On the computational soundness of cryptographically masked flows

Peeter Laud peeter.laud@ut.ee http://www.ut.ee/~peeter_l

Tartu University & Cybernetica AS

Motivation

- Usual non-interference too strong for programs with encryption.Cryptographic security definitions
 - use complex domains,
 - are notationally heavy.
- The definitions for computational non-interference suffer from the same problems.
- Could we abstract from these definitions? Is there some formalism, where
 - the domain and the definition of non-interference were more "traditional",
 - NI for a program in this domain would mean computational NI for the "same" program in the real-world semantics?

Cryptographically masked flows

- Aslan Askarov, Daniel Hedin, Andrei Sabelfeld. Cryptographically-Masked Flows. SAS 2006.
- A proposal for the formalism that abstracts away complexity-theoretic details, but leaves (most of) everything else intact.
- Encryption is modeled non-deterministically.
- Possibilistic non-interference with extra leniency for encrypted values.
- Does NI in this model imply computational NI? Are cryptographically masked flows computationally sound?

The programming language

In this talk: The WHILE-language with extra operations:

- key generation, encryption, decryption
- pairing, projection
- ...and the usual:
 - Assigning expressions to variables
 - Sequential composition
 - ♦ If-then-else
 - While-loops
 - In the [AHS06]-paper: more...
 - Parallel processes with global variables and message channels
 - Two encryption schemes (one for public values only)

Abstract semantics

Semantics

Big-step SOS from a configuration to a set of final states.

- Configuration pair of the yet-to-be-executed program and the current state.
- The state consists of
 - The memory mapping from variables to values;
 - The "key-stream" the values of keys generated in the future.
- All operations, except encryption, are deterministic.

Encryption Systems

Three algorithms:

- \mathcal{K} key generation, zero arguments, probabilistic;
- \mathcal{E} encryption, two arguments, probabilistic;
- \mathcal{D} decryption, two arguments, deterministic.
- Correctness: $\mathcal{D}(k, \mathcal{E}(r; k, x)) = x$ for all
 - keys k that can be output by \mathcal{K} ;
 - possible random coins r used by \mathcal{E} .
- The random coins used by *E* are called the *initial vector*.
 D may produce an error.

Semantics

- Big-step SOS from a configuration to a set of final states.The state consists of
 - The memory mapping from variables to values;
 - ◆ The "key-stream" the values of keys generated (by 𝔅) in the future.
- All operations, except encryption, are deterministic.
 - Encryption models the randomized encryption algorithms of the real world:
 - To encrypt x with the key k, choose an *initial vector* r and compute $\mathcal{E}(r; k, x)$.
 - In reality, r is chosen probabilistically, here it is modeled by non-deterministic choice.

Low-equivalence of memories

- Let the variables be partitioned to Var_H and Var_L.
 Let the values be tagged with their types key, encryption, pair, other (integer).
- $n \sim_{\mathrm{L}} n;$
- $\blacksquare \quad k \sim_{\mathrm{L}} k;$
- $\blacksquare \quad x_1 \sim_{\mathrm{L}} y_1 \wedge x_2 \sim_{\mathrm{L}} y_2 \Rightarrow (x_1, x_2) \sim_{\mathrm{L}} (y_1, y_2);$
- $\blacksquare \quad \mathcal{E}(r; k_1, x_1) \sim_{\mathbf{L}} \mathcal{E}(r; k_2, x_2) \text{ for all } x_1, x_2, k_1, k_2.$
- $\blacksquare S_1 \sim_{\mathrm{L}} S_2 \text{ if } S_1(x) \sim_{\mathrm{L}} S_2(x) \text{ for all } x \in \operatorname{Var}_{\mathrm{L}}.$

Possibilistic non-interference

Program P is non-interfering if

for all states S_1, S_2 and keystreams G_1, G_2 , such that $S_1 \sim_L S_2$

- let $S_i = \{S' \mid (S_i, G_i) \longrightarrow (S', G')\}$ for $i \in \{1, 2\}$, then
- for all $S'_1 \in S_1$
- there must exist $S'_2 \in S_2$
- such that $S'_1 \sim_{\mathrm{L}} S'_2$.

(and vice versa)

Equivalently: Given a state ${\cal S}$ and keystream ${\cal G}$, let

$$S = \left\{ \lambda v. \begin{cases} \operatorname{coins}(S'(v)), & S'(v) \text{ is ciphertext} \\ S'(v), & \operatorname{otherwise} \end{cases} \mid (S, G) \longrightarrow S' \right\}$$

Then \mathcal{S} may depend only on the values of low-variables in S.

Concrete semantics

"Real-world" semantics

- Big step SOS maps an initial configuration to a probability distribution over final states.
 - Let us not consider non-termination.
 - And assume that the program terminates in a reasonable number of steps.
- Initial state is distributed according to some D.
 The program P is non-interferent if no algorithm A using a reasonable amount of resources can guess b from

$$b \leftarrow_R \{0, 1\}, S_0, S_1 \leftarrow D$$

$$S' \leftarrow \llbracket P \rrbracket(S_b)$$

give $(S_0|_{\mathbf{Var}_{\mathrm{H}}}, S'|_{\mathbf{Var}_{\mathrm{L}}})$ to \mathcal{A}

Soundness theorem

If the program P satisfies the following conditions:

and the encryption system satisfies the following conditions

IND-KDM-CPA- and INT-KDM-PTXT-security

and P satisfies possibilistic non-interference then P satisfies computational non-interference.

. . .

The conditions put on P should be verifiable in the possibilistic model.

• Otherwise we lose the modularity of the approach.

IND-CPA

IND-CPA with several keys

I Equivalent to the previous one.

IND-KDM-CPA

INT-PTXT

Similarly define INT-PTXT with several keys and INT-KDM-PTXT.

Condition: ciphertexts only from $\boldsymbol{\mathcal{E}}$

 $\sim_{\rm L}$'s relaxed treatment of ciphertexts must be restricted to values produced by the encryption operation. Otherwise, consider the following program:

$$k := \mathsf{newkey}; p_1 := \mathsf{enc}(k, \mathbf{s})$$
$$r := \mathsf{getIV}(p_1); p_2 := \widetilde{\mathsf{enc}}(r+1; k, \mathbf{s})$$

Initial state $({s \mapsto v_s}, v_k :: G)$ is mapped to

$$\left\{ \left\{ p_1 \mapsto \mathcal{E}(v_r; v_k, v_s), p_2 \mapsto \mathcal{E}(v_r + 1; v_k, v_s) \right\} \middle| v_r \in \mathbf{Coins} \right\}$$

that does not depend (for $\sim_{
m L})$ on initial secrets.

Counter mode of using a block cipher

A good encryption system (IND-CPA).
 If we used it on the previous slide, then we could learn v_{s1} ⊕ v_{s2}, v_{s2} ⊕ v_{s3}, v_{s3} ⊕ v_{s4},...

Condition: keys used only at $\mathcal E$ and $\mathcal D \ldots$

- ... and vice versa.
- Consider the program

 $k_1 := \text{newkey}; \text{if } \mathsf{B}(k_1) \text{ then } k_2 := k_1 \text{ else } k_2 := \text{newkey } \mathbf{fi}; \dots$

Afterwards, k_2 is not distributed as coming from \mathcal{K} .

Enforcing those conditions

Give types to variables: the types τ are

```
\tau ::= int \mid key \mid enc(\tau) \mid (\tau, \tau)
```

- We may want to compute with ciphertexts, hence we subtype $enc(\tau) \leq int$.
 - Types of operations:
 - arithmetic operations: $int^k \rightarrow int$;
 - pairing: $\tau_1 \times \tau_2 \rightarrow (\tau_1, \tau_2)$; *i*-th projection: $(\tau_1, \tau_2) \rightarrow \tau_i$;
 - key generation: $\mathbf{1} \rightarrow key$;
 - encryption: $key \times \tau \rightarrow enc(\tau)$; decryption: $key \times enc(\tau) \rightarrow \tau$;
 - guards: int.
 - [AHS06] already has such a type system.

Part of the proof: Removing decryptions

- Change the real-world program:
 - Give names to keys: replace each k := newkey with

$$k := \mathsf{newkey}; k_{name} := c; c := c + 1$$

• for each ciphertext record the key name and the plaintext in the auxiliary variables. Replace $y := \mathcal{E}(k, x)$ with

$$y := \mathcal{E}(k, x); y_{\text{keyname}} := k_{\text{name}}; y_{\text{ptext}} := x$$

• Replace the statements
$$x := \mathcal{D}(k, y)$$
 with

if
$$k_{\text{name}} = y_{\text{keyname}}$$
 then $x := y_{\text{ptext}}$ else $x := \bot$ fi

The low-visible semantics does not change.

$\textbf{Encryption} \rightarrow \textbf{random number gen.-tion}$

- Apply the definition of IND-KDM-CPA to the real-world program:
 - Replace each $\mathcal{E}(k, y)$ with $\mathcal{E}(k_0, 0)$.
- $\mathcal{E}(k_0, 0)$ generates random numbers according to a certain distribution.
 - In the possibilistic NI, we also treat encryption as random number generation.
 - As only the initial vector matters.

Possib. secrecy \Rightarrow **probab. secrecy**

Let h be a number from 1 to 100. Consider the following program

if $rnd(\{0,1\}) = 1$ then l := h else $l := rnd(\{1, \dots, 100\})$

- The possible values of l do not depend on h.
- But their distribution depends on h.
- We can come up with similiar examples in our language.
 - Using \mathcal{E} in place of rnd.
- Hence using ciphertexts in computations is questionable as well.
 Remove the subtyping enc(τ) ≤ int.

The conditions for the program

The variables are typed, as specified before.

```
\tau ::= int \mid key \mid enc(\tau) \mid (\tau, \tau)
```

(no subtyping)

The operations respect those types.

Failures to decrypt are visible in the possibilistic semantics.

On plaintext integrity

Consider the following program:

$$\begin{aligned} k &:= \mathcal{K}(); \ k' := \mathcal{K}(); \ x := \mathcal{E}(k, C); \ y := \mathcal{D}(k', x); \\ if \ y &= \bot \ then \ l := h \ else \ l := 1 - h \end{aligned}$$

- There may be some (negligible) chance that the decryption succeeds.
 - Thus, in the abstract semantics, *else*-branch can be taken.
 - In the abstract semantics, this program is secure.
 - In concrete semantics, l = h with overwhelming probability.

On plaintext integrity

Consider the following program:

$$\begin{aligned} k &:= \mathcal{K}(); \ k' := \mathcal{K}(); \ x := \mathcal{E}(k, C); \ y := \mathcal{D}(k', x); \\ if \ y &= \bot \ then \ l := h \ else \ l := 1 - h \end{aligned}$$

- There may be some (negligible) chance that the decryption succeeds.
- Thus, in the abstract semantics, *else*-branch can be taken.
 - In the abstract semantics, this program is secure.
- In concrete semantics, l = h with overwhelming probability. We exclude this case by modifying the abstract semantics.
 - Do not allow two generated keys to be the same.
 - Record the keys for generated ciphertexts. Do not allow decryption with the wrong key.

Theorem

Conditions on the program:

- It types dynamically according to the given type system.
 - Current types of variables are a part of the state.
- Uses only initial values of type int.
- Has possibilistic non-interference.
- I The encryption scheme must be IND-KDM-CPA- and INT-KDM-PTXT-secure.

Then the program has probabilistic non-interference.

Conclusions

- Cryptographically masked flows still put serious restrictions on the manipulation of the results of cryptographic operations. The restrictions are similar to the Dolev-Yao model:
 - using keys only as keys or in operations where the value remains opaque (pairing and encryption);
 - ciphertexts may only be decrypted on used in operations where the value remains opaque.
- In fact, we can formulate an equivalent model with symbolic encryptions, and get rid of the non-determinism. We'd like to have a model
 - without probabilities;
 - where ciphertexts (and keys) may be used as values in (m)any computations.

But this may be impossible...