
On the computational

soundness of

cryptographically masked

flows

Peeter Laud
peeter.laud@ut.ee

http://www.ut.ee/~peeter l

Tartu University & Cybernetica AS

Motivation

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 2 / 28

■ Usual non-interference too strong for programs with encryption.
■ Cryptographic security definitions

◆ use complex domains,
◆ are notationally heavy.

■ The definitions for computational non-interference suffer from the
same problems.

■ Could we abstract from these definitions? Is there some formalism,
where

◆ the domain and the definition of non-interference were more
“traditional”,

◆ NI for a program in this domain would mean computational NI
for the “same” program in the real-world semantics?

Cryptographically masked flows

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 3 / 28

■ Aslan Askarov, Daniel Hedin, Andrei Sabelfeld.
Cryptographically-Masked Flows. SAS 2006.

■ A proposal for the formalism that abstracts away complexity-theoretic
details, but leaves (most of) everything else intact.

■ Encryption is modeled non-deterministically.
■ Possibilistic non-interference with extra leniency for encrypted values.

■ Does NI in this model imply computational NI? Are cryptographically
masked flows computationally sound?

The programming language

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 4 / 28

■ In this talk: The WHILE-language with extra operations:

◆ key generation, encryption, decryption
◆ pairing, projection

■ . . . and the usual:

◆ Assigning expressions to variables
◆ Sequential composition
◆ If-then-else
◆ While-loops

■ In the [AHS06]-paper: more. . .

◆ Parallel processes with global variables and message channels
◆ Two encryption schemes (one for public values only)

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 5 / 28

Abstract semantics

Semantics

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 6 / 28

■ Big-step SOS from a configuration to a set of final states.

◆ Configuration — pair of the yet-to-be-executed program and the
current state.

■ The state consists of

◆ The memory — mapping from variables to values;
◆ The “key-stream” — the values of keys generated in the future.

■ All operations, except encryption, are deterministic.

Encryption Systems

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 7 / 28

■ Three algorithms:

◆ K — key generation, zero arguments, probabilistic;
◆ E — encryption, two arguments, probabilistic;
◆ D — decryption, two arguments, deterministic.

■ Correctness: D(k,E(r; k, x)) = x for all

◆ keys k that can be output by K;
◆ possible random coins r used by E.

■ The random coins used by E are called the initial vector.
■ D may produce an error.

Semantics

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 8 / 28

■ Big-step SOS from a configuration to a set of final states.
■ The state consists of

◆ The memory — mapping from variables to values;
◆ The “key-stream” — the values of keys generated (by K) in the

future.

■ All operations, except encryption, are deterministic.
■ Encryption models the randomized encryption algorithms of the real

world:

◆ To encrypt x with the key k, choose an initial vector r and
compute E(r; k, x).

◆ In reality, r is chosen probabilistically, here it is modeled by
non-deterministic choice.

Low-equivalence of memories

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 9 / 28

■ Let the variables be partitioned to VarH and VarL.
■ Let the values be tagged with their types — key, encryption, pair,

other (integer).
■ n ∼L n;
■ k ∼L k;
■ x1 ∼L y1 ∧ x2 ∼L y2 ⇒ (x1, x2) ∼L (y1, y2);
■ E(r; k1, x1) ∼L E(r; k2, x2) for all x1, x2, k1, k2.
■ S1 ∼L S2 if S1(x) ∼L S2(x) for all x ∈ VarL.

Possibilistic non-interference

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 10 / 28

Program P is non-interfering if

■ for all states S1, S2 and keystreams G1, G2, such that S1 ∼L S2

■ let Si = {S ′ | (Si, Gi) −→ (S ′, G′)} for i ∈ {1, 2}, then
■ for all S ′

1 ∈ S1

■ there must exist S ′

2 ∈ S2

■ such that S ′

1 ∼L S ′

2.

(and vice versa)

Equivalently: Given a state S and keystream G, let

S =
{

λv.

{
coins(S ′(v)), S ′(v) is ciphertext

S ′(v), otherwise
| (S,G) −→ S ′

}

Then S may depend only on the values of low-variables in S.

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 11 / 28

Concrete semantics

“Real-world” semantics

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 12 / 28

■ Big step SOS — maps an initial configuration to a probability
distribution over final states.

◆ Let us not consider non-termination.
◆ And assume that the program terminates in a reasonable number

of steps.

■ Initial state is distributed according to some D.
■ The program P is non-interferent if no algorithm A using a

reasonable amount of resources can guess b from

b←R {0, 1}, S0, S1 ← D

S ′ ← [[P]](Sb)
give (S0|VarH

, S ′|VarL
) to A

Soundness theorem

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 13 / 28

■ If the program P satisfies the following conditions:

◆ . . .

■ and the encryption system satisfies the following conditions

◆ IND-KDM-CPA- and INT-KDM-PTXT-security

■ and P satisfies possibilistic non-interference
■ then P satisfies computational non-interference.

■ The conditions put on P should be verifiable in the possibilistic
model.

◆ Otherwise we lose the modularity of the approach.

IND-CPA

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 14 / 28

b ∈R {0, 1}

k ← K()

choose x x

z := b ? x : 0|x|

y ← E(k, z)
y

repeat

choose b∗ ∈ {0, 1}

Adversary Oracle
must be

independent

IND-CPA with several keys

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 15 / 28

b ∈R {0, 1}

k1 ← K(), k2 ← K(), . . .

choose i, x i, x

z := b ? x : 0|x|

y ← E(ki, z)
y

repeat

choose b∗ ∈ {0, 1}

Adversary Oracle
must be

independent

■ Equivalent to the previous one.

IND-KDM-CPA

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 16 / 28

b ∈R {0, 1}

k1 ← K(), k2 ← K(), . . .

choose i, e(x1, x2, . . .) i, e

repeat

Adversary Oracle
must be

independent

y ← E(ki, z)
y

choose b∗ ∈ {0, 1}

w := e(k1, k2, . . .)

z := b ? w : 0|w|

INT-PTXT

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 17 / 28

k ← K()

choose x x

repeat

X := ∅

y
y ← E(k, x)

X := X ∪ {x}

choose c
p := D(k, c)

p ∈ X ∪ {⊥}

OracleAdversary

■ Similarly define INT-PTXT with several keys and INT-KDM-PTXT.

Condition: ciphertexts only from E

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 18 / 28

■ ∼L’s relaxed treatment of ciphertexts must be restricted to values
produced by the encryption operation.

■ Otherwise, consider the following program:

k := newkey; p1 := enc(k, s)
r := getIV(p1); p2 := ẽnc(r + 1; k, s)

■ Initial state ({s 7→ vs}, vk :: G) is mapped to

{
{p1 7→ E(vr; vk, vs), p2 7→ E(vr + 1; vk, vs)} vr ∈ Coins

}

that does not depend (for ∼L) on initial secrets.

Counter mode of using a block cipher

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 19 / 28

IV

y0

IV + 1

Ek

x1

y1

IV + 2

Ek

x2

y2

IV + 3

Ek

x3

y3

IV + 4

Ek

x4

y4

■ A good encryption system (IND-CPA).
■ If we used it on the previous slide, then we could learn vs1 ⊕ vs2,

vs2 ⊕ vs3, vs3 ⊕ vs4,. . .

Condition: keys used only at E and D. . .

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 20 / 28

■ . . . and vice versa.
■ Consider the program

k1 := newkey; if B(k1) then k2 := k1 else k2 := newkey fi; . . .

■ Afterwards, k2 is not distributed as coming from K.

Enforcing those conditions

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 21 / 28

■ Give types to variables: the types τ are

τ ::= int | key | enc(τ) | (τ, τ)

■ We may want to compute with ciphertexts, hence we subtype
enc(τ) ≤ int .

■ Types of operations:

◆ arithmetic operations: intk → int ;
◆ pairing: τ1 × τ2 → (τ1, τ2); i-th projection: (τ1, τ2)→ τi;
◆ key generation: 1→ key ;
◆ encryption: key × τ → enc(τ); decryption: key × enc(τ)→ τ ;
◆ guards: int .

■ [AHS06] already has such a type system.

Part of the proof: Removing decryptions

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 22 / 28

■ Change the real-world program:

◆ Give names to keys: replace each k := newkey with

k := newkey; kname := c; c := c + 1

◆ for each ciphertext record the key name and the plaintext in the
auxiliary variables. Replace y := E(k, x) with

y := E(k, x); ykeyname := kname; yptext := x

◆ Replace the statements x := D(k, y) with

if kname = ykeyname then x := yptext else x := ⊥ fi

■ The low-visible semantics does not change.

Encryption → random number gen.-tion

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 23 / 28

■ Apply the definition of IND-KDM-CPA to the real-world program:

◆ Replace each E(k, y) with E(k0, 0).

■ E(k0, 0) generates random numbers according to a certain
distribution.

■ In the possibilistic NI, we also treat encryption as random number
generation.

◆ As only the initial vector matters.

Possib. secrecy 6⇒ probab. secrecy

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 24 / 28

■ Let h be a number from 1 to 100. Consider the following program

if rnd({0, 1}) = 1 then l := h else l := rnd({1, . . . , 100})

■ The possible values of l do not depend on h.
■ But their distribution depends on h.
■ We can come up with similiar examples in our language.

◆ Using E in place of rnd.

■ Hence using ciphertexts in computations is questionable as well.
■ Remove the subtyping enc(τ) ≤ int .

The conditions for the program

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 25 / 28

■ The variables are typed, as specified before.

τ ::= int | key | enc(τ) | (τ, τ)

(no subtyping)
■ The operations respect those types.
■ Failures to decrypt are visible in the possibilistic semantics.

On plaintext integrity

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 26 / 28

Consider the following program:

k := K(); k′ := K(); x := E(k, C); y := D(k′, x);
if y = ⊥ then l := h else l := 1− h

■ There may be some (negligible) chance that the decryption succeeds.

■ Thus, in the abstract semantics, else-branch can be taken.

◆ In the abstract semantics, this program is secure.

■ In concrete semantics, l = h with overwhelming probability.

On plaintext integrity

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 26 / 28

Consider the following program:

k := K(); k′ := K(); x := E(k, C); y := D(k′, x);
if y = ⊥ then l := h else l := 1− h

■ There may be some (negligible) chance that the decryption succeeds.

■ Thus, in the abstract semantics, else-branch can be taken.

◆ In the abstract semantics, this program is secure.

■ In concrete semantics, l = h with overwhelming probability.
■ We exclude this case by modifying the abstract semantics.

◆ Do not allow two generated keys to be the same.
◆ Record the keys for generated ciphertexts. Do not allow

decryption with the wrong key.

Theorem

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 27 / 28

■ Conditions on the program:

◆ It types dynamically according to the given type system.

■ Current types of variables are a part of the state.

◆ Uses only initial values of type int .
◆ Has possibilistic non-interference.

■ The encryption scheme must be IND-KDM-CPA- and
INT-KDM-PTXT-secure.

Then the program has probabilistic non-interference.

Conclusions

Teooriapäevad Vanaõuel, 28.-30.09.2007 – 28 / 28

■ Cryptographically masked flows still put serious restrictions on the
manipulation of the results of cryptographic operations.

■ The restrictions are similar to the Dolev-Yao model:

◆ using keys only as keys or in operations where the value remains
opaque (pairing and encryption);

◆ ciphertexts may only be decrypted on used in operations where
the value remains opaque.

■ In fact, we can formulate an equivalent model with symbolic
encryptions, and get rid of the non-determinism.

■ We’d like to have a model

◆ without probabilities;
◆ where ciphertexts (and keys) may be used as values in (m)any

computations.

But this may be impossible. . .

	Motivation
	Cryptographically masked flows
	The programming language
	
	Semantics
	Encryption Systems
	Semantics
	Low-equivalence of memories
	Possibilistic non-interference
	
	``Real-world'' semantics
	Soundness theorem
	IND-CPA
	IND-CPA with several keys
	IND-KDM-CPA
	INT-PTXT
	Condition: ciphertexts only from E
	Counter mode of using a block cipher
	Condition: keys used only at E and D…
	Enforcing those conditions
	Part of the proof: Removing decryptions
	Encryption random number gen.-tion
	Possib. secrecy probab. secrecy
	The conditions for the program
	On plaintext integrity
	Theorem
	Conclusions

