there some formalism,

where

[1 the domain and the definition of non-interference were more

“traditional”,
[0 NI for a program in this domain would mean computational NI
for the “same” program in the real-world semantics?

Teooriapaevad Vanaduel, 28.-30.09.2007 — 2 / 28

Cryptographically masked flows

Aslan Askarov, Daniel Hedin, Andrei Sabelfeld.
Cryptographically-Masked Flows. SAS 2006.

A proposal for the formalism that abstracts away complexity-theoretic
details, but leaves (most of) everything else intact.

Encryption is modeled non-deterministically.

Possibilistic non-interference with extra leniency for encrypted values.

Does NI in this model imply computational NI? Are cryptographically
masked flows computationally sound?

Teooriapaevad Vanaduel, 28.-30.09.2007 — 3 / 28

The programming language

m |n this talk: The WHILE-language with extra operations:

[0 key generation, encryption, decryption
[1 pairing, projection
m ...and the usual:
[1 Assigning expressions to variables
[0 Sequential composition

O If-then-else
0 While-loops

m In the [AHS06]-paper: more. ..

[0 Parallel processes with global variables and message channels
0 Two encryption schemes (one for public values only)

Teooriapaevad Vanaduel, 28.-30.09.2007 — 4 / 28

Abstract semantics

Teooriapaevad Vanaduel, 28.-30.09.2007 — 5 / 28

Semantics

m Big-step SOS from a configuration to a set of final states.

0 Configuration — pair of the yet-to-be-executed program and the
current state.

m [he state consists of

[0 The memory — mapping from variables to values;
[0 The "key-stream” — the values of keys generated in the future.

m All operations, except encryption, are deterministic.

Teooriapaevad Vanaduel, 28.-30.09.2007 — 6 / 28

Encryption Systems

Three algorithms:

0 X — key generation, zero arguments, probabilistic;
[0 &€ — encryption, two arguments, probabilistic;
0 D — decryption, two arguments, deterministic.

Correctness: D(k,E(r; k,z)) = x for all

[0 keys k that can be output by X,
[0 possible random coins r used by €.

The random coins used by € are called the initial vector.
D may produce an error.

Teooriapaevad Vanaduel, 28.-30.09.2007 — 7 / 28

Semantics

Big-step SOS from a configuration to a set of final states.
The state consists of

[0 The memory — mapping from variables to values;

0 The “key-stream” — the values of keys generated (by X) in the
future.

All operations, except encryption, are deterministic.

Encryption models the randomized encryption algorithms of the real
world:

[0 To encrypt x with the key k, choose an initial vector r and
compute E(1; k,).

[0 In reality, r is chosen probabilistically, here it is modeled by
non-deterministic choice.

Teooriapaevad Vanaduel, 28.-30.09.2007 — 8 / 28

Low-equivalence of memories

Let the variables be partitioned to Vary and Vary,.

Let the values be tagged with their types — key, encryption, pair,
other (integer).

n~ynn,

k ~1, /C;

Ty ~L YL AT ~L Y2 = (21, 2) ~n (Y1, Y2);

8(7"; kl, 5131) ~1, 8(7“,]{2, 5132) for all X1, T2,]{1, /€2.

Sy~ Sy if Si(x) ~1, Sa(x) for all x € Vary.

Teooriapaevad Vanaduel, 28.-30.09.2007 — 9 / 28

Possibilistic non-interference

Program P is non-interfering if

m for all states 51,53 and keystreams (G, G5, such that 57 ~p, S5
m let S, ={5(S;,G;) — (5',G")} for i € {1,2}, then

m forall §] €8

m there must exist S, € 8,

m such that S} ~1, 5.

(and vice versa)

Equivalently: Given a state .S and keystream G, let

g _ {)\v. {coins(S’(v)), S’(v) is ciphertext (5.G) — S’}

S’ (v), otherwise

Then & may depend only on the values of low-variables in §.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 10 / 28

Concrete semantics

Teooriapdevad Vanaduel, 28.-30.09.2007 — 11 / 28

“Real-world”’ semantics

Big step SOS — maps an initial configuration to a probability
distribution over final states.

[0 Let us not consider non-termination.
[0 And assume that the program terminates in a reasonable number

of steps.

Initial state is distributed according to some D.
The program P is non-interferent if no algorithm A using a
reasonable amount of resources can guess b from

b R {O, 1}, So,Sl — D
S — [P](Sh)
giVe (SO‘VarHa S/‘VarL) to A

Teooriapaevad Vanaduel, 28.-30.09.2007 — 12 / 28

Soundness theorem

If the program P satisfies the following conditions:
[]
and the encryption system satisfies the following conditions

[0 IND-KDM-CPA- and INT-KDM-PTXT-security

and P satisfies possibilistic non-interference
then P satisfies computational non-interference.

The conditions put on P should be verifiable in the possibilistic
model.

[0 Otherwise we lose the modularity of the approach.

Teooriapaevad Vanaduel, 28.-30.09.2007 — 13 / 28

IND-CPA

Adversary ~_____ _ Oracle
__-~""must be *~
I independent b€r 10,1}
-7 k— X()
J/ repeat
! choose x X
| =
! z:=07x: 0
\\ y «— E(k, 2)
\ Yy
\ <
N\

choose b* € {0, 1}

Teooriapdevad Vanaduel, 28.-30.09.2007 — 14 / 28

IND-CPA with several keys

Adversary ~_____ _ Oracle
_--~" "must be ~
I independent b€r 10,1}
ky — K(), ks — KO, ...
J/ repeat
! choose 7, i,
—
l\ z:=b7x:0
\
\ y — E(k;, 2)
\ Yy
\ <
N\

choose b* € {0, 1}

Equivalent to the previous one.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 15 / 28

IND-KDM-CPA

Adversary S T Oracle
~ must be
- independent ber{0,1}

//// k1<—j<(),]€2%j<<),

N repeat
choos€ 7, e(x1, 2, . . .) i,e

: —
I
‘\ w = e(ky, ks, ...)
‘ z:=b7w: 0w
\
\\ y y N 8(k7/7 Z)

\
choose b* € {0, 1}

Teooriapdevad Vanaduel, 28.-30.09.2007 — 16 / 28

INT-PTXT

Adversary Oracle
k— X
. ()
repeat
choose z T
{—
. y &k,)
<
X =X U{z}
choose ¢
p:=D(k,c)

m Similarly define INT-PTXT with several keys and INT-KDM-PTXT.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 17 / 28

Condition: ciphertexts only from €&

m ~,’'s relaxed treatment of ciphertexts must be restricted to values
produced by the encryption operation.
m Otherwise, consider the following program:

k := newkey; p; := enc(k, s)
r .= getlV(p1);p2 :=enc(r + 1; k, s)

m Initial state ({s — v}, v 2 G) is mapped to

{{pl = E(UT‘;U/mUS)ap2 = E(UT =+ 1;Ukavs)}

v, € Coins}

that does not depend (for ~r,) on initial secrets.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 18 / 28

Counter mode of using a block cipher

A%

Y
Yo

IV +1 IV +2 IV +3 IV +4
#
Ek Ek Ek Ek

IR S S S

A good encryption system (IND-CPA).
If we used it on the previous slide, then we could learn vy, D v40,

Vs2 D VUs3, Us3 D Vs4,- - -

Teooriapdevad Vanaduel, 28.-30.09.2007 — 19 / 28

Condition: keys used only at € and D. ..

m ...and vice versa.
m Consider the program

k1 := newkey; if B(k;) then k, := k; else ky := newkey fi;. ..

m Afterwards, ks is not distributed as coming from X.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 20 / 28

Enforcing those conditions

Give types to variables: the types 7 are

T = nt | key | enc(7) | (7,7)

We may want to compute with ciphertexts, hence we subtype
enc(T) < int.
Types of operations:

arithmetic operations: int*® — int;

pairing: 7, X 7o — (7y,T2); i-th projection: (11, 73) — T;;

key generation: 1 — key;

encryption: key x 7 — enc(7); decryption: key X enc(t) — T;
guards: int.

N O I O

[AHSO06] already has such a type system.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 21 / 28

Part of the proof: Removing decryptions

m (Change the real-world program:

0 Give names to keys: replace each k£ := newkey with

k := newkey: kpame :=C;c:=c+ 1

[0 for each ciphertext record the key name and the plaintext in the
auxiliary variables. Replace y := E(k, z) with

Y = 8(]{, 33), Ykeyname -— kname; Yptext -— L

0 Replace the statements z := D(k, y) with

if Kname = Ukeyname then x := Yo €lse x := 1 fi

. I he low-visible semantics does not Change' Teooriapdevad Vanaduel, 28.-30.09.2007 — 22 / 28

Encryption — random number gen.-tion

Apply the definition of IND-KDM-CPA to the real-world program:
[0 Replace each E(k,y) with E(kg,0).

E(ko,0) generates random numbers according to a certain
distribution.

In the possibilistic NI, we also treat encryption as random number
generation.

[0 As only the initial vector matters.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 23 / 28

Possib. secrecy #- probab. secrecy

Let /» be a number from 1 to 100. Consider the following program

if rnd({0,1}) =1 then [:= h else [:= rnd({1,...,100})

The possible values of [do not depend on A.
But their distribution depends on h.

We can come up with similiar examples in our language.

0 Using € in place of rnd.

Hence using ciphertexts in computations is questionable as well.
Remove the subtyping enc(7) < int.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 24 / 28

The conditions for the program

The variables are typed, as specified before.
T = nt | key | enc(7) | (7,7)

(no subtyping)
The operations respect those types.
Failures to decrypt are visible in the possibilistic semantics.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 25 / 28

On plaintext integrity

Consider the following program:

ki=%(); k' :=X(); v :=E(k,C); y :=D(F, z);
if y= 1L thenl:=helsel:=1—h

m There may be some (negligible) chance that the decryption succeeds.

m [hus, in the abstract semantics, else-branch can be taken.
[0 In the abstract semantics, this program is secure.

m |n concrete semantics, [= A with overwhelming probability.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 26 / 28

On plaintext integrity

Consider the following program:

ki=%(); k' :=X(); v :=E(k,C); y :=D(F, z);
if y= 1L thenl:=helsel:=1—h

m There may be some (negligible) chance that the decryption succeeds.

m [hus, in the abstract semantics, else-branch can be taken.
[0 In the abstract semantics, this program is secure.

In concrete semantics, [= /. with overwhelming probability.
We exclude this case by modifying the abstract semantics.

[0 Do not allow two generated keys to be the same.
[0 Record the keys for generated ciphertexts. Do not allow
decryption with the wrong key.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 26 / 28

Theorem

m Conditions on the program:
[0 It types dynamically according to the given type system.
= Current types of variables are a part of the state.

[0 Uses only initial values of type int.
[0 Has possibilistic non-interference.

m [he encryption scheme must be IND-KDM-CPA- and
INT-KDM-PTXT-secure.

Then the program has probabilistic non-interference.

Teooriapdevad Vanaduel, 28.-30.09.2007 — 27 / 28

Conclusions

Cryptographically masked flows still put serious restrictions on the
manipulation of the results of cryptographic operations.
The restrictions are similar to the Dolev-Yao model:

[1 using keys only as keys or in operations where the value remains
opaque (pairing and encryption);

[0 ciphertexts may only be decrypted on used in operations where
the value remains opaque.

In fact, we can formulate an equivalent model with symbolic
encryptions, and get rid of the non-determinism.
We'd like to have a model

[0 without probabilities;
(0 where ciphertexts (and keys) may be used as values in (m)any
computations.

But this may be impossible. . .

Teooriapdevad Vanaduel, 28.-30.09.2007 — 28 / 28

	Motivation
	Cryptographically masked flows
	The programming language
	
	Semantics
	Encryption Systems
	Semantics
	Low-equivalence of memories
	Possibilistic non-interference
	
	``Real-world'' semantics
	Soundness theorem
	IND-CPA
	IND-CPA with several keys
	IND-KDM-CPA
	INT-PTXT
	Condition: ciphertexts only from E
	Counter mode of using a block cipher
	Condition: keys used only at E and D…
	Enforcing those conditions
	Part of the proof: Removing decryptions
	Encryption random number gen.-tion
	Possib. secrecy probab. secrecy
	The conditions for the program
	On plaintext integrity
	Theorem
	Conclusions

