Transfinite Semantics in the
form of Greatest Fixpoint

Harmel Nestra

Institute of Computer Science
University of Tartu
e-mail:har nel . nestra@it . ee

1 Transfinite semantics

Transfinite semantics

1 Transfinite semantics 3

Transfinite semantics
Transfinite semantics: program execution can continue after com-
pleting an infinite subcomputation.
— Studied during the last decade.
— Can entail:

x transfinite traces of execution steps in the case of itaratio
x fractal traces of execution steps in the case of recursion.

— Useful in formalizing program slicing to avoid semantic
anomaly.

1 Transfinite semantics

Program slicing: example

'sum:= 0;

prod := 1;

i =0,

while % < n do

(

o=+ 1
sum = sum+ i ;
prod := prod * i
);

7

Criterion: {(7,sum}.

1 Transfinite semantics 5

Semantic anomaly: example

If the original program loops then we might have slices wtashign
to interesting variables more times than the original progr

‘while true do skip;

Ix :=0;
2 2

Criterion: {(2,x)}.

2 Greatest Fixpoint

Greatest Fixpoint

2 Greatest Fixpoint 7

Goal: greatest fixpoint form

We represent transfinite semantics in the form of greatgsbifit of a
monotone operator on complete lattices.

2 Greatest Fixpoint 8

Subgoals

e Express transfinite semantics in a standard framework.

— Express both transfinite and standard semantics in a uniform
algebraic way.

e Provide an exhaustive definition of infinitely deep recunsseman-
tics.

e As a plan for future: build a Cousot’s hierarchy.

2 Greatest Fixpoint

Epiphenomenons

e Usual traces must be replaced by either fractional traceses.

e Explicit determinism is lost.

3 Fractional semantics

10

Fractional semantics

3 Fractional semantics 11

Fractional traces

In the case of fractional traces, computation steps areetley ratio-
nal numbers from a fixed interval.

e The interval of rationals within which an execution of a stg
ment of the program falls does not depend on the initial stat

e Traces grow into depth rather than into length.

1

¢

3 Fractional semantics 12

Example: swap
The fractional trace of the execution of program
Z i=X;X :=y;y = 2)

at initial state

X—1
y—2
z—0
is
0 2 ; .
X—1 X—1 X2 X2
yr—2 y—2 y—2 y—1

z—0 z—1 z—1 z—1

3 Fractional semantics 13

Example: infinite loops
If

S1=S=while true do skip
S3=x :=1

then the domain of the execution trace of statement
515 (525 53)
is depicted in the following figure:

0 >

F W
[

4 Tree semantics

14

Tree semantics

4 Tree semantics 15

Trees

In tree semantics, an execution is depicted in the form ef tre

— The tree structure reflects the proof of that execution witn
deduction system.

4 Tree semantics 16

Example: swap
Here is the tree of the execution of the swap program
Z i=X;X :=y;y = 2)

at the same initial state as before:

X+—1 X2 X2 X —2
y—2 — y—2 y—2 — y—1
z—1 z—1 z—1 z—1
X+—1 X—1 X+—1 X —2
yi—2 3 =< y—2 y—2 = qy—1l
z—0 z—1 z—1 z—1
X1 X 2
y—2 — y—1
z+—0 z—1

4 Tree semantics 17

Example generalized

For any program of fornd; ; (S, ; S3), the tree grows as follows:

S3 — S1
4

S
L[]

Sgp — S1 S1 — 81
2 2

S0 — S1

5 The framework and results

18

The framework and results

5 The framework and results 19

Language

e Statements:

Stmt— Var : = Expr
| Stmt; Stmt
| if Exprthen Stmtel se Stmt
| while Expr do Stmt
| call Prod Var, ..., Var

e Modules:

Module— proc Prod var, ..., Var) is Stmt
| Module; Module

5 The framework and results

20

Kinds of semantics

We have considered the following kinds:

Finite | Standard Transfinite
Integral trace | + w x
Fractional traceg + @ x
Tree ¥ @ X

5 The framework and results 21

Domains

Val the set of values
State = Var — Val

Dom,, the set of individual semantic objects (traces, trees etg.

Env, = Proc— (State — Val*) — p(Dom,,)

The semantic domaing(Dom,) are equipped with inclusion orde
lifted componentwise to functions.

=

5 The framework and results 22

Signatures

e Statement level.

¥. € Env, — (Stmt— p(Dom,)) — (Stmt— o(Dom,,))
S. € Env, — (Stmt— p(Dom,))

$5x(5)(e) = gfp(7.(e))(5)

e Module level.

G. € (Module— Env,) — (Module— Env,,)
7, € Module— Env,,

Tr(M) = gtp(Gx)(M)

5 The framework and results 23

Correctness

e The functionsr,(e) andg, are monotone.

— By Tarski’'s theorem, the greatest fixpoint always existstaBg
definition is correct.

e The functionsr,.(e) andg, are Scott-cocontinuous fer = &, x =
X.

x By Kleene’s theorem, the greatest fixpoint of the transfigite
mantics can be obtained by an iteration which is not trarstir

N

24

5 The framework and results

Example
Let procedure) be defined by

is (call q() ;call q())

proc q()

The iteration of its semantics goes as follows:

6 Remarks

25

Remarks

6 Remarks 26

The choice of the kind of semantics

Why do we need the fractional traces or trees? Why couldn’tises
transfinite sequences?

e Itis not possible to express fractal structures that anigbe case of
infinitely deep recursion using transfinite sequences.

e Eveninthe case of infinite iteration only, the greatest firpof our
function would contain too many traces.

— Besides the desired traces, all traces having a desiresl dss
a prefix would be included.

— But in fractional semantics, the intervgl; 1] is wholly dis-
tributed between all statements occurring in the prograch
no space is left for garbage.

1C

an

6 Remarks 27

Connection between different kind of semantics

Fractional traces reflect the deduction tree structureimvéHinear or-
der. They have both trace and tree properties.

This way, fractional semantics is an intermediate levelveen trace
and tree semantics.

6 Remarks 28

Non-determinism

The price we pay in this approach is that explicit deternmmis lost.

— It is not clear whether the execution trace of a program at an
initial state is unique.

— Itis not clear whether there exists an execution trace after

+ What would the absence of execution traces mean?

Under some natural restrictions, it can be proven that redarchinism
can be introduced by infinitely deep recursion only.

