
1

Transfinite Semantics in the
form of Greatest Fixpoint

Härmel Nestra

Institute of Computer Science

University of Tartu

e-mail:harmel.nestra@ut.ee



1 Transfinite semantics 2

Transfinite semantics



1 Transfinite semantics 3

Transfinite semantics

Transfinite semantics: program execution can continue after com-
pleting an infinite subcomputation.

– Studied during the last decade.

– Can entail:

∗ transfinite traces of execution steps in the case of iteration;

∗ fractal traces of execution steps in the case of recursion.

– Useful in formalizingprogram slicing to avoid semantic

anomaly.



1 Transfinite semantics 4

Program slicing: example

0sum := 0 ;
1prod := 1 ;
2i := 0 ;
while 3i < n do
(

4i := i + 1 ;
5sum := sum + i ;
6prod := prod * i

) ;
7

−→

0sum := 0 ;

2i := 0 ;
while 3i < n do
(

4i := i + 1 ;
5sum := sum + i ;

) ;
7

Criterion:{(7,sum)}.



1 Transfinite semantics 5

Semantic anomaly: example

If the original program loops then we might have slices whichassign
to interesting variables more times than the original program:

0while true do skip ;
1x := 0 ;
2

−→ 1x := 0
2

Criterion:{(2,x)}.



2 Greatest Fixpoint 6

Greatest Fixpoint



2 Greatest Fixpoint 7

Goal: greatest fixpoint form

We represent transfinite semantics in the form of greatest fixpoint of a
monotone operator on complete lattices.



2 Greatest Fixpoint 8

Subgoals

• Express transfinite semantics in a standard framework.

– Express both transfinite and standard semantics in a uniform
algebraic way.

• Provide an exhaustive definition of infinitely deep recursion seman-
tics.

• As a plan for future: build a Cousot’s hierarchy.



2 Greatest Fixpoint 9

Epiphenomenons

• Usual traces must be replaced by either fractional traces ortrees.

• Explicit determinism is lost.



3 Fractional semantics 10

Fractional semantics



3 Fractional semantics 11

Fractional traces

In the case of fractional traces, computation steps are indexed by ratio-
nal numbers from a fixed interval.

• The interval of rationals within which an execution of a state-
ment of the program falls does not depend on the initial state.

• Traces grow into depth rather than into length.



3 Fractional semantics 12

Example: swap

The fractional trace of the execution of program

z := x ; (x := y ; y := z)

at initial state 




x 7→ 1
y 7→ 2
z 7→ 0






is

0 11
2

3
4





x 7→ 1
y 7→ 2
z 7→ 0









x 7→ 1
y 7→ 2
z 7→ 1









x 7→ 2
y 7→ 2
z 7→ 1









x 7→ 2
y 7→ 1
z 7→ 1







3 Fractional semantics 13

Example: infinite loops

If

S1 = S2 = while true do skip

S3 = x := 1

then the domain of the execution trace of statement

S1 ; (S2 ; S3)

is depicted in the following figure:

0 11
2

3
4



4 Tree semantics 14

Tree semantics



4 Tree semantics 15

Trees

In tree semantics, an execution is depicted in the form of tree.

– The tree structure reflects the proof of that execution within a
deduction system.



4 Tree semantics 16

Example: swap

Here is the tree of the execution of the swap program

z := x ; (x := y ; y := z)

at the same initial state as before:

8

<

:

x 7→ 1
y 7→ 2
z 7→ 0

9

=

;

→

8

<

:

x 7→ 1
y 7→ 2
z 7→ 1

9

=

;

8

<

:

x 7→ 1
y 7→ 2
z 7→ 1

9

=

;

→

8

<

:

x 7→ 2
y 7→ 2
z 7→ 1

9

=

;

8

<

:

x 7→ 2
y 7→ 2
z 7→ 1

9

=

;

→

8

<

:

x 7→ 2
y 7→ 1
z 7→ 1

9

=

;

8

<

:

x 7→ 1
y 7→ 2
z 7→ 1

9

=

;

→

8

<

:

x 7→ 2
y 7→ 1
z 7→ 1

9

=

;

8

<

:

x 7→ 1
y 7→ 2
z 7→ 0

9

=

;

→

8

<

:

x 7→ 2
y 7→ 1
z 7→ 1

9

=

;



4 Tree semantics 17

Example generalized

For any program of formS1 ; (S2 ; S3), the tree grows as follows:

...

s0 → s 1
2

...

s 1
2
→ s 3

4

...

s 3
4
→ s1

s 1
2
→ s1

s0 → s1



5 The framework and results 18

The framework and results



5 The framework and results 19

Language

• Statements:

Stmt→ Var := Expr
| Stmt ; Stmt
| if Expr then Stmt else Stmt
| while Expr do Stmt
| call Proc(Var, . . ., Var)

• Modules:

Module→ proc Proc(Var, . . ., Var) is Stmt
| Module ; Module



5 The framework and results 20

Kinds of semantics

We have considered the following kinds:

Finite Standard Transfinite

Integral trace −→+ −→
ω

−→∝

Fractional trace +̃ ω̃ ∝̃

Tree +̂ ω̂ ∝̂



5 The framework and results 21

Domains

Val the set of values

State = Var → Val

Domκ the set of individual semantic objects (traces, trees etc.)

Envκ = Proc→ (State → Val∗) → ℘(Domκ)

The semantic domains℘(Domκ) are equipped with inclusion order,
lifted componentwise to functions.



5 The framework and results 22

Signatures

• Statement level.

Fκ ∈ Envκ → (Stmt→ ℘(Domκ)) → (Stmt→ ℘(Domκ))

Sκ ∈ Envκ → (Stmt→ ℘(Domκ))

Sκ(S)(e) = gfp(Fκ(e))(S)

• Module level.

Gκ ∈ (Module→ Envκ) → (Module→ Envκ)

Tκ ∈ Module→ Envκ

Tk(M) = gfp(Gk)(M)



5 The framework and results 23

Correctness

• The functionsFκ(e) andGκ are monotone.

– By Tarski’s theorem, the greatest fixpoint always exists andthe
definition is correct.

• The functionsFκ(e) andGκ are Scott-cocontinuous forκ = ∝̃, κ =
∝̂.

∗ By Kleene’s theorem, the greatest fixpoint of the transfinitese-
mantics can be obtained by an iteration which is not transfinite!



5 The framework and results 24

Example

Let procedureq be defined by

proc q() is (call q() ; call q())

The iteration of its semantics goes as follows:

0 1



6 Remarks 25

Remarks



6 Remarks 26

The choice of the kind of semantics

Why do we need the fractional traces or trees? Why couldn’t weuse
transfinite sequences?

• It is not possible to express fractal structures that arise in the case of
infinitely deep recursion using transfinite sequences.

• Even in the case of infinite iteration only, the greatest fixpoint of our
function would contain too many traces.

– Besides the desired traces, all traces having a desired trace as
a prefix would be included.

– But in fractional semantics, the interval[0; 1] is wholly dis-
tributed between all statements occurring in the program and
no space is left for garbage.



6 Remarks 27

Connection between different kind of semantics

Fractional traces reflect the deduction tree structure within a linear or-
der. They have both trace and tree properties.

This way, fractional semantics is an intermediate level between trace
and tree semantics.



6 Remarks 28

Non-determinism

The price we pay in this approach is that explicit determinism is lost.

– It is not clear whether the execution trace of a program at an
initial state is unique.

– It is not clear whether there exists an execution trace afterall!

∗ What would the absence of execution traces mean?

Under some natural restrictions, it can be proven that non-determinism
can be introduced by infinitely deep recursion only.


